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Abstract

We present a nonparametric family of estimators for the tail index of a Weibull tail-distribution
when functional covariate is available. Our estimators are based on a kernel estimator of extreme
conditional quantiles. Asymptotic normality of the estimators is proved under mild regularity
conditions. Their finite sample performances are illustrated both on simulated and real data.
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1 Introduction

Weibull tail-distributions encompass a variety of light-tailed distributions, such as Weibull, Gaus-
sian, gamma and logistic distributions. Let us recall that a cumulative distribution function F has
a Weibull tail if it satisfies the following property: there exists θ > 0 such that for all t > 0,

lim
y→∞

log(1− F (ty))

log(1− F (y))
= t1/θ. (1)

The parameter θ is referred to as the Weibull tail-coefficient. A general account on Weibull tail-
distributions can be found in [7], see also [6] for an application to the modeling of large claims in
non-life insurance. Dedicated methods have been proposed to estimate the Weibull tail-coefficient
since the relevant information is only contained in the extreme upper part of the sample denoted
hereafter by Y1, . . . , Yn. A first direction was investigated in [8] where an estimator based on the
record values is proposed. Another family of approaches [3, 4, 11, 17] consists of using the kn upper
order statistics Yn−kn+1,n ≤ · · · ≤ Yn,n where kn → ∞ as n → ∞. Note that, since θ is defined
through an asymptotic behavior of the tail, the estimator should only use the extreme-values of the
sample and thus the extra condition kn/n→ 0 is required. More specifically, most recent estimators
are based on the log-spacings between the kn upper order statistics [7, 16, 24, 25, 26, 27].

Here, we focus on the situation where some covariate information X is recorded simultaneously
with the quantity of interest Y . In the general case, the tail heaviness of Y given X depends on
X, and thus the Weibull tail-coefficient is a function θ(X) of the covariate. When the covariate is
finite dimensional, some new tools have been introduced [14, 15] to estimate extreme conditional



quantiles. We refer to [18] for an application to the risk modeling associated with extreme rainfalls.
In this case, the selected covariate is the geographical location but other relevant informations
could be included such as climatic curves. More generally, covariates may be curves (electricity
price/demand curves, medical curves, ...) in many other situations coming from applied sciences,
see [10], paragraph 1.2.2. However, the estimation of the Weibull tail-coefficient with functional
covariates has not been addressed yet. Our approach relies on the use of q̂n a functional kernel
estimator of conditional quantiles, see [20] for an example. Similarly to the unconditional case, the
estimation of θ(X) is based on the extreme observations of Y |X. Therefore, a close study of the
asymptotic properties of q̂n when estimating extreme quantiles is necessary. Two statistical fields
are thus involved in this study: nonparametric smoothing techniques adapted to functional data
are required in order to deal with the covariate X while extreme-value analysis is used to study
the tail behavior of Y |X.

The family of nonparametric functional estimators is introduced in Section 2 and its asymptotic
normality is established. A particular sub-family of estimators is exhibited in Section 3, their finite
sample behavior is illustrated on some simulated data in Section 4 and on a real dataset in Section 5.
Proofs are postponed to Section 6.

2 Main result

Let (Xi, Yi), i = 1, . . . , n, be independent copies of a random pair (X,Y ) ∈ E × R where E is
an arbitrary space associated with a semi-metric d. Recall that a semi-metric (or pseudometric)
may allow the distance between two different points to be zero, see [22], Definition 3.2. The
conditional survival function of Y given X = x ∈ E is denoted by F̄ (y|x) := P(Y > y|X = x) and
is supposed to be continuous and strictly decreasing with respect to y. Discussing the existence
of regular versions of F̄ (.|.) is beyond the scope of this paper. Let us just note that such an
existence is insured when (E, d) is a Polish space [30]. The associated conditional cumulative
hazard function is defined by H(y|x) := − log F̄ (y|x) and the conditional quantile is therefore given
by q(α|x) := F̄−1(α|x) = H−1(log(1/α)|x), for all α ∈ (0, 1). In this paper, we focus on conditional
Weibull tail-distributions. In such a case, analogously to (1), H(.|x) is a regularly varying function
with index 1/θ(x), i.e.

lim
y→∞

H(ty|x)

H(y|x)
= t1/θ(x),

for all t > 0. In this situation, θ(.) is an unknown positive function of the covariate x ∈ E referred
to as the functional Weibull tail-coefficient. From [9], Theorem 1.5.12, H−1(.|x) is also a regularly
varying function with index θ(x) and thus, there exists a slowly-varying function ℓ(.|x) such that

q(e−y|x) = H−1(y|x) = yθ(x)ℓ(y|x). (2)

Recall that the slowly-varying function ℓ(.|x) is such that

lim
y→∞

ℓ(ty|x)

ℓ(y|x)
= 1, (3)

for all t > 0, see [9] for a general account on regular variation theory. In view of (2), it appears
that the functional Weibull tail-coefficient drives the asymptotic behavior of conditional extreme
quantiles. The object of interest is thus θ(x) where x is in some arbitrary semi-metric space (E, d).
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The most usual case is E = R
p, but our framework also includes the infinite dimensional case, for

instance when x is a curve. We propose a family of estimators of θ(x) based on some properties of
the log-spacings of the conditional quantiles: Let α ∈ (0, 1) small enough and τ ∈ (0, 1),

log q(τα|x)− log q(α|x) = logH−1(− log(τα)|x)− logH−1(− log(α)|x)

= θ(x)(log−2(τα)− log−2(α)) + log

(

ℓ(− log(τα)|x)

ℓ(− log(α)|x)

)

≈ θ(x)(log−2(τα)− log−2(α)) ≈ θ(x)
log(1/τ)

log(1/α)
, (4)

where log−2(.) := log log(1/.), see Lemma 2 in Section 6 for a more precise asymptotic expansion.
Hence, for a decreasing sequence 0 < τJ < · · · < τ1 ≤ 1, where J is a positive integer, and for all
functions φ satisfying the shift and location invariance condition

(A.1) φ : RJ → R is a twice differentiable function such that φ(ηz) = ηφ(z), φ(ηu + z) = φ(z) for
all η ∈ R \ {0}, z ∈ R

J and where u = (1, . . . , 1)t ∈ R
J ,

one has:

θ(x) ≈ log(1/α)
φ(log q(τ1α|x), . . . , log q(τJα|x))

φ(log(1/τ1), . . . , log(1/τJ))
. (5)

Thus, the estimation of θ(x) relies on the estimation of conditional quantiles q(.|x). This problem
is addressed using a two-step estimator. First, F̄ (y|x) is estimated by the kernel estimator defined
for all (x, y) ∈ E × R by

ˆ̄Fn(y|x) =
n
∑

i=1

K(d(x,Xi)/hn)I{Yi > y}

/

n
∑

i=1

K(d(x,Xi)/hn), (6)

where I{.} is the indicator function and hn is a nonrandom sequence such that hn → 0 as n → ∞
(note that this bandwidth hn may depend on x). The case of random neighbourhoods is addressed
in [31] with k-Nearest Neighbours estimators. The functionK is assumed to have a support included
in [0, 1] such that C1 ≤ K(t) ≤ C2 for all t ∈ [0, 1] and for some constants 0 < C1 < C2 < ∞.
One may also assume without loss of generality that K integrates to one. In this case, K is called
a type I kernel, see [22], Definition 4.1. Let B(x, hn) be the ball of center x and radius hn, and
introduce ϕx(hn) := P(X ∈ B(x, hn)) the small ball probability of X. It is easily shown that the

τ -th moment µ
(τ)
x (hn) := E{Kτ (d(x,X)/hn)} can be controlled for all τ > 0 as

0 < Cτ
1ϕx(hn) ≤ µ(τ)x (hn) ≤ Cτ

2ϕx(hn). (7)

The estimation of F̄ (y|x) is well-documented in the nonparametric literature, see for instance the
seminal papers [33, 37] in the case where E = R

p. The estimator was extended to the infinite
dimensional setting for instance in [22], page 56. Its rate of uniform strong consistency is proved
by [19] for a fixed value of y. Here, its asymptotic normality is established in Lemma 6 in Section 6
for y = yn → ∞ as n → ∞, i.e. when estimating small tail probabilities from Weibull tail-
distributions. Second, the kernel estimators of the conditional quantiles q(α|x) are defined via the

generalized inverse of ˆ̄Fn(.|x):

q̂n(α|x) =
ˆ̄F←n (α|x) = inf{y, ˆ̄Fn(y|x) ≤ α}, (8)
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for all α ∈ (0, 1). Many authors focused on the asymptotic properties of this estimator for fixed
α ∈ (0, 1). Weak and strong consistency are proved respectively in [37] and [23]. Asymptotic
normality is shown in [5, 34, 38] when E is finite dimensional and by [20] for a general semi-metric
space under dependence assumptions. Here, the asymptotic distribution of (8) is established when
estimating extreme quantiles from Weibull tail-distributions, i.e. when α = αn → 0 as n → ∞.
This new result is established in Lemma 7, see Section 6.

Basing on (5), the considered family of estimators is then given by

θ̂n(x) = log(1/αn)
φ(log q̂n(τ1αn|x), . . . , log q̂n(τJαn|x))

φ(log(1/τ1), . . . , log(1/τJ))
, (9)

with αn → 0 as n → ∞ and where the (extreme) conditional quantiles are estimated by (8).
Model (2) is not sufficient to establish the asymptotic distribution of θ̂n(x), additional assumptions
have to be made on ℓ(.|x). As remarked in [9], p.15, slowly-varying functions are of interest only
asymptotically and thus, without loss of generality, one can assume that

(A.2) ℓ(.|x) is a normalized slowly-varying function.

In such a case, the Karamata representation (see [9], Theorem 1.3.1) of the slowly-varying function
can be written as

ℓ(y|x) = c(x) exp

{∫ y

1

ε(u|x)

u
du

}

, (10)

where c(x) > 0 and ε(u|x) → 0 as u→ ∞. Under (A.2), ℓ(.|x) is differentiable almost everywhere
and the auxiliary function ε(.|x) is given by ε(y|x) = yℓ′(y|x)/ℓ(y|x). It follows that F̄ (.|x) is
also differentiable almost everywhere. The auxiliary function ε(.|x) plays an important role in
extreme-value theory since it drives the speed of convergence in (3) and more generally the bias of
extreme-value estimators. Therefore, it may be of interest to specify how it converges to 0:

(A.3) |ε(.|x)| is regularly varying with index ρ(x) ≤ 0.

This assumption is used for instance by [1, 29] in the unconditional case and the estimation of the
regular variation parameter ρ is addressed. Since the considered estimator involves a smoothing
in the x direction, it is necessary to assess the regularity of the conditional survival function with
respect to x. To this end, the oscillations are controlled by

∆F̄ (x, α, ζ, h) := sup
(x′,β)∈B(x,h)×[α,ζ]

∣

∣

∣

∣

F̄ (q(β|x)|x′)

F̄ (q(β|x)|x)
− 1

∣

∣

∣

∣

= sup
(x′,β)∈B(x,h)×[α,ζ]

∣

∣

∣

∣

F̄ (q(β|x)|x′)

β
− 1

∣

∣

∣

∣

,

where (α, ζ) ∈ (0, 1)2. Finally, let v = (log(1/τ1), . . . , log(1/τJ))
t ∈ R

J and

Λn(x) =

(

nαn
(µ

(1)
x (hn))

2

µ
(2)
x (hn)

)−1/2

.

The following result establishes the asymptotic normality of estimator (9).

Theorem 1. Under model (2), suppose (A.1)–(A.3) hold. Let x ∈ E such that ϕx(hn) > 0 where
hn → 0 as n→ ∞. If αn → 0,

√

nϕx(hn)αnε(log(1/αn)|x) → λ < +∞ (11)

4



and there exists η > 0 such that nϕx(hn)αn → ∞ and

√

nϕx(hn)αn{∆F̄ (x, (1− η)τJαn, (1 + η)αn, hn) ∨ 1/log(1/αn)} → 0 as n→ ∞, (12)

then, Λ−1n (x)(θ̂n(x)− θ(x))
d

−→ N (µφ, θ
2(x)Vφ) with

µφ = λvt ∇ log φ(v), Vφ = (∇ log φ(v))t Σ (∇ log φ(v)). (13)

and where Σj,j′ = τ−1j∧j′ for (j, j′) ∈ {1, . . . , J}2.

As pointed out in [14], nϕx(hn)αn → ∞ is a necessary and sufficient condition for the almost
sure presence of at least one sample point in the region B(x, hn) × (q(αn|x),∞) of E × R. This
condition states that one cannot estimate small tail probabilities out of the sample using the kernel
estimator (6). Let us also highlight that the asymptotic variance of the estimator is asymptotically
or order 1/(nϕx(hn)αn). The convergence rate thus directly depends on the small ball proba-
bility ϕx(hn). To overcome the sensitiveness of the method to dimensionality effects or to the
choice of the semi-metric, one can use dimension reduction techniques such as single index models,
see for instance [28]. Nevertheless, the theoretical properties of such methods are not yet estab-
lished in the extreme framework. Condition (12) imposes that the (squared) bias induced by the
smoothing should be negligible compared to the variance of the estimator. Let us note that con-
dition (11) is standard in the extreme-value framework. Neglecting the slowly-varying function
in the construction (4) of θ̂n(x) yields a bias that should be of the same order as the asymp-
totic standard deviation of the estimator. Moreover, when λ 6= 0, conditions (11) and (12) yield
log(1/αn)ε(log(1/αn)|x) → ∞ as n → ∞ which, in turn, implies ρ(x) > −1. The next corollary
provides some possible choices of αn and hn sequences under Hölder conditions.

Corollary 1. Suppose (2), (A.1)–(A.3) hold. Let x ∈ E such that ϕx(hn) > 0 and yε(y|x) → ∞
as y → ∞. Assume there exist positive constants Lθ, Lc et Lε such that, for all (x, x′) ∈ E2,

∣

∣

∣

∣

1

θ(x)
−

1

θ(x′)

∣

∣

∣

∣

≤ Lθd(x, x
′),

∣

∣log c(x)− log c(x′)
∣

∣ ≤ Lcd(x, x
′), (14)

sup
u∈[1,ȳn(x)]

∣

∣ε(u|x)− ε(u|x′)
∣

∣ ≤ Lεd(x, x
′),

where ȳn(x) := sup{H(q(αn|x)|x
′), x′ ∈ B(x, hn)}. Suppose there exists ξ > 0 small enough such

that ϕ−1x (1/y)(log y)1+ξ−ρ(x) → 0 as y → ∞. Then, letting λ > 0,

αn = n−1+ξ and hn = ϕ−1x

(

λ(1− ξ)2ρ(x)n−ξ(ε(log n|x))−2
)

, (15)

the assumptions of Theorem 1 hold and therefore Λ−1n (x)(θ̂n(x)− θ(x))
d

−→ N (µφ, θ
2(x)Vφ).

The key assumption here is ϕ−1x (1/y)(log y)1+ξ−ρ(x) → 0 as y → ∞. It can be shown that this con-
dition holds in the finite dimensional setting (when X has a continuous density with respect to the
Lebesgue measure), or for fractal-type and some exponential-type processes, see [22], Chapter 13.
Finally, the asymptotic variance Vφ does not depend on the distribution of Y |X = x. It is thus
possible to look for functions φ and for sequences τJ < · · · < τ1 minimizing Vφ. This problem is
addressed in the next section.

5



3 Example

In this section, we focus on the particular family of functions φ(p)(z) =
(

∑J
j=2 βj(zj − z1)

p
)1/p

,

where z = (z1, . . . , zJ)
t ∈ R

J , p ∈ N \ {0} and for all j ∈ {2, . . . , J}, βj ∈ R. It is clear that
assumption (A.1) is satisfied and the corresponding estimator of θ writes:

θ̂(p)n (x) = log(1/αn)





J
∑

j=2

βj [log q̂n(τjαn|x)− log q̂n(τ1αn|x)]
p

/

J
∑

j=2

βj [log(τ1/τj)]
p





1/p

. (16)

Taking β2 = . . . = βJ leads to an estimator analogous to the one proposed in [35] for unconditional
heavy-tailed distributions. If furthermore p = 1, (16) corresponds to a functional version of the
estimator proposed in [24]:

θ̂(1)n (x) = log(1/αn)
J
∑

j=1

[log q̂n(τjαn|x)− log q̂n(αn|x)]

/

J
∑

j=1

log(1/τj) .

It can also be read as an adaptation of the kernel tail-index estimator introduced in [14] in a
finite dimensional setting for conditional heavy-tailed distributions to conditional Weibull tail-
distributions. As a consequence of Theorem 1, the associated asymptotic mean and variance of

θ̂
(p)
n (x) defined in (13) are given for an arbitrary vector β by µ = λ and

V (p) =
(η(p))tAΣAtη(p)

(η(p))tAvvtAtη(p)
,

where A is the (J−1)×J matrix defined by A = [IJ−1,−u] with IJ−1 the (J−1)× (J−1) identity
matrix and η(p) = (βj(vj − v1), j = 2, . . . , J)t. Let us emphasize that the asymptotic bias µ does
not depend neither on p and nor on the weights {βj , j = 2, . . . , J}. At the opposite, the asymptotic
variance V (p) depends both on p and on the weights but only through the vector η(p). It is thus
possible to minimize V (p) with respect to η(p):

Proposition 1. The asymptotic variance of θ̂
(p)
n (x) is minimal for η(p) proportional to ηopt =

(AΣAt)−1Av and is given by

Vopt =
1

(Av)t (AΣAt)−1Av
.

Let us highlight that Vopt is independent of p. Moreover, for a fixed value of J , it is possible to
minimize numerically the optimal variance Vopt given by Proposition 1 with respect to parameters
0 < τJ < · · · < τ1 ≤ 1. The resulting values of Vopt are displayed in Table 1. The finite sample
performance of the associated estimators are illustrated on simulated data in Section 4.

4 Numerical experiments

In this section, the finite sample performance of the estimator (16) associated with optimal weights
is investigated. For j = 2, . . . , J , we thus take βj = ηopt,j(vj − v1)

1−p where the vector ηopt ∈ R
J−1

is given in Proposition 1. Besides, the sequence τ1, . . . , τJ is selected by minimizing the asymptotic
variance Vopt, see Table 1. Some preliminary simulations showed that the choice of a length J > 5
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did not improve the results, we thus take in the following J = 5. The value of p is taken in the
set {1, 2, 3}. The estimator (6) of the survival function is computed with a modified version of the
bi-quadratic kernel given by

K(u) =
10

9

(

3

2

(

1− u2
)2

+
1

10

)

I{|u| ≤ 1}.

Note that, as required, K is a type I kernel. The set E considered here is a subset of L2([0, 1]) made
of trigonometric functions ψz : [0, 1] 7→ [0, 1], ψz(t) = cos(2πzt) with different periods indexed by
z ∈ [1/10, 1/2]. Two semi-metrics are considered: d1(ψz, ψz′) =

∣

∣‖ψz‖22 − ‖ψz′‖
2
2

∣

∣ and d2(ψz, ψz′) =
‖ψz − ψz′‖2, for all (z, z

′) ∈ [1/10, 1/2]2, where

‖ψz‖
2
2 =

∫ 1

0
ψ2
z(t)dt =

1

2

(

1 +
sin(4πz)

4πz

)

.

The semi-metric d2 is built on the classical L2 norm while d1 measures some spacing between the
periods of the trigonometric functions. The covariate X is chosen randomly on E by considering
X = ψZ where Z is a uniform random variable on [1/10, 1/2]. Some examples of simulated random
functions X are depicted on the left panel of Figure 1. For a given function x ∈ E, the generalized
inverse of the conditional hazard functionH(.|x) is given for y ≥ 0 byH←(y|x) = yθ(x)

(

1− γyρ(x)
)

,

with γ = 1/10. Note that in this situation ℓ(y|x) = 1− γyρ(x) and ε(y|x) ∼ −γρ(x)yρ(x), and thus
assumption (A.3) holds. As it can be seen in Theorem 1, ρ(x) and θ(x) tune the difficulty of
the problem. For small values of |ρ(x)|, approximation (4) becomes unreliable and some bias is
expected in the estimation while for large values of θ(x) the asymptotic variance of θ̂n(x) increases.
To illustrate the effect of these two parameters, the functions defined on E by θ̃(x) = (20‖x‖22 +
1)−1 + 1/40 and ρ̃(x) = 50/(60‖x‖22 + 3) − 5/2 are introduced and the following three situations
are considered: (S.1) ρ(x) = −1 and θ(x) = θ̃(x); (S.2) ρ(x) = ρ̃(x) and θ(x) = 1/10 and (S.3)
ρ(x) = ρ̃(x) and θ(x) = θ̃(x). For each case, N = 100 samples of size n = 1000 were generated.
The selection of the two remaining parameters hn and αn is addressed in the next paragraph.
In order to show the advantage of using the covariate information, θ̂n(x) is compared to the non-
conditional estimator proposed in [24] and defined by:

θ̂NCE
n =

kn
∑

i=1

(log Yn−i+1,n − log Yn−kn+1,n)

/

kn
∑

i=1

(

log−2(n/i)− log−2(n/kn)
)

, (17)

with kn = 250 and where Y1,n ≤ . . . ≤ Yn,n are the ordered statistics.

Selection of the bandwidth hn and the sequence αn. The choice of the smoothing parameter
hn is a recurrent issue in nonparametric estimation. We refer to [32] for a functional version of
the cross-validation criterion and to [36] for a Bayesian approach. Besides, the selection of αn is
equivalent to the choice of the number of upper order statistics in the non-conditional extreme-
value theory. It is still an open question, even though some techniques have been proposed, see for
instance [13] for a bootstrap based method. We propose a procedure to select simultaneously hn
and αn basing on the following remark. For a fixed x, let {Z1(x, hn), . . . , Zmn(x, hn)} be the mn

random values Yi for which Xi ∈ B(x, hn). According to the result obtained in [16], equation (6),
if the sequences hn and αn are well chosen then the rescaled log-spacings

{i log(mn/i)(logZmn−i+1,mn(x, hn)− logZmn−i,mn(x, hn)), i = 1, . . . , ⌊mnαn⌋},
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should be approximately independent with an exponential distribution of parameter θ(x). For
each value of h in the set H = {hi, i = 1, . . . ,Mh} and α in the set A = {αj , j = 1, . . . ,Mα} a
Kolmogorov-Smirnov test is performed and the obtained p-value KS(h, α) is recorded. We then
select the optimal sequences hopt and αopt such that

(hopt, αopt) = argmax
h∈H, α∈A

KS(h, α).

Let us highlight that this procedure is intrinsically location-adaptive since the selected values
hopt and αopt both depend on x. In practice, we take Mh = Mα = 30 , A = {0.05, . . . , 0.3},
H = {0.03, . . . , 0.2} for distance d1 and H = {0.03, . . . , 1} for distance d2.

Results. Boxplots of the estimations obtained with the non conditional estimator (17) and the

proposed estimator θ̂
(p)
n (x) with p = 1 and p = 3 are represented on Figure 2 (distance d1) and

Figure 3 (distance d2). As expected, it appears that the variance is larger for large values of θ(x)
(first row of Figure 2). At the opposite, the bias seems approximately independent of ρ(x) (second
row of Figure 2). One can also observe that the choice p = 3 yields slightly better results than

p = 1. The non-conditional estimator (17) provides poor results compared to θ̂
(p)
n (x). It is thus

essential to take the covariate information into account. Finally, comparing the results obtained
with d1 and d2, it appears, as expected, that the use of d1 provides better result than d2.

Conclusion. To summarize, the estimator θ̂
(p)
n (x) gives satisfying results when combined with

optimal weights (see Proposition 1 and Table 1). It is fully data-driven thanks to an automatic
selection procedure of the bandwidth hn and of the sequence αn. The estimator is very sensitive
with respect to the choice of the semi-metric d. We refer to [22], Chapter 3, for a discussion on the
definition of a well-adapted semi-metric to a particular estimation problem. A possible extension
of this work would be to implement a bias reduction technique based on the estimation of the index
of regular variation in (A.3) similarly to [12] in the unconditional setting and for heavy-tailed
distributions. However, as stressed in [2], this adaptation should be conducted with great care.

5 Illustration on real data

The behaviour of the proposed Weibull tail-coefficient estimator (with p = 3) is illustrated on
spectrometric data. These data contain n = 215 near infrared spectra of absorbance (xi, i =
1, . . . , 215) observed on finely chopped pieces of meat and discretized at 100 wavelengths. This
dataset is often considered in papers dedicated to nonparametric functional data analysis, see for
instance [21, 22]. For each spectrometric curve xi, the percentage of fat content ỹi ∈ [0, 100] is
recorded. Since the fat contents are bounded, the following transformed variables are considered:
yi := log(100/ỹi) for all i ∈ {1, . . . , n}. Denoting by y1,n ≤ . . . ≤ yn,n the ordered transformed
observations and by x(1), . . . , x(n) their corresponding spectra, we propose to estimate the functional
Weibull tail-coefficients associated with the curves {x̃β , β = 0, 1/4, 1/2, 3/4, 1} where x̃β is the mean
of the curves {x(i), i ∈ Iβ} with I0 = {n − 9, . . . , n}, I1 = {1, . . . , 10} and Iβ = {⌊n(1 − β)⌋ −
4, . . . , ⌈n(1− β)⌉+ 4} for β ∈ {1/4, 1/2, 3/4}. Here, ⌊.⌋ and ⌈.⌉ are the floor and ceiling functions.
For example, the curve x̃0 is obtained by averaging the spectra associated with the 10 largest
transformed variables (or equivalently the 10 smallest fat contents). These curves are represented
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on the right panel of Figure 1. A natural semi-metric to work with is

d2(x1, x2) =

∫

{x
(2)
1 (t)− x

(2)
2 (t)}2dt, (x1, x2) ∈ E2,

where x(2) denotes the second derivative of x, see [22], Chapter 9. Let us now investigate the
goodness-of-fit of model (2) to the observations {(xi, yi), i = 1, . . . , 215}. For each curve x̃β ,
hyperparameters hn and αn are selected following the procedure described in Section 4. Using
these selected values, the estimated conditional quantile q̂n(αn|x̃β) is computed for each β ∈
{0, 1/4, 1/2, 3/4, 1} and the statistics {Z1, . . . , Zmβ

} corresponding to the yi’s such that xi ∈
B(x̃β , hn) and yi > q̂n(αn|x̃β) are collected. According to (4), under model (2), the points

{(

log−2
ˆ̄Fn(Zmβ−i+1,mβ

|x̃β)− log−2 αn ; logZmβ−i+1,mβ
− log q̂n(αn|x̃β)

)

, i = 1, . . . ,mβ

}

,

should approximately lie on a straight line. For each β, these points are represented on Figure 4
(5 upper left panels) and it appears that model (2) fits reasonably well the observations. For each
curve x̃β, the estimator of the functional Weibull tail-coefficient is depicted on Figure 4 (bottom
right panel). It appears that the smaller the fat content, the smaller the functional Weibull tail-
coefficient. In other words, heaviest tails are found for small values of fat contents. In terms of tail
behaviour, the sample is thus clearly heterogeneous.

6 Proofs

6.1 Preliminary results

Let us start with three analytical results. The first lemma provides a sufficient condition under
which F̄ (.|x) preserves the equivalency property between sequences.

Lemma 1. Suppose (2) and (A.2) hold. Let (un) and (vn) be sequences such that un → ∞ and

H(un|x)

(

vn
un

− 1

)

→ 0,

as n→ ∞. Then, F̄ (un|x)/F̄ (vn|x) → 1 as n→ ∞.

Proof of Lemma 1. Under (A.2), H(.|x) is differentiable almost everywhere and a first order
Taylor expansion yields that there exists wn between un and vn such that:

F̄ (un|x)/F̄ (vn|x) = exp{H(vn|x)−H(un|x)} = exp{(vn − un)H
′(wn|x)}.

Besides, under (A.2), (H−1)′(y|x) = yθ(x)−1ℓ(y|x)(θ(x)+ε(y|x)) and thus (H−1)′(.|x) is a regularly
varying function with index θ(x) − 1. Moreover, since H ′(.|x) = 1/(H−1)′(H(.|x)|x), it is clear
that H ′(.|x) is regularly varying with index 1/θ(x) − 1. As a consequence, wn ∼ un implies
H ′(wn|x) ∼ H ′(un|x) as n→ ∞. Thus,

(vn − un)H
′(wn|x) ∼ H(un|x)

(

vn
un

− 1

)

unH
′(un|x)

H(un|x)
∼ H(un|x)

(

vn
un

− 1

)

1

θ(x)
,

concludes the proof.
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The second lemma establishes an asymptotic expansion of the log-spacing between two extreme
conditional quantiles. It justifies the heuristic approximation used in (4).

Lemma 2. Suppose (2), (A.2) and (A.3) hold. Let 0 < τ ≤ 1 and αn → 0 as n→ ∞. Then,

log q(ταn|x)− log q(αn|x) =
log(1/τ)

log(1/αn)

(

θ(x) + ε(log(1/αn)|x)(1 + o(1)) +O

(

1

log(1/αn)

))

.

Proof of Lemma 2. In view of (2), we have

∆n := log q(ταn|x)− log q(αn|x)

= θ(x)[log−2(ταn)− log−2(αn)] + log ℓ(log(1/ταn)|x)− log ℓ(log(1/αn)|x)

= θ(x)[log−2(ταn)− log−2(αn)] + ψ(log(1/ταn)|x)− ψ(log(1/αn)|x),

where ψ(.|x) := log ℓ(.|x). Under (A.2), ψ(.|x) is differentiable almost everywhere and a first order
Taylor expansion thus yields that there exists ηn ∈ (ταn, αn) such that

∆n = θ(x)[log−2(ταn)− log−2(αn)] + log(1/τ)ψ′(log(1/ηn)|x)

= θ(x)[log−2(ταn)− log−2(αn)] +
log(1/τ)

log(1/ηn)
ε(log(1/ηn)|x),

where ε(.|x) is defined in (10). Since log(1/ηn) is asymptotically equivalent to log(1/αn), (A.3) im-
plies ε(log(1/ηn)|x) = ε(log(1/αn)|x)(1 + o(1)) so that

∆n = θ(x)[log−2(ταn)− log−2(αn)] +
log(1/τ)

log(1/αn)
ε(log(1/αn)|x)(1 + o(1)).

Finally, remarking that

log−2(ταn)− log−2(αn) =
log(1/τ)

log(1/αn)
+O

(

1

log2(1/αn)

)

,

the conclusion follows.

Lemma 3 controls the oscillations of the conditional survival function under Hölder assumptions.

Lemma 3. Suppose (2), (14) and (A.2) hold. Let (hn), (αn) and (ξn) be sequences converging
to 0 such that αn < ξn and hn log(αn) log−2(αn) → 0 as n → ∞. Then, ∆̄F (x, αn, ξn, hn) =
O
(

hn log(1/αn) log−2(αn)
)

.

Proof of Lemma 3. Let yn(x) := q(βn|x) → ∞ and remark that the oscillation can be rewritten
as ∆̄F (x, αn, ξn, hn) = sup{δn(x

′, βn), (x
′, βn) ∈ B(x, hn)× [αn, ξn]} where

δn(x
′, βn) :=

∣

∣

∣

∣

F̄ (yn(x)|x
′)

F̄ (yn(x)|x)
− 1

∣

∣

∣

∣

=
F̄ (yn(x)|x

′) ∨ F̄ (yn(x)|x)

F̄ (yn(x)|x)

(

1−
F̄ (yn(x)|x

′) ∧ F̄ (yn(x)|x)

F̄ (yn(x)|x′) ∨ F̄ (yn(x)|x)

)

.

The inequality 1− z ≤ log(1/z) for all z ∈ (0, 1] entails

δn(x
′, βn) ≤

F̄ (yn(x)|x
′) ∨ F̄ (yn(x)|x)

F̄ (yn(x)|x)

∣

∣

∣

∣

log
F̄ (yn(x)|x

′)

F̄ (yn(x)|x)

∣

∣

∣

∣

,
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and, in view of H(y|x) = − log F̄ (y|x) it follows that
∣

∣

∣

∣

log
F̄ (yn(x)|x

′)

F̄ (yn(x)|x)

∣

∣

∣

∣

=
(

H(yn(x)|x
′) ∨H(yn(x)|x)

)

(

1−
H(yn(x)|x

′) ∧H(yn(x)|x)

H(yn(x)|x′) ∨H(yn(x)|x)

)

≤
(

H(yn(x)|x
′) ∨H(yn(x)|x)

)

∣

∣

∣

∣

log
H(yn(x)|x′)

H(yn(x)|x)

∣

∣

∣

∣

. (18)

Now, since H(·|x) is strictly increasing, it is easy to check that H(y|x) = y1/θ(x)ℓ−1/θ(x)(H(y|x)|x)
for all (x, y) ∈ E × R. Thus, under (A.2),

logH(yn(x)|x
′) =

1

θ(x′)

(

log yn(x)− log c(x′)−

∫ H(yn(x)|x′)

1

ε(u|x′)

u
du

)

and the Hölder assumption on ε(u|·) yields
∣

∣

∣

∣

∣

∫ H(yn(x)|x)

1

ε(u|x)

u
du−

∫ H(yn(x)|x′)

1

ε(u|x′)

u
du

∣

∣

∣

∣

∣

≤ h logH(yn(x)|x) + ηn

∣

∣

∣

∣

log
H(yn(x)|x

′)

H(yn(x)|x)

∣

∣

∣

∣

,

where ηn → 0 uniformly on x′ ∈ B(x, hn). Moreover, since H(·|x) is a regularly varying function
with index 1/θ(x), it follows that θ(x) logH(yn(x)|x) = log yn(x)(1 + o(1)). As a first conclusion,
the regularity assumptions on θ(·) and c(·) lead to

∣

∣logH(yn(x)|x
′)− logH(yn(x)|x)

∣

∣ = O (hn log yn(x)) .

Let us note that log yn(x) = θ(x) log−2(βn)+log ℓ(log(1/βn)|x) = θ(x) log−2(βn)(1+o(1)) as n→ ∞
and therefore

∣

∣logH(yn(x)|x
′)− logH(yn(x)|x)

∣

∣ = O
(

hn log−2(αn)
)

= o(1).

This result implies that (H(yn(x)|x
′) ∨H(yn(x)|x)) ≤ 2H(yn(x)|x) = 2 log(1/βn) ≤ 2 log(1/αn),

and thus, from (18),
∣

∣log F̄ (yn(x)|x
′)− log F̄ (yn(x)|x)

∣

∣ = O
(

hn log(1/αn) log−2(αn)
)

= o(1).

As a consequence, F̄ (yn(x)|x
′) is uniformly equivalent to F̄ (yn(x)|x) and hence

δn(x
′, βn) = O

(

hn log(1/αn) log−2(αn)
)

,

which concludes the proof.

We are now interested in the asymptotic normality of ˆ̄Fn(yn|x) when yn → ∞. First, let us remark

that the kernel estimator (6) can be rewritten as ˆ̄Fn(y|x) = ψ̂n(y, x)/ĝn(x) with

ψ̂n(y, x) =
1

nµ
(1)
x (hn)

n
∑

i=1

K(d(x,Xi)/hn)I{Yi > y},

ĝn(x) =
1

nµ
(1)
x (hn)

n
∑

i=1

K(d(x,Xi)/hn).

The next lemmas are dedicated to the asymptotic properties of ĝn and ψ̂n.

Lemma 4. Let x ∈ E such that ϕx(hn) > 0. If ϕx(hn) → 0 and nϕx(hn) → ∞ as n → ∞, then
ĝn(x) = 1 +OP

(

(nϕx(hn))
−1/2

)

.
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Proof of Lemma 4. It is clear that E(ĝn(x)) = 1. Besides, standard calculations yields

nϕx(hn)var(ĝn(x)) = ϕx(hn)

(

µ
(2)
x (hn)

(µ
(1)
x (hn))2

− 1

)

and (7) entails (C1/C2)
2 ≤ ϕx(hn)µ

(2)
x (hn)/(µ

(1)
x (hn))

2 ≤ (C2/C1)
2. Condition ϕx(hn) → 0 con-

cludes the proof.

Lemma 5. Suppose (2) and (A.2) hold. Let x ∈ E such that ϕx(hn) > 0 where hn → 0 as n→ ∞
and introduce 0 < τJ < · · · < τ1 ≤ 1 where J is a positive integer. Consider αn → 0 such that
nϕx(hn)αn → ∞ and ∆F̄ (x, (1 − η)τJαn, (1 + η)αn, hn) → 0 as n → ∞ for some η > 0. Let
yn,j := q(τjαn|x)(1 + o(1/ log(1/αn))) for all j = 1, . . . , J . Then,

(i) E(ψ̂n(yn,j , x)) = F̄ (yn,j |x)(1 +O(∆F̄ (x, (1− η)τJαn, (1 + η)αn, hn))), for j = 1, . . . , J .

(ii) The random vector

{

Λ−1n (x)

(

ψ̂n(yn,j , x)− E(ψ̂n(yn,j , x))

F̄ (yn,j |x)

)}

j=1,...,J

is asymptotically Gaussian, centered, with covariance matrix Σ where Σj,j′ = τ−1j∧j′ for (j, j
′) ∈

{1, . . . , J}2.

Proof of Lemma 5. (i) Since the (Xi, Yi), i = 1, . . . , n are identically distributed, we have

E(ψ̂n(yn,j , x)) =
1

µ
(1)
x (hn)

E{K(d(x,X)/hn)I{Y > yn,j}} =
1

µ
(1)
x (hn)

E{K(d(x,X)/hn)F̄ (yn,j |X)}.

Let us now consider

εn,j = E(ψ̂n(yn,j , x))− F̄ (yn,j |x) =
1

µ
(1)
x (hn)

E(K(d(x,X)/hn)(F̄ (yn,j |X)− F̄ (yn,j |x)))

=
F̄ (yn,j |x)

µ
(1)
x (hn)

E

(

K(d(x,X)/hn)

(

F̄ (yn,j |X)

F̄ (yn,j |x)
− 1

))

.

In view of Lemma 1, F̄ (yn,j |x) ∼ τjαn and thus F̄ (yn,j |x) ∈ [τJ(1− η)αn, (1+ η)αn] eventually, for
all j = 1, . . . , J . Consequently,

∣

∣

∣

∣

F̄ (yn,j |X)

F̄ (yn,j |x)
− 1

∣

∣

∣

∣

I{d(x,X) ≤ hn} ≤ ∆F̄ (x, (1− η)τJαn, (1 + η)αn, hn)

eventually and therefore |εn,j | ≤ F̄ (yn,j |x)∆F̄ (x, (1 − η)τJαn, (1 + η)αn, hn) which concludes the
first part of the proof.
(ii) Let β 6= 0 in R

J and consider the random variable

Ψn :=
J
∑

j=1

βj

(

ψ̂n(yn,j , x)− E(ψ̂n(yn,j , x))

Λn(x)F̄ (yn,j |x)

)

=:
n
∑

i=1

Zi,n

12



where, for i = 1, . . . , n, Zi,n is given by

1

nΛn(x)µ
(1)
x (hn)







J
∑

j=1

βjK(d(x,Xi)/hn)I{Yi ≥ yn,j}

F̄ (yn,j |x)
− E





J
∑

j=1

βjK(d(x,Xi)/hn)I{Yi ≥ yn,j}

F̄ (yn,j |x)











and is a set of centered, independent and identically distributed random variables with variance

var(Zi,n) =
1

n2Λ2
n(x)(µ

(1)
x (hn))2

var





J
∑

j=1

βjK(d(x,Xi)/hn))
I{Yi ≥ yn,j}

F̄ (yn,j |x)



 =:
αn

nµ
(2)
x (hn)

βtBβ,

where B is the J × J covariance matrix with coefficients defined for (j, j′) ∈ {1, . . . , J}2 by

Bj,j′ =
Aj,j′

F̄ (yn,j |x)F̄ (yn,j′ |x)
,

Aj,j′ = cov
(

K (d(x,X)/hn) I{Y ≥ yn,j}, K (d(x,X)/hn) I{Y ≥ yn,j′}
)

= E
(

K2 (d(x,X)/hn) I{Y ≥ yn,j ∨ yn,j′}
)

− E(K(d(x,X)/hn)I{Y ≥ yn,j})E(K(d(x,X)/hn)I{Y ≥ yn,j′}),

where K2 is a kernel with the same properties as K. Consequently, the three above expectations
are of the same nature. Remarking that eventually yn,j∨yn,j′ = yn,j∨j′ , part (i) of the proof implies

Aj,j′ = µ(2)x (hn)F̄ (yn,j∨j′ |x)(1 +O(∆F̄ (x, (1− η)τJαn, (1 + η)αn, hn)))

− (µ(1)x (hn))
2F̄ (yn,j |x)F̄ (yn,j′ |x)(1 +O(∆F̄ (x, (1− η)τJαn, (1 + η)αn, hn)))

leading to

Bj,j′
F̄ (yn,j∧j′ |x)

µ
(2)
x (hn)

= 1 + O(∆F̄ (x, (1− η)τJαn, (1 + η)αn, hn))

−
(µ

(1)
x (hn))

2

µ
(2)
x (hn)

F̄ (yn,j∧j′ |x)(1 +O(∆F̄ (x, (1− η)τJαn, (1 + η)αn, hn))).

In view of (7), (µ
(1)
x (hn))

2/µ
(2)
x (hn) is bounded and thus F̄ (yn,j∧j′ |x) → 0 as n→ ∞ yields

Bj,j′ =
µ
(2)
x (hn)

F̄ (yn,j∧j′ |x)
(1 + o(1)).

Now, Lemma 1 implies that F̄ (yn,j∧j′ |x) ∼ F̄ (q(τj∧j′αn|x)|x) = τj∧j′αn entailing

Bj,j′ =
µ
(2)
x (hn)Σj,j′

αn
(1 + o(1)),

and therefore, var(Zi,n) ∼ βtΣβ/n, for all i = 1, . . . , n. As a preliminary conclusion, the variance
of Ψn converges to βtΣβ. Consequently, Lyapunov criterion for the asymptotic normality of sums
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of triangular arrays reduces to
∑n

i=1 E |Zi,n|
3 = nE |Z1,n|

3 → 0. Remark that Z1,n is a bounded
random variable:

|Z1,n| ≤
2C2

∑J
j=1 |βj |

nΛn(x)µ
(1)
x (hn)F̄ (yn,J |x)

= 2C2τ
−1
J

µ
(1)
x (hn)

µ
(2)
x (hn)

J
∑

j=1

|βj |Λn(x)(1 + o(1))

≤ 2(C2/C1)
2τ−1J

J
∑

j=1

|βj |Λn(x)(1 + o(1)),

in view of (7) and thus,

nE |Z1,n|
3 ≤ 2(C2/C1)

2τ−1J

J
∑

j=1

|βj |Λn(x)nvar(Z1,n)(1 + o(1))

= 2(C2/C1)
2τ−1J

J
∑

j=1

|βj |β
tΣβΛn(x)(1 + o(1)) → 0

as n → ∞ in view of (7). As a conclusion, Ψn converges in distribution to a centered Gaussian
random variable with variance βtΣβ for all β 6= 0 in R

J . The result is proved.

Lemma 6 below establishes the asymptotic distribution of ˆ̄Fn in the situation of estimating small
tail probabilities. It thus may be compared to [14], Theorem 1 and [15], Proposition 1. In the
first mentioned paper, a similar result is established in the finite dimensional setting and under the
assumption that the conditional distribution of Y given X is heavy-tailed. In the second paper,
the heavy-tailed assumption is replaced by a von-Mises condition covering different tail behaviors
but under the strong condition that the hazard function H(.|x) is twice differentiable.

Lemma 6. Suppose (2) and (A.2) hold. Let x ∈ E such that ϕx(hn) > 0 where hn → 0 as n→ ∞
and introduce 0 < τJ < · · · < τ1 ≤ 1, where J is a positive integer. Consider αn → 0 such that
nϕx(hn)αn → ∞ and nϕx(hn)αn(∆F̄ )

2(x, (1 − η)τJαn, (1 + η)αn, hn) → 0 for some η > 0. Let
yn,j := q(τjαn|x)(1 + o(1/ log(1/αn))) for all j = 1, . . . , J . Then, the random vector

{

Λ−1n (x)

(

ˆ̄Fn(yn,j |x)

F̄ (yn,j |x)
− 1

)}

j=1,...,J

is asymptotically Gaussian, centered, with covariance matrix Σ defined in Lemma 5.

Proof of Lemma 6. Keeping in mind the notations of Lemma 5 and letting

∆1,n = Λ−1n (x)
J
∑

j=1

βj

(

ψ̂n(yn,j , x)− E(ψ̂n(yn,j , x))

F̄ (yn,j |x)

)

∆2,n = Λ−1n (x)
J
∑

j=1

βj

(

E(ψ̂n(yn,j , x))− F̄ (yn,j |x)

F̄ (yn,j |x)

)

∆3,n =





J
∑

j=1

βj



Λ−1n (x) (ĝn(x)− 1) ,
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the following expansion holds

Λ−1n (x)
J
∑

j=1

βj

(

ˆ̄Fn(yn,j |x)

F̄ (yn,j |x)
− 1

)

=
∆1,n +∆2,n −∆3,n

ĝn(x)
. (19)

From Lemma 5(ii), the random term ∆1,n can be rewritten as

∆1,n =
√

βtΣβξn, (20)

where ξn converges to a standard Gaussian random variable. The nonrandom term ∆2,n is controlled
with Lemma 5(i):

∆2,n = O(Λ−1n (x)∆F̄ (x, (1− η)τJαn, (1 + η)αn, hn)) = o(1). (21)

Finally, ∆3,n is a classical term in kernel density estimation. From Lemma 4,

∆3,n = OP(Λ
−1
n (x)(nϕx(hn))

−1/2) = OP(αn)
1/2 = oP(1). (22)

Collecting (19)–(22), it follows that

ĝn(x)Λ
−1
n (x)

J
∑

j=1

βj

(

ˆ̄Fn(yn,j |x)

F̄ (yn,j |x)
− 1

)

=
√

βtΣβξn + oP(1).

Finally, Lemma 4 entails that ĝn(x)
P

−→ 1 which concludes the proof.

The next lemma establishes the asymptotic normality of the kernel estimator of a conditional ex-
treme quantile. This result can be obtained directly from [15], Corollary 1 in the finite dimensional
setting, but under the strong condition that the hazard function H(.|x) is twice differentiable.

Lemma 7. Suppose (2) and (A.2) hold. Let 0 < τJ < · · · < τ1 ≤ 1 where J is a positive integer
and x ∈ E such that ϕx(hn) > 0 where hn → 0 as n → ∞. If αn → 0 and there exists η > 0
such that nϕx(hn)αn → ∞, nϕx(hn)αn(∆F̄ )

2(x, (1− η)τJαn, (1+ η)αn, hn) → 0, then, the random
vector

{

log(1/αn)Λ
−1
n (x)

(

q̂n(τjαn|x)

q(τjαn|x)
− 1

)}

j=1,...,J

is asymptotically Gaussian, centered, with covariance matrix θ2(x)Σ where Σ is defined in Lemma 5.

Proof of Lemma 7. Introduce for j = 1, . . . , J , αn,j = τjαn,

σn,j(x) = θ(x)q(αn,j |x)Λn(x)/ log(1/αn)

vn,j(x) = α−1n,jΛ
−1
n (x)

Wn,j(x) = vn,j(x)
(

ˆ̄Fn(q(αn,j |x) + σn,j(x)zj |x)− F̄ (q(αn,j |x) + σn,j(x)zj |x)
)

an,j(x) = vn,j(x)
(

αn,j − F̄ (q(αn,j |x) + σn,j(x)zj |x)
)

and zj ∈ R. We examine the asymptotic behavior of J-variate function defined by

Φn(z1, . . . , zJ) = P





J
⋂

j=1

{

σ−1n,j(x)(q̂n(αn,j |x)− q(αn,j |x)) ≤ zj

}



 = P





J
⋂

j=1

{Wn,j(x) ≤ an,j(x)}



 .
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Let us first focus on the nonrandom term an,j(x). From assumption (A.2), F̄ (.|x) is differentiable
almost everywhere. Thus, a first order Taylor expansion yields that, for each j ∈ {1, . . . , J}, there
exists ζn,j ∈ (0, 1) such that

F̄ (q(αn,j |x)|x)− F̄ (q(αn,j |x) + σn,j(x)zj |x) = σn,j(x)zjf(qn,j |x), (23)

with qn,j = q(αn,j |x)+ζn,jσn,j(x)zj and where f(.|x) = −F̄ ′(.|x) is the conditional density function.
Applying Lemma 1 yields for j = 1, . . . , J ,

F̄ (qn,j |x)

F̄ (q(αn,j |x)|x)
=
F̄ (qn,j |x)

αn,j
= 1 + o(1). (24)

Moreover, remarking that, as α→ 0,

f(q(α|x)|x) =
log(1/α)

θ(x)H−1(log(1/α)|x)
α(1 + o(1)), (25)

it appears that f(q(.|x)|x) is a regularly varying function at 0 with index 1 and consequently

lim
n→∞

f(qn,j |x)

f(q(αn,j |x)|x)
= 1. (26)

Collecting (23), (25) and (26), we end up with

an,j(x) = θ(x)zjα
−1
n,j

q(αn,j |x)

log(1/αn)
f(q(αn,j |x)|x)(1 + o(1)) = zj(1 + o(1)). (27)

Let us now turn to the random term Wn,j(x). Defining yn,j = q(αn,j |x)+σn,j(x)zj for j = 1, . . . , J ,
we have yn,j = q(αn,j |x)(1 + o(1/ log(1/αn))). Hence, from (24),

{

Λ−1n (x)

vn,j(x)F̄ (yn,j |x)
Wn,j

}

j=1,...,J

= (1 + o(1)) {Wn,j}j=1,...,J

and Lemma 6 shows that the above random vector converges to a centered Gaussian random
variable with covariance matrix Σ. Taking account of (27), we obtain that Φn(z1, . . . , zJ) converges
to the cumulative distribution function of a centered Gaussian distribution with covariance matrix
Σ evaluated at (z1, . . . , zJ).

6.2 Proofs of main results

log q̂n(τjαn|x) = log q(αn|x) + log

(

q(τjαn|x)

q(αn|x)

)

+ log

(

q̂n(τjαn|x)

q(τjαn|x)

)

. (28)

First, Lemma 2 entails that

log q(τjαn|x)− log q(αn|x) =
log(1/τj)

log(1/αn)

(

θ(x) + ε(log(1/αn)|x)(1 + o(1)) +O

(

1

log(1/αn)

))

,

(29)
where the o(.) and O(.) are uniform in j = 1, . . . , J . Second, it follows from Lemma 7 that

q̂n(τjαn|x)

q(τjαn|x)
= 1 + σnξn,j , (30)
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where (ξn,1, . . . , ξn,J)
t converges to a centered Gaussian random vector with covariance matrix

θ2(x)Σ and σ−1n = Λ−1n (x) log(1/αn). Replacing (29) and (30) in (28) yields

log q̂n(τjαn|x) = log q(αn|x) + σnξn,j +OP(σ
2
n)

+
log(1/τj)

log(1/αn)

(

θ(x) + ε(log(1/αn)|x)(1 + o(1)) +O

(

1

log(1/αn)

))

,

for all j = 1, . . . , J and therefore, in view of the shift and scale invariance properties of φ, it follows
that φ ({log q̂n(τjαn|x)}j=1,...,J) log(1/αn) is equal to

φ

(

{

vj

(

θ(x) + ε(log(1/αn)|x)(1 + o(1)) +O

(

1

log(1/αn)

))

+ log(1/αn)(σnξn,j +OP(σ
2
n))

}

j=1,...,J

)

.

where v = {log(1/τj)}j=1,...,J . A first order Taylor expansion yields:

φ ({log q̂n(τjαn|x)}j=1,...,J) =

J
∑

j=1

vj

(

ε(log(1/αn)|x)

log(1/αn)
(1 + o(1)) +O

(

1

log2(1/αn)

))

∂φ

∂xj
(θ(x)v)

+
φ (θ(x)v)

log(1/αn)
+ σn

J
∑

j=1

(ξn,j +OP(σn))
∂φ

∂xj
(θ(x)v) +

Rn

log(1/αn)
,

where the remainder is bounded above by

Rn = OP





J
∑

j=1

∣

∣

∣

∣

σn log(1/αn)(ξn,j +OP(σn)) + vj

(

ε(log(1/αn)|x)(1 + o(1)) +O

(

1

log(1/αn)

))∣

∣

∣

∣





2

= OP



σn log(1/αn)





J
∑

j=1

|ξn,j |+OP(σn)



+O(ε(log(1/αn)|x)) +O

(

1

log(1/αn)

)





2

= OP (σn log(1/αn))
2

since Λ−1n (x)ε(log(1/αn)|x) → λ and Λ−1n (x)/ log(1/αn) → 0 as n→ ∞. It follows that

σ−1n

(

φ ({log q̂n(τjαn|x)}j=1,...,J)−
φ(θ(x)v)

log(1/αn)

)

=

J
∑

j=1

(λvj + ξn,j)
∂φ

∂xj
(θ(x)v) + oP(1).

Taking into account (A.1) and the scale invariance property of ∇φ, we finally obtain

Λ−1n (x)(θ̂n(x)− θ(x)) =
1

φ(v)

J
∑

j=1

(λvj + ξn,j)
∂φ

∂xj
(v) + oP(1)

and the conclusion follows.
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Proof of Corollary 1. Recalling that ε(.|x) is regularly varying with index ρ(x), one has
ε(log(1/αn)|x) = (1− ξ)ρ(x)|ε(log n|x)|(1+o(1)) and thus (11) holds under (15). Besides, Lemma 3
implies that ∆F̄ (x, (1 − η)τJαn, (1 + η)αn, hn) = O(hn log(n) log−2(n)). As a consequence, since
ϕx is ultimately increasing,

√

nϕx(hn)αn∆F̄ (x, (1− η)τJαn, (1 + η)αn, hn)

= O
(

ϕ−1x

(

λ(1− ξ)2ρ(x)n−ξ(ε(log n|x))−2
)

log(n) log−2(n)(ε(log n|x))
−1
)

= O
(

ϕ−1x

(

n−ξ/2
)

log(n) log−2(n)(ε(log n|x))
−1
)

= O
(

ϕ−1x

(

n−ξ/2
)

(log(n))1−ρ(x)+ξ
)

.

The first part of condition (12) is thus satisfied under the assumption ϕ−1x (1/y)(log y)1+ξ−ρ(x) → 0
as y → ∞. The second part is a direct consequence of yε(y|x) → ∞ as y → ∞.
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J Vopt τ1 τ2 τ3 τ4 τ5
2 1.5441 1.0000 0.2032
3 1.2191 1.0000 0.3615 0.0735
4 1.1223 1.0000 0.4703 0.1702 0.0346
5 1.0789 1.0000 0.5486 0.2585 0.0936 0.0190

Table 1: Optimal values of (τ1, . . . , τJ) and associated asymptotic variance Vopt.
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Figure 1: Samples from the simulated and real datasets. Left: Four simulated random functions
X(.). Right: Five spectrometric curves x̃β.
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Figure 2: Results obtained with the distance d1. Boxplots of the N = 100 estimations obtained with

the non conditional estimator (NCE) and the proposed estimator with p = 1 (left) and p = 3 (right) for

z ∈ {0.15, 0.25, 0.35, 0.45}. The first row corresponds to situation (S.1), the second row to (S.2) and the last

row to (S.3). The symbol x represents the true value of the functional Weibull tail-coefficient.
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Figure 3: Results obtained with the distance d2. Boxplots of the N = 100 estimations obtained with

the non conditional estimator (NCE) and the proposed estimator with p = 1 (left) and p = 3 (right) for

z ∈ {0.15, 0.25, 0.35, 0.45}. The first row corresponds to situation (S.1), the second row to (S.2) and the last

row to (S.3). The symbol x represents the true value of the functional Weibull tail-coefficient.
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Figure 4: First five graphs: Quantile-quantile plots on the real dataset for the curves x̃β (left to
right and top to bottom). Bottom right: Estimations of the functional Weibull tail-coefficient for
the five curves x̃β.
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