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RECOVERING YOUNG MODULI IN HETEROGENEOUS STENOSED 
CAROTID ARTERIES: A NUMERICAL PLANE STRAIN STUDY.

A. Franquet1, S. Avril2, R. Le Riche3 and P. Badel4

1. ABSTRACT

Assessing the vulnerability of atherosclerotic plaques requires an accurate knowledge of 
the  mechanical  properties  of  the  plaque  constituents.  It  is  possible  to  measure 
displacements in vivo inside a plaque using ultrasounds or magnetic resonance imaging. 
The main issue is to solve the inverse problem that consists in estimating the elastic 
properties inside the plaque from measured displacements.
This study focuses on the identifiability of elastic parameters. An idealised plane strain 
Finite Element (FE) model is used.

2. INTRODUCTION

Ripping-off of atherosclerotic plaques in carotid arteries is a major cause of mortality in 
OECD countries. ECST5 study has shown that patients with a stenosis larger than 70% 
benefit from a surgical intervention. Due to remodelling, this geometrical criterion alone 
may be insufficient for asymptomatic patients. 
It has been shown in the literature that the vulnerability of an atherosclerotic plaque can 
also be assessed with a maximum stress criterion [1]. The calculation of this criterion 
requires an accurate knowledge of the mechanical properties of the plaque constituents.
While the medical objective is obvious, the main issue remains the estimation of the 
mechanical properties of the plaque constituents in vivo. It involves the definition of an 
inverse problem consisting in finding the mechanical properties of a numerical model 
that fits experimental displacements. 
It  is  possible  to  measure  displacements  between  diastolic  and  systolic  pressure  in 
diseased arteries and using ultrasounds [2] or MRI [3]. The heterogeneities contours can 
also be obtained by image processing [4].
Most  of  the  time  the  reconstruction  of  mechanical  properties  in  arteries  utilises  FE 
model updating [5,6]. Authors have focused on optimisation algorithms [7,8] and on 
methods for improving the mechanical properties mapping [5]. Le Floc'h explained in 
[6] how to choose the FE model parameters (number of elements, element type...). Two 
types of uncertainties can affect the identification: numerical approximations (type I) or 
experimental errors (type II).
The elastic parameters identifiability is studied in this article. In particular, the effects of 
the FE mesh and of the  a priori parameters values are studied (type I), as well as the 
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effects of the interpolation grid size and of white noise corrupting experimental data 
(type II). 

3. METHODS

3.1 FE model

An idealised atherosclerotic carotid artery in 
2D has been modelled in a manner inspired 
by [1] (cf. Fig.1). Dimensions correspond to 
a 66% stenosis. The mechanical behaviour is 
supposed  to  be  linear  elastic,  under  the 
hypothesis  of  plane  strain.  One  node  has 
been  blocked  in  the  x  and  y  directions, 
and  one  node  has  been  blocked  in  the  y  
direction  to  remove  rigid  body  motion.  A 
pressure of 5 kPa is applied uniformly on the 
artery  wall,  simulating  the  differential 
pressure of a patient between diastole and systole. Quasi-static conditions are assumed 
as the heart beats have approximately a frequency of 1 Hz. Three different materials are 
defined (cf. Fig.1):

1) Healthy tissue.
2) A lipidic core composed essentially of fat.
3) Diseased tissue including the fibrous cap and a part of the infected media, more 

rigid than the healthy tissue.

3.2 Synthetic data

The  behaviour  of  arteries  is  supposed  to  be  quasi-incompressible  (fluid  saturated 
materials). The elastic properties of the three materials are set to the following values:

1) Healthy tissue: EHealthy tissue=EHT=600 kPa and Healthytissue=HT=0.49 .
2) Lipidic core: ELipidic core=ELC=10kPa and Lipidiccore=LC=0.49 .
3) Diseased tissue: EDiseased tissue=EDT=800 kPa and Diseasedtissue=DT=0.49 .

The synthetic data is the result of the computation of a FE model with about 130 000 
CPE8H elements6. The solution is then interpolated on a regular N by N grid with a step 
S, which simulates an MRI output with the voxel size S.

3.3 Inverse approach

An  inverse  approach  consists  in  finding  the  parameters  of  a  system,  knowing  its 
response. The principle is to minimise a distance  J 2  (cf. Eq.1) with an optimisation 
algorithm.

J 2=∑
i=0

N

U i −Usynthetici
2  (1)

with here:
• N : Number of interpolating nodes (grid nodes).

6The CPE8H element is the element recommended by  Abaqus®(software used) in quasi-incompressible 
cases.

 
Fig. 1: Dimensions and materials of the model.
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•  : Vector of parameters, Young moduli and Poisson ratios depending on the 
test cases (see later).

• U i  : Displacement from a FE simulation interpolated at the grid node i .
• Usynthetic i : Synthetic displacement at the grid node i .

A Levenberg-Marquardt algorithm with bounds handling is used to recover the elastic 
properties. Two termination criteria are set up:

• ∥∥≤10−25 : Step ∥∥  too small. No more improvement is expected.
• J 2  j ≤10−7 : The accuracy on J 2  is reached.

The Levenberg-Marquardt algorithm requires at each iteration the matrix of gradients
∇

 U   which is calculated by backward finite differences.

3.4 Definition of numerical experiments

Four  different  tests  are  proposed  which  focus  on  the  identification  of  mechanical 
properties quality. The values identified by the optimisation algorithm are compared to 
the synthetic ones. The following configuration is considered as default:
Mesh types CPE6 5000 and CPE8H 5000

Grid step size for the synthetic 
data

0.125 mm

Number and type of unknown 
parameters

Set of Poisson ratios

Initial vector of parameters ={EHealthy tissue=1000 kPa , ELipidiccore=100 kPa , E Diseasedtissue=1200 kPa }

Tab. 1:Default values

1) Effect of the FE mesh: 
Two different elements are tested: the CPE6 element (Continuum Plane Strain 6 nodes 
element, triangle, used in [6]) and the CPE8H element (Continuum Plane Strain 8 nodes 
element  with  hybrid  formulation,  quadrangle,  recommended  by  Abaqus®).  Four 
numbers of elements are tested: 1000, 5000, 15000 and 40000. 

2) Effect of the a priori Poisson ratios:
Poisson ratios are voluntarily set to wrong values during the identification procedure: 

{Healthy tissue ,Lipidiccore ,Diseased tissue }={{0.45 , 0.45 ,0.45 } , {0.48 ,0.48 , 0.48 }, {0.499 ,0.499 ,0.499 }}  (2)

3) Effect of the grid step size:
The grid step size is directly linked to the MRI spacial resolution. The synthetic data are 
interpolated on a regular grid with the step size S taken as:

Stepsize={1 mm , 0.5 mm ,0.25 mm ,0.125mm }  (3)

4) Effect of white Gaussian noise:
Experimental data always contain noise. The effect of white Gaussian noise on synthetic 
data is studied. The synthetic displacements are defined as:

U synthetic
x = U synthetic

x × R1

U synthetic
y = U synthetic

y × R2

 (4)

with:

{EHealthytissue , ELipidiccore , EDiseased tissue }

{Healthy tissue ,Lipidiccore ,Diseased tissue }={0.49 ,0.49 ,0.49 }



• =3%×mean ∥U synthetic∥ : standard deviation.

• R1  and R2 : random vectors following a standard normal law N 0 ,1 .
In  order  to  estimate  means  and  standard  deviations  of  each  identified  value  the 
identification is repeated twenty times.

4. RESULTS 

4.1 Effect of the FE mesh

Mesh type EHA (kPa) %EHA ELC ELC EDT EDT Time (s) Termination
CriterionReference 600 10.00 800 1 FEsim Total

CPE6

1000 607 1.24% 9.77 -2.33% 798 -0.29% 0.38 590

5000 603 0.55% 9.94 -0.56% 799 -0.07% 1.19 1077 ∥∥≤10−25

15000 604 0.68% 10.02 0.24% 799 -0.06% 3.99 858 J2  j≤10−7

40000 603 0.53% 10.04 0.44% 800 -0.05% 10.66 2063 J2  j≤10−7

CPE8H

1000 602 0.43% 9.97 -0.33% 800 -0.06% 0.84 803

5000 603 0.64% 10.04 0.39% 800 -0.06% 3.83 573 J2  j≤10−7

15000 604 0.54% 10.04 0.43% 800 -0.05% 12.39 1449 J2  j≤10−7

40000 603 0.47% 10.05 0.51% 800 -0.04% 44.63 4440 J2  j≤10−7

Tab. 2: Identifications with different meshes.

The identification quality for the CPE6 element reveals a difference with real values 
always lower than 2.4%. The error on final Young moduli of CPE8H optimisations are 
always lower than 0.7% whatever the number of elements is. Both termination criteria 
appear, suggesting that both are useful. The J 2  index has not reached the limit in three 
cases, but the identification quality is lower than 2.4%.
This test leads to the selection of two meshes for the next numerical experiments:

• CPE6 5000: Although the accuracy on J 2  has not been reached, the algorithm 
already finds a vector final  after 346 seconds:
final={EHealthy tissue=606 kPa , ELipidic core=9.99 kPa , EDiseased tissue=799.18kPa }

• CPE8H: The identification quality is good (<1% on all Young modulus), and the 
identification total time (573 seconds) is the lowest among identifications which 
converged. 

4.2 Effect of the a priori Poisson ratios

Mesh
Sets of Poisson ratios Identified Young moduli Total time 

(s)νHA νLC νDT EHA  (kPa) %EHA ELC %ELC EDT %EDT 

Ref. 0.49 0.49 0.49 600 10.00 800

CPE6 5000

0.45 0.45 0.45 650 8.26% 17.90 78.99% 804 0.45% 1017

0.48 0.48 0.48 633 5.47% 13.65 36.48% 793 -0.87% 1002

0.49 0.49 0.49 603 0.55% 9.94 -0.56% 799 -0.07% 1038

0.499 0.499 0.499 394 -34.36% 1.23 -87.74% 844 5.53% 1187

0.45 0.45 0.45 648 8.03% 17.92 79.22% 804 0.47% 1579

∥∥≤10−25

∥∥≤10−25



0.48 0.48 0.48 631 5.21% 13.69 36.88% 793 -0.84% 1620

CPE8H 5000 0.49 0.49 0.49 604 0.64% 10.04 0.39% 800 -0.06% 557

0.499 0.499 0.499 387 -35.43% 1.22 -87.82% 845 5.68% 2063

Tab. 3: Identifications with different sets of Poisson ratios.

An underestimation of 8% on the Poisson ratios leads to errors of 8% on the healthy 
artery Young modulus, and 80% on the lipidic core Young modulus for both meshes, 
whereas an underestimation of 2% on the Poisson ratios leads to errors of respectively 
5% and 37%. The Young modulus of the diseased tissue is only affected in the case of 
an overestimation of the Poisson ratios.

4.3 Effect of the grid step size

Mesh Step size (mm)
EHA 

(kPa)
%EHA ELC %ELC EDT %EDT Total time (s)

Termination 
criterion

Ref. 600 10.00 800

C
P

E
6 

50
00 1 655 9.12% 10.76 7.62% 795 -0.64% 462

0.5 607 1.16% 10.01 0.11% 799 -0.12% 443 J2  j≤10−7

0.25 606 1.04% 10.00 -0.01% 799 -0.11% 392 J2  j≤10−7

0.125 603 0.55% 9.94 -0.56% 799 -0.07% 1038 ∥∥≤10−25

C
P

E
8H

 5
00

0 1 654 8.99% 10.83 8.26% 795 -0.63% 802

0.5 605 0.87% 10.06 0.65% 799 -0.07% 753 J2  j≤10−7

0.25 604 0.74% 10.05 0.50% 799 -0.07% 653 J2  j≤10−7

0.125 604 0.64% 10.04 0.39% 800 -0.06% 557 J2  j≤10−7

Tab. 4: Identifications with different grid step sizes.

The results between the two types of elements are very similar in terms of accuracy. 
With the larger step size (1mm), the error on the healthy artery Young modulus is 9% 
and the error on the lipidic core is 8%. The identification time decreases shortly when 
the  step  size  decreases.  With  a  given  step  size,  for  instance  1  mm,  the  CPE6 
identification is twice faster the CPE8H one.

4.4 Effect of white Gaussian noise

Mesh EHA (kPa) %EHA ELC %ELC EDT %EDT Total time (s)

Ref. 600 10.00 800

CPE6 5000
Mean 603 0.52% 9.93 -0.65% 799 -0.08% 1114

Standard deviation 1.28 0.21% 0.03 0.26% 0.25 0.03% 48

CPE8H 5000
Mean 601 0.17% 9.98 -0.20% 800 -0.03% 1768

Standard deviation 1.28 0.21% 0.03 0.26% 0.25 0.03% 61

Tab. 5: Identifications with 3% of white Gaussian noise in the synthetic data.

All the identifications made in this section terminated because of ∥∥≤10−25 . The noise 
added to  the synthetic  data  affects  both element  types in  the same way in terms of 
Young moduli standard deviations (respectively 0.21%, 0.30%, 0.03%). 

J2  j≤10−7

J2  j≤10−7



5. DISCUSSION AND CONLUSION

Comments on two aspects can be distinguished:
1. Computation time and termination criteria

Computation time can be saved with a good choice of FE model (FE model with 5000 
CPE6 elements shows generally an identification quality <1%). A less stringent choice 
of  threshold  for  the  second  termination  criterion  ( ∥∥≤10−8  for  instance)  could 
significantly reduce the identification time when this criterion is predominant.  We also 
raises questions about the interpretation of the absolute value of J 2  which can be low 
but still leading to erroneous Young moduli and vice versa.
The grid step size has no obvious effect on the accuracy of the identified Young moduli 
from the step size 0.5 mm. 

2. Poisson ratio estimation
The estimation of the Poisson ratios has the strongest influence on the accuracy of the 
identified values. Note that the algorithm tends to rigidify the healthy artery and the 
lipidic core to compensate an underestimation of Poisson ratios of the lipidic core and 
the healthy artery and vice versa.
Further investigations are currently led to simulate real experimental noise and to work 
with more realistic experimental data.
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