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We present a nonparametric family of estimators for the tail index of a Weibull tail-distribution when functional covariate is available. Our estimators are based on a kernel estimator of extreme conditional quantiles. Asymptotic normality of the estimators is proved under mild regularity conditions. Their finite sample performances are illustrated both on simulated and real data.

Introduction

Weibull tail-distributions encompass a variety of light-tailed distributions, such as Weibull, Gaussian, gamma and logistic distributions. Let us recall that a cumulative distribution function F has a Weibull tail if it satisfies the following property: there exists θ > 0 such that for all t > 0,

lim y→∞ log(1 -F (ty)) log(1 -F (y)) = t 1/θ . (1) 
The parameter θ is referred to as the Weibull tail-coefficient. A general account on Weibull taildistributions can be found in [START_REF] Beirlant | Practical analysis of extreme values[END_REF], see also [START_REF] Beirlant | Modeling large claims in non-life insurance[END_REF] for an application to the modeling of large claims in non-life insurance. Dedicated methods have been proposed to estimate the Weibull tail-coefficient since the relevant information is only contained in the extreme upper part of the sample denoted hereafter by Y 1 , . . . , Y n . A first direction was investigated in [START_REF] Berred | Record values and the estimation of the Weibull tail-coefficient[END_REF] where an estimator based on the record values is proposed. Another family of approaches [START_REF] Beirlant | Semiparametric lower bounds for tail index estimation[END_REF][START_REF] Beirlant | The mean residual life function at great age: Applications to tail estimation[END_REF][START_REF] Broniatowski | On the estimation of the Weibull tail coefficient[END_REF][START_REF] Dierckx | A new estimation method for Weibull-type tails based on the mean excess function[END_REF] consists of using the k n upper order statistics

Y n-kn+1,n ≤ • • • ≤ Y n,n
where k n → ∞ as n → ∞. Note that, since θ is defined through an asymptotic behavior of the tail, the estimator should only use the extreme-values of the sample and thus the extra condition k n /n → 0 is required. More specifically, most recent estimators are based on the log-spacings between the k n upper order statistics [START_REF] Beirlant | Practical analysis of extreme values[END_REF][START_REF] Diebolt | Bias-reduced estimators of the Weibull tail-coefficient[END_REF][START_REF] Gardes | Comparison of Weibull tail-coefficient estimators[END_REF][START_REF] Gardes | Estimation of the Weibull tail-coefficient with linear combination of upper order statistics[END_REF][START_REF] Gardes | Weibull tail-distributions revisited: a new look at some tail estimators[END_REF][START_REF] Girard | A Hill type estimate of the Weibull tail-coefficient[END_REF].

Here, we focus on the situation where some covariate information X is recorded simultaneously with the quantity of interest Y . In the general case, the tail heaviness of Y given X depends on X, and thus the Weibull tail-coefficient is a function θ(X) of the covariate. When the covariate is finite dimensional, some new tools have been introduced [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF][START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF] to estimate extreme conditional quantiles. We refer to [START_REF] El Methni | Nonparametric estimation of extreme risk measures from conditional heavy-tailed distributions[END_REF] for an application to the risk modeling associated with extreme rainfalls. In this case, the selected covariate is the geographical location but other relevant informations could be included such as climatic curves. More generally, covariates may be curves (electricity price/demand curves, medical curves, ...) in many other situations coming from applied sciences, see [START_REF] Bongiorno | Contributions in infinite-dimensional statistics and related topics[END_REF], paragraph 1.2.2. However, the estimation of the Weibull tail-coefficient with functional covariates has not been addressed yet. Our approach relies on the use of qn a functional kernel estimator of conditional quantiles, see [START_REF] Ferraty | Conditional quantiles for dependent functional data with application to the climatic El Nino Phenomenon[END_REF] for an example. Similarly to the unconditional case, the estimation of θ(X) is based on the extreme observations of Y |X. Therefore, a close study of the asymptotic properties of qn when estimating extreme quantiles is necessary. Two statistical fields are thus involved in this study: nonparametric smoothing techniques adapted to functional data are required in order to deal with the covariate X while extreme-value analysis is used to study the tail behavior of Y |X.

The family of nonparametric functional estimators is introduced in Section 2 and its asymptotic normality is established. A particular sub-family of estimators is exhibited in Section 3, their finite sample behavior is illustrated on some simulated data in Section 4 and on a real dataset in Section 5. Proofs are postponed to Section 6.

Main result

Let (X i , Y i ), i = 1, . . . , n, be independent copies of a random pair (X, Y ) ∈ E × R where E is an arbitrary space associated with a semi-metric d. Recall that a semi-metric (or pseudometric) may allow the distance between two different points to be zero, see [START_REF] Ferraty | Nonparametric functional data analysis[END_REF], Definition 3.2. The conditional survival function of Y given X = x ∈ E is denoted by F (y|x) := P(Y > y|X = x) and is supposed to be continuous and strictly decreasing with respect to y. Discussing the existence of regular versions of F (.|.) is beyond the scope of this paper. Let us just note that such an existence is insured when (E, d) is a Polish space [START_REF] Jiřina | On regular conditional probabilities[END_REF]. The associated conditional cumulative hazard function is defined by H(y|x) :=log F (y|x) and the conditional quantile is therefore given by q(α|x) := F -1 (α|x) = H -1 (log(1/α)|x), for all α ∈ (0, 1). In this paper, we focus on conditional Weibull tail-distributions. In such a case, analogously to (1), H(.|x) is a regularly varying function with index 1/θ(x), i.e.

lim y→∞ H(ty|x) H(y|x) = t 1/θ(x) ,
for all t > 0. In this situation, θ(.) is an unknown positive function of the covariate x ∈ E referred to as the functional Weibull tail-coefficient. From [START_REF] Bingham | Regular Variation[END_REF], Theorem 1.5.12, H -1 (.|x) is also a regularly varying function with index θ(x) and thus, there exists a slowly-varying function ℓ(.|x) such that

q(e -y |x) = H -1 (y|x) = y θ(x) ℓ(y|x). (2) 
Recall that the slowly-varying function ℓ(.|x) is such that

lim y→∞ ℓ(ty|x) ℓ(y|x) = 1, (3) 
for all t > 0, see [START_REF] Bingham | Regular Variation[END_REF] for a general account on regular variation theory. In view of (2), it appears that the functional Weibull tail-coefficient drives the asymptotic behavior of conditional extreme quantiles. The object of interest is thus θ(x) where x is in some arbitrary semi-metric space (E, d).

The most usual case is E = R p , but our framework also includes the infinite dimensional case, for instance when x is a curve. We propose a family of estimators of θ(x) based on some properties of the log-spacings of the conditional quantiles: Let α ∈ (0, 1) small enough and τ ∈ (0, 1), log q(τ α|x)log q(α|x) = log

H -1 (-log(τ α)|x) -log H -1 (-log(α)|x) = θ(x)(log -2 (τ α) -log -2 (α)) + log ℓ(-log(τ α)|x) ℓ(-log(α)|x) ≈ θ(x)(log -2 (τ α) -log -2 (α)) ≈ θ(x) log(1/τ ) log(1/α) , (4) 
where log -2 (.) := log log(1/.), see Lemma 2 in Section 6 for a more precise asymptotic expansion. Hence, for a decreasing sequence 0

< τ J < • • • < τ 1 ≤ 1,
where J is a positive integer, and for all functions φ satisfying the shift and location invariance condition

(A.1) φ : R J → R is a twice differentiable function such that φ(ηz) = ηφ(z), φ(ηu + z) = φ(z) for all η ∈ R \ {0}, z ∈ R J and where u = (1, . . . , 1) t ∈ R J ,
one has:

θ(x) ≈ log(1/α) φ(log q(τ 1 α|x), . . . , log q(τ J α|x)) φ(log(1/τ 1 ), . . . , log(1/τ J )) . (5) 
Thus, the estimation of θ(x) relies on the estimation of conditional quantiles q(.|x). This problem is addressed using a two-step estimator. First, F (y|x) is estimated by the kernel estimator defined for all (x, y)

∈ E × R by Fn (y|x) = n i=1 K(d(x, X i )/h n )I{Y i > y} n i=1 K(d(x, X i )/h n ), (6) 
where I{.} is the indicator function and h n is a nonrandom sequence such that h n → 0 as n → ∞ (note that this bandwidth h n may depend on x). The case of random neighbourhoods is addressed in [START_REF] Kudraszow | Uniform consistency of kNN regressors for functional variables[END_REF] with k-Nearest Neighbours estimators. The function K is assumed to have a support included in [0, 1] such that C 1 ≤ K(t) ≤ C 2 for all t ∈ [0, 1] and for some constants 0 < C 1 < C 2 < ∞.

One may also assume without loss of generality that K integrates to one. In this case, K is called a type I kernel, see [START_REF] Ferraty | Nonparametric functional data analysis[END_REF], Definition 4.1. Let B(x, h n ) be the ball of center x and radius h n , and introduce ϕ x (h n ) := P(X ∈ B(x, h n )) the small ball probability of X. It is easily shown that the τ -th moment µ

(τ ) x (h n ) := E{K τ (d(x, X)/h n )} can be controlled for all τ > 0 as 0 < C τ 1 ϕ x (h n ) ≤ µ (τ ) x (h n ) ≤ C τ 2 ϕ x (h n ). ( 7 
)
The estimation of F (y|x) is well-documented in the nonparametric literature, see for instance the seminal papers [START_REF] Roussas | Nonparametric estimation of the transition distribution function of a Markov process[END_REF][START_REF] Stone | Consistent nonparametric regression (with discussion)[END_REF] in the case where E = R p . The estimator was extended to the infinite dimensional setting for instance in [START_REF] Ferraty | Nonparametric functional data analysis[END_REF], page 56. Its rate of uniform strong consistency is proved by [START_REF] Ferraty | Rate of uniform consistency for nonparametric estimates with functional variables[END_REF] for a fixed value of y. Here, its asymptotic normality is established in Lemma 6 in Section 6 for y = y n → ∞ as n → ∞, i.e. when estimating small tail probabilities from Weibull taildistributions. Second, the kernel estimators of the conditional quantiles q(α|x) are defined via the generalized inverse of Fn (.|x):

qn (α|x) = F ← n (α|x) = inf{y, Fn (y|x) ≤ α}, (8) 
for all α ∈ (0, 1). Many authors focused on the asymptotic properties of this estimator for fixed α ∈ (0, 1). Weak and strong consistency are proved respectively in [START_REF] Stone | Consistent nonparametric regression (with discussion)[END_REF] and [START_REF] Gannoun | Estimation non paramétrique de la médiane conditionnelle, médianogramme et méthode du noyau[END_REF]. Asymptotic normality is shown in [START_REF] Berlinet | Asymptotic normality of convergent estimates of conditional quantiles[END_REF][START_REF] Samanta | Non-parametric estimation of conditional quantiles[END_REF][START_REF] Stute | Conditional empirical processes[END_REF] when E is finite dimensional and by [START_REF] Ferraty | Conditional quantiles for dependent functional data with application to the climatic El Nino Phenomenon[END_REF] for a general semi-metric space under dependence assumptions. Here, the asymptotic distribution of ( 8) is established when estimating extreme quantiles from Weibull tail-distributions, i.e. when α = α n → 0 as n → ∞. This new result is established in Lemma 7, see Section 6.

Basing on (5), the considered family of estimators is then given by θn (x) = log(1/α n ) φ(log qn (τ 1 α n |x), . . . , log qn (τ J α n |x)) φ(log(1/τ 1 ), . . . , log(1/τ J )) ,

with α n → 0 as n → ∞ and where the (extreme) conditional quantiles are estimated by [START_REF] Berred | Record values and the estimation of the Weibull tail-coefficient[END_REF]. Model ( 2) is not sufficient to establish the asymptotic distribution of θn (x), additional assumptions have to be made on ℓ(.|x). We further assume that

(A.2) ℓ(.|x
) is a normalized and continuously differentiable slowly-varying function.

In such a case, the Karamata representation (see [START_REF] Bingham | Regular Variation[END_REF], Theorem 1.3.1) of the slowly-varying function can be written as

ℓ(y|x) = c(x) exp y 1 ε(u|x) u du , (10) 
where c(x) > 0 and ε(u|x) → 0 as u → ∞. The auxiliary function ε(.|x) is thus continuous and given by ε(y|x) = yℓ ′ (y|x)/ℓ(y|x). In fact, (A.2) is equivalent to assuming [START_REF] Bongiorno | Contributions in infinite-dimensional statistics and related topics[END_REF] and the continuity of ε(.|x). The function ε(.|x) plays an important role in extreme-value theory since it drives the speed of convergence in (3) and more generally the bias of extreme-value estimators. Therefore, it may be of interest to specify how it converges to 0:

(A.3) |ε(.|x)| is regularly varying with index ρ(x) ≤ 0.
This assumption is used for instance by [START_REF] Alves | Estimation of the parameter controlling the speed of convergence in extreme value theory[END_REF][START_REF] Gomes | Semi-parametric estimation of the second order parameter, asymptotic and finite sample behaviour[END_REF] in the unconditional case and the estimation of the regular variation parameter ρ is addressed. Since the considered estimator involves a smoothing in the x direction, it is necessary to assess the regularity of the conditional survival function with respect to x. To this end, the oscillations are controlled by

∆ F (x, α, ζ, h) := sup (x ′ ,β)∈B(x,h)×[α,ζ] F (q(β|x)|x ′ ) F (q(β|x)|x) -1 = sup (x ′ ,β)∈B(x,h)×[α,ζ] F (q(β|x)|x ′ ) β -1 , where (α, ζ) ∈ (0, 1) 2 . Finally, let v = (log(1/τ 1 ), . . . , log(1/τ J )) t ∈ R J and Λ n (x) = nα n (µ (1) 
x (h n )) 2 µ

(2)

x (h n ) -1/2
.

The following result establishes the asymptotic normality of estimator [START_REF] Bingham | Regular Variation[END_REF].

Theorem 1. Under model (2), suppose (A.1)-(A.3) hold. Let x ∈ E such that ϕ x (h n ) > 0 where h n → 0 as n → ∞. If α n → 0, nϕ x (h n )α n ε(log(1/α n )|x) → λ ∈ R (11) 
and there exists η > 0 such that nϕ x (h n )α n → ∞ and

nϕ x (h n )α n {∆ F (x, (1 -η)τ J α n , (1 + η)α n , h n ) ∨ 1/log(1/α n )} → 0 as n → ∞, (12) 
then, Λ -1 n (x)( θn (x) -θ(x)) d -→ N (µ φ , θ 2 (x)V φ ) with µ φ = λv t ∇ log φ(v), V φ = (∇ log φ(v)) t Σ (∇ log φ(v)). ( 13 
)
and where Σ j,j ′ = τ -1 j∧j ′ for (j, j ′ ) ∈ {1, . . . , J} 2 .

As pointed out in [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF], nϕ x (h n )α n → ∞ is a necessary and sufficient condition for the almost sure presence of at least one sample point in the region B(x, h n ) × (q(α n |x), ∞) of E × R. This condition states that one cannot estimate small tail probabilities out of the sample using the kernel estimator [START_REF] Beirlant | Modeling large claims in non-life insurance[END_REF]. Let us also highlight that the asymptotic variance of the estimator is asymptotically or order 1/(nϕ x (h n )α n ). The convergence rate thus directly depends on the small ball probability ϕ x (h n ). To overcome the sensitiveness of the method to dimensionality effects or to the choice of the semi-metric, one can use dimension reduction techniques such as single index models, see for instance [START_REF] Goia | A partitioned single functional index model[END_REF]. Nevertheless, the theoretical properties of such methods are not yet established in the extreme framework. Condition [START_REF] Caeiro | Bias reduction in the estimation of parameters of rare events[END_REF] imposes that the (squared) bias induced by the smoothing should be negligible compared to the variance of the estimator. Let us note that condition ( 11) is standard in the extreme-value framework. Neglecting the slowly-varying function in the construction (4) of θn (x) yields a bias that should be of the same order as the asymptotic standard deviation of the estimator. Moreover, when λ = 0, conditions ( 11) and (12

) yield log(1/α n )ε(log(1/α n )|x) → ∞ as n → ∞ which, in turn, implies ρ(x) > -1.
The next corollary provides some possible choices of α n and h n sequences under Hölder conditions.

Corollary 1. Suppose (2), (A.1)-(A.3) hold. Let x ∈ E such that ϕ x (h n ) > 0 and yε(y|x) → ∞ as y → ∞. Assume there exist positive constants L θ , L c et L ε such that, for all (x, x ′ ) ∈ E 2 , 1 θ(x) - 1 θ(x ′ ) ≤ L θ d(x, x ′ ), log c(x) -log c(x ′ ) ≤ L c d(x, x ′ ), (14) 
sup

u∈[1,ȳn(x)] ε(u|x) -ε(u|x ′ ) ≤ L ε d(x, x ′ ),
where ȳn (x) := sup{H(q(α n |x)|x ′ ), x ′ ∈ B(x, h n )}. Suppose there exists ξ > 0 small enough such that ϕ -1

x (1/y)(log y) 1+ξ-ρ(x) → 0 as y → ∞. Then, letting λ > 0,

α n = n -1+ξ and h n = ϕ -1 x λ(1 -ξ) 2ρ(x) n -ξ (ε(log n|x)) -2 , ( 15 
)
the assumptions of Theorem 1 hold and therefore

Λ -1 n (x)( θn (x) -θ(x)) d -→ N (µ φ , θ 2 (x)V φ ).
The key assumption here is ϕ -1

x (1/y)(log y) 1+ξ-ρ(x) → 0 as y → ∞. It can be shown that this condition holds in the finite dimensional setting (when X has a continuous density with respect to the Lebesgue measure), or for fractal-type and some exponential-type processes, see [START_REF] Ferraty | Nonparametric functional data analysis[END_REF], Chapter 13. Finally, the asymptotic variance V φ does not depend on the distribution of Y |X = x. It is thus possible to look for functions φ and for sequences τ J < • • • < τ 1 minimizing V φ . This problem is addressed in the next section.

Example

In this section, we focus on the particular family of functions φ

(p) (z) = J j=2 β j (z j -z 1 ) p 1/p
, where z = (z 1 , . . . , z J ) t ∈ R J , p ∈ N \ {0} and for all j ∈ {2, . . . , J}, β j ∈ R. It is clear that assumption (A.1) is satisfied and the corresponding estimator of θ writes:

θ(p) n (x) = log(1/α n )   J j=2 β j [log qn (τ j α n |x) -log qn (τ 1 α n |x)] p J j=2 β j [log(τ 1 /τ j )] p   1/p . (16) 
Taking β 2 = . . . = β J leads to an estimator analogous to the one proposed in [START_REF] Segers | Residual estimators[END_REF] for unconditional heavy-tailed distributions. If furthermore p = 1, ( 16) corresponds to a functional version of the estimator proposed in [START_REF] Gardes | Comparison of Weibull tail-coefficient estimators[END_REF]:

θ(1) n (x) = log(1/α n ) J j=1 [log qn (τ j α n |x) -log qn (α n |x)] J j=1 log(1/τ j ) .
It can also be read as an adaptation of the kernel tail-index estimator introduced in [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF] in a finite dimensional setting for conditional heavy-tailed distributions to conditional Weibull taildistributions. As a consequence of Theorem 1, the associated asymptotic mean and variance of θ(p) n (x) defined in ( 13) are given for an arbitrary vector β by µ = λ and

V (p) = (η (p) ) t AΣA t η (p) (η (p) ) t Avv t A t η (p) ,
where A is the (J -1) × J matrix defined by A = [I J-1 , -u] with I J-1 the (J -1) × (J -1) identity matrix and η (p) = (β j (v jv 1 ), j = 2, . . . , J) t . Let us emphasize that the asymptotic bias µ does not depend neither on p and nor on the weights {β j , j = 2, . . . , J}. At the opposite, the asymptotic variance V (p) depends both on p and on the weights but only through the vector η (p) . It is thus possible to minimize V (p) with respect to η (p) :

Proposition 1. The asymptotic variance of θ(p) n (x) is minimal for η (p) proportional to η opt = (AΣA t ) -1 Av and is given by

V opt = 1 (Av) t (AΣA t ) -1 Av .
Let us highlight that V opt is independent of p. Moreover, for a fixed value of J, it is possible to minimize numerically the optimal variance V opt given by Proposition 1 with respect to parameters 0

< τ J < • • • < τ 1 ≤ 1.
The resulting values of V opt are displayed in Table 1. The finite sample performance of the associated estimators are illustrated on simulated data in Section 4.

Numerical experiments

In this section, the finite sample performance of the estimator (16) associated with optimal weights is investigated. For j = 2, . . . , J, we thus take β j = η opt,j (v jv 1 ) 1-p where the vector η opt ∈ R J-1 is given in Proposition 1. Besides, the sequence τ 1 , . . . , τ J is selected by minimizing the asymptotic variance V opt , see Table 1. Some preliminary simulations showed that the choice of a length J > 5

did not improve the results, we thus take in the following J = 5. The value of p is taken in the set {1, 2, 3}. The estimator (6) of the survival function is computed with a modified version of the bi-quadratic kernel given by

K(u) = 10 9 3 2 1 -u 2 2 + 1 10 I{|u| ≤ 1}.
Note that, as required, K is a type I kernel. The set E considered here is a subset of L 2 ([0, 1]) made of trigonometric functions

ψ z : [0, 1] → [0, 1], ψ z (t) = cos(2πzt) with different periods indexed by z ∈ [1/10, 1/2]. Two semi-metrics are considered: d 1 (ψ z , ψ z ′ ) = ψ z 2 2 -ψ z ′ 2 2 and d 2 (ψ z , ψ z ′ ) = ψ z -ψ z ′ 2 , for all (z, z ′ ) ∈ [1/10, 1/2] 2 , where ψ z 2 2 = 1 0 ψ 2 z (t)dt = 1 2 1 + sin(4πz) 4πz .
The semi-metric d 2 is built on the classical L 2 norm while d 1 measures some spacing between the periods of the trigonometric functions. The covariate X is chosen randomly on E by considering X = ψ Z where Z is a uniform random variable on [1/10, 1/2]. Some examples of simulated random functions X are depicted on the left panel of Figure 1. For a given function x ∈ E, the generalized inverse of the conditional hazard function H(.|x) is given for y ≥ 0 by H ← (y|x) = y θ(x) 1γy ρ(x) , with γ = 1/10. Note that in this situation ℓ(y|x) = 1γy ρ(x) and ε(y|x) ∼ -γρ(x)y ρ(x) , and thus assumption (A.3) holds. As it can be seen in Theorem 1, ρ(x) and θ(x) tune the difficulty of the problem. For small values of |ρ(x)|, approximation (4) becomes unreliable and some bias is expected in the estimation while for large values of θ(x) the asymptotic variance of θn (x) increases.

To illustrate the effect of these two parameters, the functions defined on E by θ(x) = (20 x 2 2 + 1) -1 + 1/40 and ρ(x) = 50/(60 x 2 2 + 3) -5/2 are introduced and the following three situations are considered: (S.1) ρ(x) = -1 and θ(x) = θ(x); (S.2) ρ(x) = ρ(x) and θ(x) = 1/10 and (S.3) ρ(x) = ρ(x) and θ(x) = θ(x). For each case, N = 100 samples of size n = 1000 were generated. The selection of the two remaining parameters h n and α n is addressed in the next paragraph. In order to show the advantage of using the covariate information, θn (x) is compared to the nonconditional estimator proposed in [START_REF] Gardes | Comparison of Weibull tail-coefficient estimators[END_REF] and defined by:

θNCE n = kn i=1 (log Y n-i+1,n -log Y n-kn+1,n ) kn i=1 log -2 (n/i) -log -2 (n/k n ) , (17) 
with k n = 250 and where Y 1,n ≤ . . . ≤ Y n,n are the ordered statistics.

Selection of the bandwidth h n and the sequence α n . The choice of the smoothing parameter h n is a recurrent issue in nonparametric estimation. We refer to [START_REF] Rachdi | Nonparametric regression for functional data: automatic smoothing parameter selection[END_REF] for a functional version of the cross-validation criterion and to [START_REF] Shang | Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density[END_REF] for a Bayesian approach. Besides, the selection of α n is equivalent to the choice of the number of upper order statistics in the non-conditional extremevalue theory. It is still an open question, even though some techniques have been proposed, see for instance [START_REF] Danielsson | Using a bootstrap method to choose the sample fraction in tail index estimation[END_REF] for a bootstrap based method. We propose a procedure to select simultaneously h n and α n basing on the following remark. For a fixed x, let {Z 1 (x, h n ), . . . , Z mn (x, h n )} be the m n random values Y i for which X i ∈ B(x, h n ). According to the result obtained in [START_REF] Diebolt | Bias-reduced estimators of the Weibull tail-coefficient[END_REF], equation ( 6), if the sequences h n and α n are well chosen then the rescaled log-spacings

{i log(m n /i)(log Z mn-i+1,mn (x, h n ) -log Z mn-i,mn (x, h n )), i = 1, . . . , ⌊m n α n ⌋},
should be approximately independent with an exponential distribution of parameter θ(x). For each value of h in the set H = {h i , i = 1, . . . , M h } and α in the set A = {α j , j = 1, . . . , M α } a Kolmogorov-Smirnov test is performed and the obtained p-value KS(h, α) is recorded. We then select the optimal sequences h opt and α opt such that (h opt , α opt ) = arg max h∈H, α∈A

KS(h, α).

Let us highlight that this procedure is intrinsically location-adaptive since the selected values h opt and α opt both depend on x. In practice, we take M h = M α = 30 , A = {0.05, . . . , 0.3}, H = {0.03, . . . , 0.2} for distance d 1 and H = {0.03, . . . , 1} for distance d 2 .

Results. Boxplots of the estimations obtained with the non conditional estimator [START_REF] Dierckx | A new estimation method for Weibull-type tails based on the mean excess function[END_REF] and the proposed estimator θ(p) n (x) with p = 1 and p = 3 are represented on Figure 2 (distance d 1 ) and Figure 3 (distance d 2 ). As expected, it appears that the variance is larger for large values of θ(x) (first row of Figure 2). At the opposite, the bias seems approximately independent of ρ(x) (second row of Figure 2). One can also observe that the choice p = 3 yields slightly better results than p = 1. The non-conditional estimator [START_REF] Dierckx | A new estimation method for Weibull-type tails based on the mean excess function[END_REF] provides poor results compared to θ(p) n (x). It is thus essential to take the covariate information into account. Finally, comparing the results obtained with d 1 and d 2 , it appears that the use of d 1 provides better result than d 2 . This conclusion could be expected since the trigonometric functions of E only differ from their periods and d 1 does measure some spacing between these periods.

Conclusion.

To summarize, the estimator θ(p) n (x) gives satisfying results when combined with optimal weights (see Proposition 1 and Table 1). It is fully data-driven thanks to an automatic selection procedure of the bandwidth h n and of the sequence α n . The estimator is very sensitive with respect to the choice of the semi-metric d. We refer to [START_REF] Ferraty | Nonparametric functional data analysis[END_REF], Chapter 3, for a discussion on the definition of a well-adapted semi-metric to a particular estimation problem. A possible extension of this work would be to implement a bias reduction technique based on the estimation of the index of regular variation in (A.3) similarly to [START_REF] Caeiro | Bias reduction in the estimation of parameters of rare events[END_REF] in the unconditional setting and for heavy-tailed distributions. However, as stressed in [START_REF] Asimit | Pitfalls in using Weibull tailed distributions[END_REF], this adaptation should be conducted with great care.

Illustration on real data

The behaviour of the proposed Weibull tail-coefficient estimator (with p = 3) is illustrated on spectrometric data. These data contain n = 215 near infrared spectra of absorbance (x i , i = 1, . . . , 215) observed on finely chopped pieces of meat and discretized at 100 wavelengths. This dataset is often considered in papers dedicated to nonparametric functional data analysis, see for instance [START_REF] Ferraty | The functional nonparametric model and application to spectrometric data[END_REF][START_REF] Ferraty | Nonparametric functional data analysis[END_REF]. For each spectrometric curve x i , the percentage of fat content ỹi ∈ [0, 100] is recorded. Since the fat contents are bounded, the following transformed variables are considered: y i := log(100/ỹ i ) for all i ∈ {1, . . . , n}. Denoting by y 1,n ≤ . . . ≤ y n,n the ordered transformed observations and by x (1) , . . . , x (n) their corresponding spectra, we propose to estimate the functional Weibull tail-coefficients associated with the curves {x β , β = 0, 1/4, 1/2, 3/4, 1} where xβ is the mean of the curves {x (i) , i ∈ I β } with I 0 = {n -9, . . . , n}, I 1 = {1, . . . , 10} and I β = {⌊n(1β)⌋ -4, . . . , ⌈n(1β)⌉ + 4} for β ∈ {1/4, 1/2, 3/4}. Here, ⌊.⌋ and ⌈.⌉ are the floor and ceiling functions. For example, the curve x0 is obtained by averaging the spectra associated with the 10 largest transformed variables (or equivalently the 10 smallest fat contents). These curves are represented on the right panel of Figure 1. A natural semi-metric to work with is

d 2 (x 1 , x 2 ) = {x (2) 1 (t) -x (2) 2 (t)} 2 dt, (x 1 , x 2 ) ∈ E 2 ,
where x (2) denotes the second derivative of x, see [START_REF] Ferraty | Nonparametric functional data analysis[END_REF], Chapter 9. Let us now investigate the goodness-of-fit of model ( 2) to the observations {(x i , y i ), i = 1, . . . , 215}. For each curve xβ , hyperparameters h n and α n are selected following the procedure described in Section 4. Using these selected values, the estimated conditional quantile qn (α n |x β ) is computed for each β ∈ {0, 1/4, 1/2, 3/4, 1} and the statistics {Z 1 , . . . , Z m β } corresponding to the y i 's such that x i ∈ B(x β , h n ) and y i > qn (α n |x β ) are collected. According to (4), under model ( 2), the points

log -2 F n (Z m β -i+1,m β |x β ) -log -2 α n ; log Z m β -i+1,m β -log qn (α n |x β ) , i = 1, . . . , m β ,
should approximately lie on a straight line. For each β, these points are represented on Figure 4 (5 upper left panels) and it appears that model (2) fits reasonably well the observations. For each curve xβ , the estimator of the functional Weibull tail-coefficient is depicted on Figure 4 (bottom right panel). It appears that the smaller the fat content, the smaller the functional Weibull tailcoefficient. In other words, heaviest tails are found for small values of fat contents. In terms of tail behaviour, the sample is thus clearly heterogeneous.

Proofs

Preliminary results

Let us start with three analytical results. The first lemma provides a sufficient condition under which F (.|x) preserves the equivalence property between sequences. Lemma 1. Suppose ( 2) and (A.2) hold. Let (u n ) and (v n ) be sequences such that u n → ∞ and

H(u n |x) v n u n -1 → 0, as n → ∞. Then, F (u n |x)/ F (v n |x) → 1 as n → ∞.
Proof of Lemma 1. Under (A.2), H(.|x) is continuously differentiable and a first order Taylor expansion yields that there exists w n between u n and v n such that:

F (u n |x)/ F (v n |x) = exp{H(v n |x) -H(u n |x)} = exp{(v n -u n )H ′ (w n |x)}.
Besides, under (A.2), (H -1 ) ′ (y|x) = y θ(x)-1 ℓ(y|x)(θ(x)+ε(y|x)) and thus (H -1 ) ′ (.|x) is a regularly varying function with index θ(x) -1. Moreover, since

H ′ (.|x) = 1/(H -1 ) ′ (H(.|x)|x), it is clear that H ′ (.|x) is regularly varying with index 1/θ(x) -1. As a consequence, w n ∼ u n implies H ′ (w n |x) ∼ H ′ (u n |x) as n → ∞. Thus, (v n -u n )H ′ (w n |x) ∼ H(u n |x) v n u n -1 u n H ′ (u n |x) H(u n |x) ∼ H(u n |x) v n u n -1 1 θ(x)
, concludes the proof.

The second lemma establishes an asymptotic expansion of the log-spacing between two extreme conditional quantiles. It justifies the heuristic approximation used in (4).

Lemma 2. Suppose ( 2), (A.2) and (A.3) hold. Let 0 < τ ≤ 1 and α n → 0 as n → ∞. Then,

log q(τ α n |x) -log q(α n |x) = log(1/τ ) log(1/α n ) θ(x) + ε(log(1/α n )|x)(1 + o(1)) + O 1 log(1/α n ) .
Proof of Lemma 2. In view of (2), we have

∆ n := log q(τ α n |x) -log q(α n |x) = θ(x)[log -2 (τ α n ) -log -2 (α n )] + log ℓ(log(1/τ α n )|x) -log ℓ(log(1/α n )|x) = θ(x)[log -2 (τ α n ) -log -2 (α n )] + ψ(log(1/τ α n )|x) -ψ(log(1/α n )|x),
where ψ(.|x) := log ℓ(.|x). Under (A.2), ψ(.|x) is continuously differentiable and a first order Taylor expansion thus yields that there exists η n ∈ (τ α n , α n ) such that

∆ n = θ(x)[log -2 (τ α n ) -log -2 (α n )] + log(1/τ )ψ ′ (log(1/η n )|x) = θ(x)[log -2 (τ α n ) -log -2 (α n )] + log(1/τ ) log(1/η n ) ε(log(1/η n )|x),
where ε(.|x) is defined in [START_REF] Bongiorno | Contributions in infinite-dimensional statistics and related topics[END_REF]. Since log

(1/η n ) is asymptotically equivalent to log(1/α n ), (A.3) im- plies ε(log(1/η n )|x) = ε(log(1/α n )|x)(1 + o(1)) so that ∆ n = θ(x)[log -2 (τ α n ) -log -2 (α n )] + log(1/τ ) log(1/α n ) ε(log(1/α n )|x)(1 + o(1)).
Finally, remarking that

log -2 (τ α n ) -log -2 (α n ) = log(1/τ ) log(1/α n ) + O 1 log 2 (1/α n ) ,
the conclusion follows.

Lemma 3 controls the oscillations of the conditional survival function under Hölder assumptions.

Lemma 3. Suppose ( 2), ( 14) and (A.2) hold. Let (h n ), (α n ) and (ξ n ) be sequences converging to 0 such that α n < ξ n and

h n log(α n ) log -2 (α n ) → 0 as n → ∞. Then, ∆F (x, α n , ξ n , h n ) = O h n log(1/α n ) log -2 (α n ) .
Proof of Lemma 3. Let y n (x) := q(β n |x) → ∞ and remark that the oscillation can be rewritten as ∆F (x,

α n , ξ n , h n ) = sup{δ n (x ′ , β n ), (x ′ , β n ) ∈ B(x, h n ) × [α n , ξ n ]} where δ n (x ′ , β n ) := F (y n (x)|x ′ ) F (y n (x)|x) -1 = F (y n (x)|x ′ ) ∨ F (y n (x)|x) F (y n (x)|x) 1 - F (y n (x)|x ′ ) ∧ F (y n (x)|x) F (y n (x)|x ′ ) ∨ F (y n (x)|x) .
The inequality 1z ≤ log(1/z) for all z ∈ (0, 1] entails

δ n (x ′ , β n ) ≤ F (y n (x)|x ′ ) ∨ F (y n (x)|x) F (y n (x)|x) log F (y n (x)|x ′ ) F (y n (x)|x) ,
and, in view of

H(y|x) = -log F (y|x) it follows that log F (y n (x)|x ′ ) F (y n (x)|x) = H(y n (x)|x ′ ) ∨ H(y n (x)|x) 1 - H(y n (x)|x ′ ) ∧ H(y n (x)|x) H(y n (x)|x ′ ) ∨ H(y n (x)|x) ≤ H(y n (x)|x ′ ) ∨ H(y n (x)|x) log H(y n (x)|x ′ ) H(y n (x)|x) . ( 18 
)
Now, since H(•|x) is strictly increasing, it is easy to check that H(y|x) = (y/ℓ(H(y|x)|x)) 1/θ(x) for all (x, y) ∈ E × R. Thus, under (A.2),

log H(y n (x)|x ′ ) = 1 θ(x ′ ) log y n (x) -log c(x ′ ) - H(yn(x)|x ′ ) 1 ε(u|x ′ ) u du
and the Hölder assumption on ε(u|•) yields

H(yn(x)|x) 1 ε(u|x) u du - H(yn(x)|x ′ ) 1 ε(u|x ′ ) u du ≤ h n log H(y n (x)|x) + η n log H(y n (x)|x ′ ) H(y n (x)|x) ,
where η n → 0 uniformly on x ′ ∈ B(x, h n ). Moreover, since H(•|x) is a regularly varying function with index 1/θ(x), it follows that θ(x) log H(y n (x)|x) = log y n (x)(1 + o( 1)). As a first conclusion, the regularity assumptions on θ(•) and c(•

) lead to log H(y n (x)|x ′ ) -log H(y n (x)|x) = O (h n log y n (x)) .
Let us note that log

y n (x) = θ(x) log -2 (β n )+log ℓ(log(1/β n )|x) = θ(x) log -2 (β n )(1+o(1)) as n → ∞ and therefore log H(y n (x)|x ′ ) -log H(y n (x)|x) = O h n log -2 (α n ) = o(1).

This result implies that (H(y

n (x)|x ′ ) ∨ H(y n (x)|x)) ≤ 2H(y n (x)|x) = 2 log(1/β n ) ≤ 2 log(1/α n ),
and thus, from [START_REF] El Methni | Nonparametric estimation of extreme risk measures from conditional heavy-tailed distributions[END_REF],

log F (y n (x)|x ′ ) -log F (y n (x)|x) = O h n log(1/α n ) log -2 (α n ) = o(1).
As a consequence, F (y n (x)|x ′ ) is uniformly equivalent to F (y n (x)|x) and hence

δ n (x ′ , β n ) = O h n log(1/α n ) log -2 (α n ) ,
which concludes the proof.

We are now interested in the asymptotic normality of Fn (y n |x) when y n → ∞. First, let us remark that the kernel estimator ( 6) can be rewritten as Fn (y|x) = ψn (y, x)/ĝ n (x) with ψn (y, x) = 1

nµ (1) x (h n ) n i=1 K(d(x, X i )/h n )I{Y i > y}, ĝn (x) = 1 nµ (1) x (h n ) n i=1 K(d(x, X i )/h n ).
The next lemmas are dedicated to the asymptotic properties of ĝn and ψn .

Lemma 4. Let x ∈ E such that ϕ x (h n ) > 0. If ϕ x (h n ) → 0 and nϕ x (h n ) → ∞ as n → ∞, then ĝn (x) = 1 + O P (nϕ x (h n )) -1/2 .
Proof of Lemma 4. It is clear that E(ĝ n (x)) = 1. Besides, standard calculations yields

nϕ x (h n )var(ĝ n (x)) = ϕ x (h n ) µ (2) x (h n ) (µ (1) x (h n )) 2 -1 and (7) entails (C 1 /C 2 ) 2 ≤ ϕ x (h n )µ (2) x (h n )/(µ (1) x (h n )) 2 ≤ (C 2 /C 1 ) 2 . Condition ϕ x (h n ) → 0 con- cludes the proof. Lemma 5. Suppose (2) and (A.2) hold. Let x ∈ E such that ϕ x (h n ) > 0 where h n → 0 as n → ∞ and introduce 0 < τ J < • • • < τ 1 ≤ 1 where J is a positive integer. Consider α n → 0 such that nϕ x (h n )α n → ∞ and ∆ F (x, (1 -η)τ J α n , (1 + η)α n , h n ) → 0 as n → ∞ for some η > 0. Let y n,j := q(τ j α n |x)(1 + o(1/ log(1/α n ))
) for all j = 1, . . . , J. Then,

(i) E( ψn (y n,j , x)) = F (y n,j |x)(1 + O(∆ F (x, (1 -η)τ J α n , (1 + η)α n , h n ))), for j = 1, . . . , J.
(ii) The random vector

Λ -1 n (x) ψn (y n,j , x) -E( ψn (y n,j , x)) F (y n,j |x) j=1,...,J
is asymptotically Gaussian, centered, with covariance matrix Σ where Σ j,j ′ = τ -1 j∧j ′ for (j, j ′ ) ∈ {1, . . . , J} 2 .

Proof of Lemma 5. (i) Since the (X i , Y i ), i = 1, . . . , n are identically distributed, we have

E( ψn (y n,j , x)) = 1 µ (1) 
x (h n )

E{K(d(x, X)/h n )I{Y > y n,j }} = 1 µ (1) 
x (h n )

E{K(d(x, X)/h n ) F (y n,j |X)}.
Let us now consider

ε n,j = E( ψn (y n,j , x)) -F (y n,j |x) = 1 µ (1) 
x (h n )

E(K(d(x, X)/h n )( F (y n,j |X) -F (y n,j |x))) = F (y n,j |x) µ (1) 
x (h n )

E K(d(x, X)/h n ) F (y n,j |X) F (y n,j |x) -1 .
In view of Lemma 1, F (y n,j |x) ∼ τ j α n and thus F (y n,j |x) ∈ [τ J (1η)α n , (1 + η)α n ] eventually, for all j = 1, . . . , J. Consequently,

F (y n,j |X) F (y n,j |x) -1 I{d(x, X) ≤ h n } ≤ ∆ F (x, (1 -η)τ J α n , (1 + η)α n , h n ) eventually and therefore |ε n,j | ≤ F (y n,j |x)∆ F (x, (1 -η)τ J α n , (1 + η)α n , h n ) which concludes the first part of the proof.
(ii) Let β = 0 in R J and consider the random variable

Ψ n := J j=1 β j ψn (y n,j , x) -E( ψn (y n,j , x)) Λ n (x) F (y n,j |x) =: n i=1 Z i,n
where, for i = 1, . . . , n, Z i,n is given by

1 nΛ n (x)µ (1) 
x

(h n )    J j=1 β j K(d(x, X i )/h n )I{Y i ≥ y n,j } F (y n,j |x) -E   J j=1 β j K(d(x, X i )/h n )I{Y i ≥ y n,j } F (y n,j |x)     
and is a set of centered, independent and identically distributed random variables with variance

var(Z i,n ) = 1 n 2 Λ 2 n (x)(µ (1) 
x

(h n )) 2 var   J j=1 β j K(d(x, X i )/h n )) I{Y i ≥ y n,j } F (y n,j |x)   =: α n nµ (2) 
x (h n )

β t Bβ,
where B is the J × J covariance matrix with coefficients defined for (j, j ′ ) ∈ {1, . . . , J} 2 by

B j,j ′ = A j,j ′ F (y n,j |x) F (y n,j ′ |x) , A j,j ′ = cov K (d(x, X)/h n ) I{Y ≥ y n,j }, K (d(x, X)/h n ) I{Y ≥ y n,j ′ } = E K 2 (d(x, X)/h n ) I{Y ≥ y n,j ∨ y n,j ′ } -E(K(d(x, X)/h n )I{Y ≥ y n,j })E(K(d(x, X)/h n )I{Y ≥ y n,j ′ }),
where K 2 is a kernel with the same properties as K. Consequently, the three above expectations are of the same nature. Remarking that eventually y n,j ∨y n,j ′ = y n,j∨j ′ , part (i) of the proof implies

A j,j ′ = µ (2) x (h n ) F (y n,j∨j ′ |x)(1 + O(∆ F (x, (1 -η)τ J α n , (1 + η)α n , h n ))) -(µ (1) x (h n )) 2 F (y n,j |x) F (y n,j ′ |x)(1 + O(∆ F (x, (1 -η)τ J α n , (1 + η)α n , h n )))
leading to

B j,j ′ F (y n,j∧j ′ |x) µ (2) 
x

(h n ) = 1 + O(∆ F (x, (1 -η)τ J α n , (1 + η)α n , h n )) - (µ (1) 
x (h n )) 2 µ

(2)

x (h n ) F (y n,j∧j ′ |x)(1 + O(∆ F (x, (1 -η)τ J α n , (1 + η)α n , h n ))).
In view of ( 7), (µ

x

(h n )) 2 /µ (2) 
x (h n ) is bounded and thus F (y n,j∧j ′ |x) → 0 as n → ∞ yields

B j,j ′ = µ (2) x (h n ) F (y n,j∧j ′ |x) (1 + o(1)). Now, Lemma 1 implies that F (y n,j∧j ′ |x) ∼ F (q(τ j∧j ′ α n |x)|x) = τ j∧j ′ α n entailing B j,j ′ = µ (2) x (h n )Σ j,j ′ α n (1 + o(1)),
and therefore, var(Z i,n ) ∼ β t Σβ/n, for all i = 1, . . . , n. As a preliminary conclusion, the variance of Ψ n converges to β t Σβ. Consequently, Lyapunov criterion for the asymptotic normality of sums of triangular arrays reduces to

n i=1 E |Z i,n | 3 = nE |Z 1,n | 3 → 0. Remark that Z 1,n is a bounded random variable: |Z 1,n | ≤ 2C 2 J j=1 |β j | nΛ n (x)µ (1) x (h n ) F (y n,J |x) = 2C 2 τ -1 J µ (1) x (h n ) µ (2) x (h n ) J j=1 |β j |Λ n (x)(1 + o(1)) ≤ 2(C 2 /C 1 ) 2 τ -1 J J j=1 |β j |Λ n (x)(1 + o(1)),
in view of [START_REF] Beirlant | Practical analysis of extreme values[END_REF] and thus,

nE |Z 1,n | 3 ≤ 2(C 2 /C 1 ) 2 τ -1 J J j=1 |β j |Λ n (x)nvar(Z 1,n )(1 + o(1)) = 2(C 2 /C 1 ) 2 τ -1 J J j=1 |β j |β t ΣβΛ n (x)(1 + o(1)) → 0
as n → ∞ in view of [START_REF] Beirlant | Practical analysis of extreme values[END_REF]. As a conclusion, Ψ n converges in distribution to a centered Gaussian random variable with variance β t Σβ for all β = 0 in R J . The result is proved. Lemma 6 below establishes the asymptotic distribution of Fn in the situation of estimating small tail probabilities. It thus may be compared to [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF], Theorem 1 and [START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF], Proposition 1. In the first mentioned paper, a similar result is established in the finite dimensional setting and under the assumption that the conditional distribution of Y given X is heavy-tailed. In the second paper, the heavy-tailed assumption is replaced by a von-Mises condition covering different tail behaviors but under the strong condition that the hazard function H(.|x) is twice differentiable. Lemma 6. Suppose ( 2) and (A.2) hold. Let x ∈ E such that ϕ x (h n ) > 0 where h n → 0 as n → ∞ and introduce 0 < τ J < • • • < τ 1 ≤ 1, where J is a positive integer. Consider α n → 0 such that nϕ x (h n )α n → ∞ and nϕ x (h n )α n (∆ F ) 2 (x, (1η)τ J α n , (1 + η)α n , h n ) → 0 for some η > 0. Let y n,j := q(τ j α n |x)(1 + o(1/ log(1/α n ))) for all j = 1, . . . , J. Then, the random vector

Λ -1 n (x)
Fn (y n,j |x)

F (y n,j |x) -1 j=1,...,J
is asymptotically Gaussian, centered, with covariance matrix Σ defined in Lemma 5.

Proof of Lemma 6. Keeping in mind the notations of Lemma 5 and letting

∆ 1,n = Λ -1 n (x) J j=1 β j ψn (y n,j , x) -E( ψn (y n,j , x)) F (y n,j |x) ∆ 2,n = Λ -1 n (x) J j=1
β j E( ψn (y n,j , x)) -F (y n,j |x) F (y n,j |x)

∆ 3,n =   J j=1 β j   Λ -1 n (x) (ĝ n (x) -1) ,
the following expansion holds

Λ -1 n (x) J j=1 β j Fn (y n,j |x) F (y n,j |x) -1 = ∆ 1,n + ∆ 2,n -∆ 3,n ĝn (x) . (19) 
From Lemma 5(ii), the random term ∆ 1,n can be rewritten as

∆ 1,n = β t Σβξ n , (20) 
where ξ n converges to a standard Gaussian random variable. The nonrandom term ∆ 2,n is controlled with Lemma 5(i):

∆ 2,n = O(Λ -1 n (x)∆ F (x, (1 -η)τ J α n , (1 + η)α n , h n )) = o(1). (21) 
Finally, ∆ 3,n is a classical term in kernel density estimation. From Lemma 4,

∆ 3,n = O P (Λ -1 n (x)(nϕ x (h n )) -1/2 ) = O P (α n ) 1/2 = o P (1). ( 22 
)
Collecting ( 19)-( 22), it follows that ĝn (x)Λ -1 n (x) J j=1 β j Fn (y n,j |x)

F (y n,j |x) -1 = β t Σβξ n + o P (1).
Finally, Lemma 4 entails that ĝn (x) P -→ 1 which concludes the proof.

The next lemma establishes the asymptotic normality of the kernel estimator of a conditional extreme quantile. This result can be obtained directly from [START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF], Corollary 1 in the finite dimensional setting, but under the strong condition that the hazard function H(.|x) is twice differentiable.

Lemma 7. Suppose ( 2) and (A.2) hold. Let 0 < τ J < • • • < τ 1 ≤ 1 where J is a positive integer and x ∈ E such that ϕ x (h n ) > 0 where h n → 0 as n → ∞. If α n → 0 and there exists η > 0 such that nϕ x (h n )α n → ∞, nϕ x (h n )α n (∆ F ) 2 (x, (1η)τ J α n , (1 + η)α n , h n ) → 0, then, the random vector

log(1/α n )Λ -1 n (x)
qn (τ j α n |x) q(τ j α n |x) -1 j=1,...,J is asymptotically Gaussian, centered, with covariance matrix θ 2 (x)Σ where Σ is defined in Lemma 5.

Proof of Lemma 7. Introduce for j = 1, . . . , J, α n,j = τ j α n ,

σ n,j (x) = θ(x)q(α n,j |x)Λ n (x)/ log(1/α n ) v n,j (x) = α -1 n,j Λ -1 n (x) W n,j (x) = v n,j (x) Fn (q(α n,j |x) + σ n,j (x)z j |x) -F (q(α n,j |x) + σ n,j (x)z j |x) a n,j (x) = v n,j (x) α n,j -F (q(α n,j |x) + σ n,j (x)z j |x)
and z j ∈ R. We examine the asymptotic behavior of J-variate function defined by

Φ n (z 1 , . . . , z J ) = P   J j=1 σ -1 n,j (x)(q n (α n,j |x) -q(α n,j |x)) ≤ z j   = P   J j=1 {W n,j (x) ≤ a n,j (x)}   .
Let us first focus on the nonrandom term a n,j (x). From assumption (A.2), F (.|x) is continuously differentiable. Thus, a first order Taylor expansion yields that, for each j ∈ {1, . . . , J}, there exists ζ n,j ∈ (0, 1) such that F (q(α n,j |x)|x) -F (q(α n,j |x) + σ n,j (x)z j |x) = σ n,j (x)z j f (q n,j |x),

with q n,j = q(α n,j |x)+ζ n,j σ n,j (x)z j and where f (.|x) = -F ′ (.|x) is the conditional density function.

Applying Lemma 1 yields for j = 1, . . . , J,

F (q n,j |x) F (q(α n,j |x)|x) = F (q n,j |x) α n,j = 1 + o(1). (24) 
Moreover, remarking that, as α → 0,

f (q(α|x)|x) = log(1/α) θ(x)H -1 (log(1/α)|x) α(1 + o(1)), (25) 
it appears that f (q(.|x)|x) is a regularly varying function at 0 with index 1 and consequently

lim n→∞ f (q n,j |x) f (q(α n,j |x)|x) = 1. (26) 
Collecting ( 23), ( 25) and ( 26), we end up with

a n,j (x) = θ(x)z j α -1 n,j q(α n,j |x) log(1/α n ) f (q(α n,j |x)|x)(1 + o(1)) = z j (1 + o(1)). (27) 
Let us now turn to the random term W n,j (x). Defining y n,j = q(α n,j |x) + σ n,j (x)z j for j = 1, . . . , J, we have y n,j = q(α n,j |x)(1

+ o(1/ log(1/α n ))). Hence, from (24), 
Λ -1 n (x) v n,j (x) F (y n,j |x)

W n,j j=1,...,J

= (1 + o(1)) {W n,j } j=1,...,J

and Lemma 6 shows that the above random vector converges to a centered Gaussian random variable with covariance matrix Σ. Taking account of [START_REF] Girard | A Hill type estimate of the Weibull tail-coefficient[END_REF], we obtain that Φ n (z 1 , . . . , z J ) converges to the cumulative distribution function of a centered Gaussian distribution with covariance matrix Σ evaluated at (z 1 , . . . , z J ).

Proofs of main results

log qn (τ

j α n |x) = log q(α n |x) + log q(τ j α n |x) q(α n |x) + log qn (τ j α n |x) q(τ j α n |x) . (28) 
First, Lemma 2 entails that log q(τ j α

n |x) -log q(α n |x) = log(1/τ j ) log(1/α n ) θ(x) + ε(log(1/α n )|x)(1 + o(1)) + O 1 log(1/α n ) , (29) 
where the o(.) and O(.) are uniform in j = 1, . . . , J. Second, it follows from Lemma 7 that qn (τ j α n |x) q(τ j α

n |x) = 1 + σ n ξ n,j , (30) 
where (ξ n,1 , . . . , ξ n,J ) t converges to a centered Gaussian random vector with covariance matrix θ 2 (x)Σ and σ -1 n = Λ -1 n (x) log(1/α n ). Replacing ( 29) and ( 30) in (28) yields log qn (τ j α

n |x) = log q(α n |x) + σ n ξ n,j + O P (σ 2 n ) + log(1/τ j ) log(1/α n ) θ(x) + ε(log(1/α n )|x)(1 + o(1)) + O 1 log(1/α n ) ,
for all j = 1, . . . , J and therefore, in view of the shift and scale invariance properties of φ, it follows that φ ({log qn (τ j α n |x)} j=1,...,J ) log(1/α n ) is equal to

φ v j θ(x) + ε(log(1/α n )|x)(1 + o(1)) + O 1 log(1/α n ) + log(1/α n )(σ n ξ n,j + O P (σ 2 n )) j=1,...,J
.

where v = {log(1/τ j )} j=1,...,J . A first order Taylor expansion yields:

φ ({log qn (τ j α n |x)} j=1,...,J ) = J j=1 v j ε(log(1/α n )|x) log(1/α n ) (1 + o(1)) + O 1 log 2 (1/α n ) ∂φ ∂x j (θ(x)v) + φ (θ(x)v) log(1/α n ) + σ n J j=1 (ξ n,j + O P (σ n )) ∂φ ∂x j (θ(x)v) + R n log(1/α n ) ,
where the remainder is bounded above by = O ϕ -1

R n = O P   J j=1 σ n log(1/α n )(ξ n,j + O P (σ n )) + v j ε(log(1/α n )|x)(1 + o(1)) + O 1 log(1/α n )   2 = O P   σ n log(1/α n )   J j=1 |ξ n,j | + O P (σ n )   + O(ε(log(1/α n )|x)) + O 1 log(1/α n )   2 = O P (σ n log(1/α n )) 2 since Λ -1 n (x)ε(log(1/α n )|x) → λ and Λ -1 n (x)/ log(1/α n ) → 0 as n → ∞.
x n -ξ/2 log(n) log -2 (n)(ε(log n|x)) -1

= O ϕ -1

x n -ξ/2 (log(n)) 1-ρ(x)+ξ .

The first part of condition ( 12) is thus satisfied under the assumption ϕ -1

x (1/y)(log y) 1+ξ-ρ(x) → 0 as y → ∞. The second part is a direct consequence of yε(y|x) → ∞ as y → ∞. 

It follows that σ - 1 nφ(= O ϕ - 1 xλ( 1 -

 111 ({log qn (τ j α n |x)} j=1,...,J ) -φ(θ(x)v) log(1/α n ) = J j=1 (λv j + ξ n,j ) ∂φ ∂x j (θ(x)v) + o P (1).Taking into account (A.1) and the scale invariance property of ∇φ, we finally obtainΛ -1 n (x)( θn (x)θ(x)) λv j + ξ n,j ) ∂φ ∂x j (v) + o P (1)and the conclusion follows.Proof of Corollary 1. Recalling that ε(.|x) is regularly varying with index ρ(x), one hasε(log(1/α n )|x) = (1ξ) ρ(x) |ε(log n|x)|(1 + o(1)) and thus[START_REF] Broniatowski | On the estimation of the Weibull tail coefficient[END_REF] holds under[START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF]. Besides, Lemma 3 implies that ∆ F (x, (1η)τ J α n , (1 + η)α n , h n ) = O(h n log(n) log -2 (n)).As a consequence, since ϕ x is ultimately increasing,nϕ x (h n )α n ∆ F (x, (1η)τ J α n , (1 + η)α n , h n ) ξ) 2ρ(x) n -ξ (ε(log n|x)) -2 log(n) log -2 (n)(ε(log n|x)) -1
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 23 Figure 2: Results obtained with the distance d 1 . Boxplots of the N = 100 estimations obtained with the non conditional estimator (NCE) and the proposed estimator with p = 1 (left) and p = 3 (right) for z ∈ {0.15, 0.25, 0.35, 0.45}. The first row corresponds to situation (S.1), the second row to (S.2) and the last row to (S.3). The symbol x represents the true value of the functional Weibull tail-coefficient.

Figure 4 :

 4 Figure 4: First five graphs: Quantile-quantile plots on the real dataset for the curves xβ (left to right and top to bottom). Bottom right: Estimations of the functional Weibull tail-coefficient for the five curves xβ .
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J

V opt τ 1 τ 2 τ 3 τ 4 τ 5 2 1.5441 1.0000 0.2032 3 1.2191 1.0000 0.3615 0.0735 4 1.1223 1.0000 0.4703 0.1702 0.0346 5 1.0789 1.0000 0.5486 0.2585 0.0936 0.0190 Table 1: Optimal values of (τ 1 , . . . , τ J ) and associated asymptotic variance V opt .