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classical particle in a long range force field

Alexandre Jollivet*

September 16, 2014

Abstract

We define scattering data for the Newton equation in an electro-
magnetic field (—VV, B) € C1(R",R") x C1(R", A,(R)), n > 2, that
decay at infinity like r=®~! for some o € (0, 1], where A, (R) is the
space of n X n antisymmetric matrices. We provide their high energies
asymptotics and we prove, in particular, that the scattering data at
high energies uniquely determine the short range part of (VV, B) up
to the knowledge of the long range part of (VV, B). Other asymptotic
regimes are also considered. This paper extends similar results for a
short range force field [Jollivet, 2009] or for a long range electric (or
gravitational) field [Jollivet, 2013].

keywords: Newton equation; Long range electromagnetic field; Inverse scat-
tering at high energies.

1 Introduction

Consider the multidimensional Newton equation in an external and static
electromagnetic field:

(t) = F(x(t),2(t) .= —-VV(x(t) + B(x(t))x(t), (1.1)

for z(t) € R", t € R, n > 2 where @(t) = £x(t), and where V € C*(R",R),

B(z) is the n x n real antisymmetric matrix with elements B; ;, 1 < i,k < n,
and where B satisfies the closure condition

0 0 0
B =B B
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sité Lille 1 Sciences et Technologies, 59655 Villeneuve d’Ascq Cedex, France,
alexandre.jollivet@math.univ-lillel.fr

(z) =0, (1.2)




for x € R™ and for i,k,m = 1...n. For ¢ € (0,+00) we will denote by
B(0,0) (resp. B(0,0)) the open (resp. closed) Euclidean ball of center 0 and
radius o.

When n = 3 the equation (1.1) is the equation of motion of a particle of
mass m = 1 and charge e = 1 in an external electromagnetic field described
by (V, B) (see, for example, [8, Section 17]). In this equation, x, &, & denote
the position, the velocity and the acceleration of the particle respectively,
and ¢ is the time.

We also assume throughout this paper that F' satisfies the following con-
ditions

F=F+F (1.3)

where F'(z,v) := —VV!(x) + BY(z)v, F*(x,v) = —VV?*(z) + B*(z)v and
(VL Ve) € (C*HR™, R))?, (B!, B%) € (C*(R", A,(R)))?, and where

09 V! ()] < By, (L [a]) =D 02 By ()] < By 40 (14 Ja])~(F Y,

(1.4)

09V (@)] < B, (L [2) =D 02 B2 (2)] < B (14 |2])~ (@2,
(1.5)

for x € R", |j1] < 2 and |j2] < 1 and for some a € (0,1] (here j is the

multiindex j = (j%,...,5") € NU{0})"™[j] = >0 _, 5™, and B! and 32,

are positive real constants for m = 0,1,2 and for m’ = 1,2,3). Although

our electromagnetic fields are assumed to be smooth on the entire space, our

study may provide interesting results even in presence of singularities.

For equation (1.1) we recall that the energy

E = |0 + V(a() (1.6)

is an integral of motion.

Set
dnmax(B, ) 1
Ry = = —+2(1 Ry. 1.7
0 5 =t (1+v/n)Ro (1.7)
Then under conditions (1.4) the following is valid (see Section 4): for any
v € R™, |v] > p, there exists a unique solution z4(v,.) of the equation

E(t) = F'(2(t), £(1)), (1.8)

so that
Zi(v,t) —v=0(1), as t — £o0, z4(v,0) =0, (1.9)

and
sup |z+(v,.) —v| < Ry for t € R. (1.10)
R
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When F! = 0 then we have z4(v,t) = tv for (t,v) € R x R", |v| > ﬁ
Then under conditions (1.4) and (1.5), the following is valid: for any
(v_,z_) € R\B(0, ') x R", the equation (1.1) has a unique solution x &

C?*(R,R") such that
z(t) = z_(v_,t) + x_ +y_(1), (1.11)

where |y_(t)|+|y—(t)| = 0, as t — —oo; in addition for almost any (v_,z_) €
R™\B(0, ') x R”,
r(t) = 24 (v, t) + 24 + Yy (1), (1.12)

for a unique (vy,z,) € R* x R", where |vy| = |[v_| > u! by conservation of
the energy (1.6), and where v, =: a(v_,z_), z, =: b(v_,z_), and |g,(t)| +
ly+(t)] — 0, as t — +oo. A solution x of (1.1) that satisfies (1.11) and (1.12)
for some (v_,x_), v_ # 0, is called a scattering solution.
We call the map S : (R™\B(0, u!)) x R* — (R™\B(0, u!)) x R" given by
the formulas
vy =alv_,z_), y =blv_,x_), (1.13)

the scattering map for the equation (1.1). In addition, a(v_,z_), b(v_,z_)
are called the scattering data for the equation (1.1), and we define

asc(v_,x_) =alv_,x_) —v_, bg(v_,z_)=blv_,z_)—x_. (1.14)

Our definition of the scattering map is derived from constructions given in
[3, 1]. We refer the reader to [13, 3, 14, 9, 1] and references therein for the
forward classical scattering theory.

By D(S) we denote the set of definition of S. Under the conditions
(1.4) and (1.5) the map S : D(S) — (R™\B(0,u')) x R™ is continuous,
and Mes(((R™\B(0, u!)) x R*)\D(S)) = 0 for the Lebesgue measure on
R™ x R™. In addition the map S is uniquely determined by its restriction
to M(S) = D(S)N M and by F', where M = {(v_,z_) e R" x R" | v_ #
0,<v_,z_ >= 0} and < .,. > denotes the canonical scalar product of the
Euclidean space R".

One can imagine the following experimental setting that allows to measure
the scattering data without knowing the electromagnetic field (V, B) inside
a (a priori bounded) region of interest. First find an electromagnetic field
(V! B!) that generates the same long range effects as (V, B) does. Then
compute the solutions z4 (v,.) of equation (1.8). Then for a fixed (v_,z_) €
(R™\B(0, ') x R™ send a particle far away from the region of interest with
a trajectory asymptotic to x_ 4+ z_(v_,.) at large and negative times. When
the particle escapes any bounded region of the space at finite time, then
detect the particle and find S(v_,z_) = (vy,xy) so that the trajectory of
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the particle is asymptotic to =, + z,(vy,.) at large and positive times far
away from the bounded region of interest.

In this paper we consider the following inverse scattering problem for
equation (1.1):

Given S and given the long range tail F' of the force F, find F*. (1.15)

The main results of the present work consist in estimates and asymptotics
for the scattering data (as., bs.) and scattering solutions for the equation (1.1)
and in application of these asymptotics and estimates to the inverse scatter-
ing problem (1.15) at high energies. Our main results include, in particular,
Theorem 1.1 given below that provides the high energies asymptotics of the
scattering data.

Consider

TS ' :={(0,2) e S" ' xR" | <,z >=0},

and for any m € N consider the x-ray transform P defined by

Pf0,z):= +OO f(t0 + x)dt

—00

for any function f € C(R",R™) so that |f(z)| = O(|z|?) as |z| — 400 for
some 3 > 1.
Set

Whv, z) / / (V' (z—(v,7) +2) = VV(2_(v,7)))drdo (1.16)

/ / (B (=-(v.7 +:c+/ / (0, 52) + ) — B'(z_(v, 52)))_(s2)dsads1)

—Bl(z,(v,r)))z,(v,T)dea
w[ [ B ena( [ Bt - B )z o)
+ /0+°° /:OO (VV'(z4(a,7) +b) — VV'(21(a, 7)))drdo

+/0+oo /:OO B'(zy(a,7) + b)(/T+Oo (B'(21(a,n) +b) — B'(24.(a,n))) 2+ (a, n)dn>d7dg

/+°° /+OO z+ a,7)+ b+ /+00 /+00 Y2y (a, s2) +b) — B (24 (a, 59))) 24 (a, 52)d32d51)

—B'(z,(a, 7'))) Z(a, T)drdo,



for (v,z) € D(S), In (1.16), a(v,x) and b(v,z) are shortened to a, b. The
vector valued map W' is known from F' and from the scattering data. Then
we have the following asymptotic results.

Theorem 1.1. Let (0,x) € TS" . Under conditions (1.4) and (1.5) the
following limits are valid

ase(ph, ) = /_ m B(t0+z)0dr+p " (—P(VV)(0, z)+ Wi (B', B*,0,z))+o(p™"),

(1.17)
as p — +oo, and

0 g +oo  ptoo
bee(pf,2) = W' ph,z)+p* ( / / B*(16 + z)0drdo — / / B (16 + :L’)Hdrda)
—00 J -0 0 o

+p2</_io /_;(—VVS)(TG + z)drdo — /O+°° /OJFOO(—VVS)(TG + z)drdo
+W2(BZ,BS,0,x)> +o(p~?), (1.18)

as p — 400, where

Wi (B, B%,0,2) = /RB(TG—FSL’)(/T B(o6 + x)0do)dr
+Z€k/ ( < VB (10 + z) / / B(nf + z) — Bl(ne))ﬁdnda

// B'(n6) 6’d77da>) dr (1.19)
j=l..n

and
Wy (B', B, 0, x) / / B*(10 + x) / B(n + x)0dn)drdo (1.20)

+oo +oo
/ / B*(10 + x) (/ B(nd + x)0dn)drdo
0 —00

+/0 /U BI(TQH;)(/T BY(1f -+ 2)0dn) drdo

o

+o0 +oo +o0
+ / / B'(10 + ) ( / B*(nd + x)@dn) drdo
0 o
n 0 o
+370, / / ( < VB, (70 + 7) / / B(1a0 + x) — B'(1n,0))0dnadn,

o0 v —00



T 771
i / / B (1120)0dnsdn; >>‘  drdo
j=1l..n

drdo

j=1l..n

+oo +oo
— Z O / / < VBj (10 + x) / / B(ne0 + z) — B'(n20))0dnsdn,
k=1 7O o

T 7
+ / / B (10)0diadiy, > ) drdo
0 —00 Jj=l.n

n 400 400 +00 +00
k=1 0 o T m

From (1.17) and [4, Proposition 1.2] and inversion of the x-ray transform
(see [12, 2, 10, 11]) it follows that F** can be reconstructed from the high
energies asymptotics of a,. and F'. From (1.18) one can prove the following
statements (see [4, Proposition 1.2] and [7]): The magnetic field B* can be
reconstructed from W! B! and the high energies asymptotics of b,. when
n > 3, and up to its radial part when n = 2; The potential V* is uniquely
determined up to its radial part by W', B’ and the high energies asymptotics
of bs. when n > 3; The potential V* is not uniquely determined up to its
radial part by W!, B! and the high energies asymptotics of b,. given above
when n = 2.

Theorem 1.1 is a generalization of [4, formulas (1.10)-(1.13)] where inverse
scattering for the multidimensional Newton equation was studied in the short
range case (F' = 0).

Inverse scattering at high energies for the multidimensional Newton equa-
tion in a short range potential V' was first studied by [11]. Then inverse scat-
tering at high energies for this latter equation in a long range potential V'
was studied by [6]. We develop the approach of [11, 6] to obtain the results
of the present work.

A similar study was done for the multidimensional relativistic Newton
equation in a long range electromagnetic field [7]. However in our opinion
there is an interesting difference between the high energies asymptotics of
the scattering data of the nonrelativistic and relativistic Newton equations.
Indeed the high energies asymptotics of the velocity component a” of the
scattering map for the relativistic Newton equation is [7, Theorem 1.1]:

P (@ (o8, x)— ph) = —P(VV)(Q,x)+/+OO B(r0+z)0dr+o(, /1 - ),

2 c
P
l—c2 oo

j=l..n

drdo.



as p — ¢, p < ¢, and for any (0,z) € TS" !, where ¢ > 0 denotes the speed
of light. Hence the leading term of the above asymptotics depends on both
magnetic and electric fields B and —VV'| whereas in the nonrelativistic case
the leading high energies term of a,. depends on the magnetic field B only
(and is independent of the electric one). This difference is quite interesting
in our opinion.

For inverse scattering at fixed energy for the multidimensional Newton
equation, see for example [5] and references therein. For the inverse scattering
problem in quantum mechanics, see references given in [4].

Our paper is organized as follows. In Section 2 we transform the differ-
ential equation (1.1) with initial conditions (1.11) into an integral equation
which takes the form y_ = A(y_). Then we study the operator A on a suit-
able space (Lemma 2.1) and we give estimates for the deflection y_(¢) in
(1.11) and for the scattering data as.(v_,x_), bs.(v_,x_) (Theorem 2.4). We
provide the Born approximation of the scattering data at fixed energy £ = %
We will always work with small angle scattering compared to the dynamics
generated by F'! through the “free” solutions z_(v_,t): In particular, the an-
gle between the vectors #(t) = Z_(v_,t) + ¢_(¢t) and 2_(v_,t) goes to zero
when the parameters 8 := max (3!, 85, 85, 55), o, n, v_/|v_|, x_ are fixed and
|v_| increases. In Section 3 we change the definition of the scattering map so
that one can obtain for the modified scattering data (@(v_, z_), bse(v_, 2_))
their approximation at high energies, or their Born approximation at fixed
energy, or their approximation when the parameters a, n, v_ and [ are fixed
and |z_| — 4o00. This latter asymptotic regime is not covered by Theorems
1.1 and 2.4. Sections 4, 5 and 6 are devoted to proofs of our Theorems and
Lemmas.

2 Scattering solutions

2.1 Integral equation

For the rest of the text we set

By = max(BL,85), B :=max(B, B, B). (2.1)
For the rest of the text H(f(7), f(r)) is shortened to H(f)(r) for any
(f,7) € CL(R,R") x R, where H stands for F', F* or F'.
Let (v_,z_) € R" xR*, < v_,x_ >= 0 and |v_| > p!, where p' is
defined in (1.7). Then the function y_ in (1.11) satisfies the integral equation
y— = A(y-) where

Af)(t) = / A(f)(o)do, (2.2)



A(f)(t)Z/ (F(z=(v-,.) +ae + )(r) = Fl(z— (v, ))(7))dr,  (2.3)

o0

for t € R and for f € C'(R,R"), sup(_o. (| f] + |f]) < oo. We have A(f) €
C*(R,R") for f € C*(R,R") so that sup(_., (| f] + |f]) < oo (see (4.2) and
(4.3)).

Let R € (0, +00) we set
R' =Ry + R, (2.4)

where Ry is defined in (1.7). Let r € (0,1). For |v_| > u!, Jv_| > V2R,
we introduce the following complete metric space Mg, endowed with the
following norm ||.||

M, = {f € C\®REY) | [I/] < R}, (2.5)
1 = max( sup max (L, (1 <'\f‘ RYD)IFO sup |f],
t€(—00,0) (0,4-00)
o]
(g 1) sw If]) (2.6

The space Mg, is a convex subset of C*(R, R"). Then we have the following
estimate and contraction estimate for the map A restricted to Mg,

Lemma 2.1. Let (R,7) € (0,+00)x(0,1). Let (v_,z_) € (R"\B(0, p')) xR™,
<wv_,z_ >=0, [v_| > max (¢!, V2Ry + V2R(1 4+ r~')). Then the following
estimates are valid

IA(H < Miln,a, B, Ba, ||, [v_|,7) (2.7)
o, B+ Ba(le| +2) (1+ Va(v-| + R))
oz('v‘ R’) (1 —r)ott

)

and

[ACf) = A(f2)Il < Ao(n, @, B, B3, Jo—|, 7)1 = fall, (2.8)

N i ?fﬁ( + 1) <1+1+\/;(|v |+R’)>’
a(ty = R)(1 - r)e R
fOT’ (f7f17f2)€M}3%,7"'

A proof of Lemma 2.1 is given in Section 5.
We also need the following result.




Lemma 2.2. Let (R,7) € (0,+00)x(0,1). Let (v_,z_) € (R"\B(0, pi')) xR™,
<wv_,z_ >=0, [v_| > max (4!, V2Ro + V2R(1 + 7). When y_ € Mg,
is a fized point for the map A then x == z_(v_,.) + x_ + y_ is a Scattering
solution for equation (1.1) and

2(t) = 24 (av_, ), 8) + bo_, ) + o (1), (2.9)
fort >0, where
+oo
a(v_,x_) :==v_ —|—/ F(z)(r)dr, (2.10)
yu-) = +y-(0) — y4.(0), (2.11)
+o0 +oo
/ / — F'(z¢(a(v_,z_)))(7)drdo, (2.12)
fort > 0.
Lemma 2.2 is proved in Section 4.
Note that . -
+ \@('” ; ) < ovam, (2.13)

when |v_| > % + (14 2v/2)R’. Then we obtain the following Corollary of
Lemma 2.1.

Corollary 2.3. Let x_ € R™ and let r € (0,1). Set

280 B(la_| +2)

Rim = e (2.14)
and
oo Bor ) = i+ (14 V3L + )R+ 16@?15(_1:)@3;@). (2.15)
Then for any v_ € R™ so that
lv_| > pla, B, 7, |2]), (2.16)

the map A defined by (2.2) and (2.3) is a 3-contraction from Mg, to Mg,.



2.2 Estimates on the scattering solutions

In this Section our main results consist in estimates and asymptotics for the
scattering data (as, bs.) and scattering solutions for the equation (1.1). Let

(v_,z_) € D(S). Set

Av_,z_) = as(v_,z_)+ ;OOVV(TU_+1‘_)dT (2.17)
- /_:o B(ro_+o)(v_+ /_OO Blov_ +a_Jv_do)dr — W(v_,z_)
where
W,z ) = /+OO (B(z_(r)+a;_ (2.18)
/ / )+ a)— Bl(z_(SQ)))Z_(SQ)dSstl) —B(Tv_er_))v_dT,
and set
) oi= bee(vo, ) — W, 2 / / Fé(v_ +z_)(r)drdo (2.19)

v_7
+oo +o0
/ / Fé(o_+a_ dea—/ / B*(tv_ +x_ )/ B(syv- + z_)v_dsidrdo

+oo +o0o
/ / B¥(tv_ + x_ )(/ B(slv_+x_)v_dsl)d7'da
~Whi(v_ w_

where W' is defined in (1.16) and

Whe(v_, x_ // BS )+ (2.20)

+ /; /OO B(z_(s2) + x-) — Bl(z—(sz)))é_(SQ)dSstl) — B*(tv_ + x_)>v_d7-dg

; / / (B'(() 42+ / / (B(z—(s2) +a_) — B'(—(s2))) 2 (s2)dsadsy)

—B'(2_(r) + a_ +/ / (B'(2_(s2) + 2_) — B'(2_(s2))) & (52)d32d31)> _(r)drdo

/ / B(= )(/ B(2_(s1) + 2_)% (sl)dsl)dea

—00
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-/ - / B ) ta | (Bt o) - B (50)) - (s2)dsads)

+o0 +oo
—B*(tv_ +x_ v drdo —/ / Hegla,m) + 2y

/ OO/ B(zi(a,sy) + x4) — B (24 (a, 32)))2"+(a, 32)d52d51) — Bl(z+(a, T)+ x4

/+oo/s z+ a,se) + w4 ) — Bl(z+(a, 32)))2+(a, SQ)dSstl))z}_i_(a’T)deo_

+oo oo +00
w0 [ Beten seo( [ B ek ) drdo
0 o T
(In (2.18) and (2.20) we shorten z_(v_,.) and a(v_,z_) to z_ and a.) Vectors
W and W* depend on S, F' and B*. Then we have the following result.

Theorem 2.4. Let (v_,x_,7r) € R" xR" x (0,1) so that < v_,x_ >=0 and
so that (2.16) is satisfied. Denote by y_ the unique fized point of the map A
in Mg, where R is defined by (2.14). Then the following estimates are valid:

2302 By(|z_| +2)

- ()] < @ D0 (SR (2.21)
fort <0,
‘ 2212 By(|z_| + 2)
(o%ﬂi) 91 (a+1)(1—r)ot! 222
In addition
23n { B2
o a) < (& : 2.23
|@se(v-, z-)| (1+\f/§\_7«) (a+(a+1)(1+%—r)) (223)
bl 2)] < 2503 By (o] +2) (2.24)
self= ala+ 1) - RY(1 - r)e’
2302 By(|z_| +2)
|y+(t)| < (a N 1)(1 r t(v—;‘ R ))a+1’ (225)
fort >0, and
A,z ) < 0TI B A ) (2.26)
o (\1\)/_\ R’) ( T>2a+3
o,z )| < TOTFALR)A + o) (2.27)

a2(|v | — R)3(1 — r)20+2 ’

Theorem 2.4 is proved in Section 6.
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2.3 Born approximation at fixed energy F =

Estimates (2.26) and (2.27) also provide the asymptotics of the scattering
data (as(v,z), bse(v, z)) when v € S"7!, z, n and « are fixed and 3 goes to
0, i.e. they provide the Born approximation of the scattering data at fixed
energy F = % In more details, we have

+o0
asc(0,z) = —P(VV)(0,z)dr + / B(10 + z)0dr + O(8%), (2.28)
and
0 o
bee(0,2) = WYO,z) + / / B*(70 + x)0drdo (2.29)
+00 +O;°° o 0 o
— / / B*(16 + x)0drdo — / / V(18 + z)drdo
0 g —00 J —00
+ +00
+/ VVE(70 + z)drdo + O(B?), (2.30)
0 o

for (§,z) € TS, as 8 — 07. Then for the recovery of the force field from the
Born approximation at fixed energy of the scattering data we have (see [7]):
one can reconstruct the force field (VV, B) from the Born approximation
of a,. at fixed energy; The Born approximation of b,. at fixed energy and
W' determine V*® up to spherical symmetric potentials, and they uniquely
determine B® when n > 3, and they uniquely determine B® up to magnetic
fields that are spherical symmetric in each of its components when n = 2.

3 Further comments

For a solution z at a nonzero energy for equation (1.1) we say that it is a
scattering solution when there exists ¢ > 0 so that 1+ |z(¢)] > (1 + [t])
for t € R (see [1]). In the Introduction and in the previous Section we
choose to parametrize the scattering solutions of equation (1.1) by the solu-
tions z4 (v, .) of the equation (1.8) (see the asymptotic behaviors (1.11) and
(1.12)), and then to formulate the inverse scattering problem (1.15) using this
parametrization. We obtain the estimates (2.26) and (2.27) from which are
derived the high energies asymptotics and the Born approximation at fixed
energy of the scattering data. However these estimates do not provide the
asymptotics of the scattering data (as.(v, ), bse(v,z)) when the parameters
a, n, v and 3 are fixed and |z| — 400. Motivated by this disadvantage, we
introduce below a new family of “free” solutions z4 (v, x,.) of equation (1.8)

12



that will be used for parametrizing some unbounded solutions of the Newton
equation (1.1) at nonzero energy and for measuring their deviation.
We set

16 max(f, 5)n
a(; + )

1
s ,ul(a) = % + 10R0<0'), (31)
for ¢ > 0. Let (v,z) € R® x R" so that < v,z >= 0 and |v| > p!(]z]). Then
for any (w,q) € B(v, ;") x B(0,1) 3), lw| = |v|, there exists a unique solution
24 (w, z + ¢, .) of the equation (1.8) so that

R()(O') =

Zo(w,x+q,t) —w=o0(l) as t = +o0, z+(w,x+¢q,0) =x+q, (3.2)

and
s%p|zi(w,:c+q,.)—w| < Ro(]z]). (3.3)

We will now define our modified scattering data. For (v_,z_) € R" x R",
< wv_,z_ >= 0, so that |v_| > g (|z|), then there exists a unique solution

r € C*(R,R") of equation (1.1) such that
z(t) = z_(v_,x_,t) + y_(t), (3.4)

where |y_(¢t)|+]y_(¢t)| = 0, as t — —oo. The deflection y_ from “free” motion
satisfies the equation

/ / (oo, ) +y) — Fle_(v_,a_,.))) (r)drdo. (3.5)

One can adapt the study of the operator A given in the previous Section to
study the integral equation (3.5) in the complete metric space

My = {1 € C'®R,R?) |/l < R(l])}, (3.6)
where o,
22n2f3 /
R(|2) == — = B = Rollal) + R(|a]), (3.7)
()4(5‘1‘%)&
and
_ L 2 RS S : :
171 = maX(te(S_uogvo)maX(L(5+\/§ (f RO, sup 171,
[
(g =) sw If]) (38)
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Then one can prove that for (v_,z_) € R" x R", <v_,z_ >=0 and

lo_| > p(lz_|) = p(lz—|) + 10V2R(Jz_|) + %’
als + 75

the unique solution z of equation (1.1) that is characterized by (3.4) also
satisfies the following asymptotics

o(t) = 2@, b,t) + y4 (b), (3.9)
where |y, (t)] + [y4(t)| = 0, as t — +o0 for a unique (a, b) € R” x R". The
map S defined by S(v_,z_) = (v_ + Gse, T— + bse) On the set

D(S) ={(v_,2_) e R" xR" | <wv_,z_>=0, |[v_| > u(|lz_|)}

is our modified scattering map.

Then one can prove estimates for the modified scattering data (as., l;sc)
that are similar to the estimates (2.26) and (2.27) given in the previous
Section. From these estimates on (G, Z~)sc) we derive the asymptotics of the
scattering data as |x| — 400 as well as their high energies asymptotics and
their Born approximation at fixed energy. For their asymptotics as |z| — +oo
we have

ase(p0, ) :/RFZ(Z—(P&%-))(T)d7+/R38(79+x)9d7—p_1P(VV5)(9,x)+O(|x|_2°‘_1),

(3.10)
and

N 0 o +o0 400
pbse(pl, x) = / / B*(16 + x)0drdo — / / B*(10 + x)0drdo  (3.11)
—00 J—00 0 o
0 g oo ptoo
—pl(/ / YV (16 + 2)drdo — / / V(76 + :U)dea) +O(|z| ),
—00 J—0 0 o
for p € (ﬁ,+oo) and for 0 € S*!, < #, 2 >= 0. In addition the modified
scattering data have the following high energies asymptotics: for (0,z) €

TS

Gse(ph), ) = /_ m B(r0+x)0dr+p (—~P(VV)(0,2)+Wi(B', B*,0,2))+o(p™"),

(3.12)
as p — 400, and
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+oo +oo
bse(pl, x) / / B*(10 + x)0drdo —/ / B*(10 + x)0drdo

+p~ < / / VV3(10 + x)drdo + / VVS(TH + z)drdo
0 o
(B B, 9,;1;)) +o(ph), (3.13)
as p — +o00, where

Wy(B', B, 0,2) = /B(79+x)(/T B(o6 + x)0do)dr

[e.e]

+Z@k/<< VBj7k(7'9+ZE),/ / B?*(nf + x)0dndo
k—1 R —oo J —oo

+ / / Bl(n0+x)9dnda>) dr, (3.14)
0 Jow j=L.n

and

Wy(B!, B, 0, x) :/0 /J Bs(ﬂ9+:c)(/T B(nd + x)0dn)drdo  (3.15)

—00

_/O+OO /:OO 38(79+x)(/; B(nd + x)0dn)drdo

n 0 o T m
+ Z O, (/ / < VB,i(10 + ), / / B*(1n20 + )0dnedn, > drdo
/ / < VB (10 + x) / / (120 + x)0dnodn, > drdo
+o0  p+oo too  ptoo
—/ / < VB;»’,C(TQ + x),/ / B?(nef + x)0dnadny > drdo
0 o T Uit

—+o0 —+o0 T n
— / / < VB, (10 + ), / / B'(130 + x)0dnydn,
0 o 0 —00

T rm
+/ / B?(n20 + x)0dnydn, > deU)

j=l..n
For the Born approximation at fixed energy of the modified scattering data

we have

ase(pf, ) = /+OO B(10 + x)0dr — p~*P(VV)(0, x) + O(B?), (3.16)

o0
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and

5 0 o 400 400
pbse(pl, x) = / / B*(16 + x)0drdo — / / B*(18 + x)0drdo (3.17)
—oo J —o0 0 o
0 g +oo  ptoo
! ( / / V(10 + x)drdo — / / V(16 + :c)drda) OB,
—00 J —00 0 o

as 8 — 0T, and for p € (%, +00) and for (0,x) € TS" 1.

Then results on the recovery of the short range part of the electromag-
netic field from the high energies asymptotics or the Born approximation
at fixed energy of the modified scattering data are similar to those given in
Introduction (after Theorem 1.1) and at the end of Section 2.

4 Preliminary estimates and proof of Lemma
2.2

In the rest of the paper we use the following properties of the forces (F!, F*):

Biv/n(1+ |z~ (1 + Valul), (4.1)
B3v/n(L+[a))* (1 + v/nlvl), (4.2)

|[F ()|

<
|2 (z,0)| <

|F'(z,v) — F'(2',v")] < npiv—2'| sup (1+|(1 — &)z +ex’|)7! (4.3)
€€(0,1)

+nfle — | sup (14 |(1 — &)z +e2|)™*2(1 + v/n|(1 — e)v + &v')),
€€(0,1)

|F*(x,0) = F*(2/, )] < nfslo—'] sup (1+](1 —e)z +ea'|)™*7? (4.4)
€€(0,1)

+nBile — 2| sup (1+ (1 — &)z +ex|)™*3(1 + vn|(1 — e)v + '),
e€(0,1)
for (z,2',v,v") € (R™)%.

In the rest of this section we first prove the existence and uniqueness of
the solutions z (similarly one can prove the existence and uniqueness of z_).
Then we give some properties of the solutions z_. Finally we prove Lemma
2.2.

Let us prove the existence and uniqueness of the solutions z, . Let v € R",
|v] > pl. Let V be the complete metric space defined by

V= {f €C'RR") | f(0)=0and sup|f| < Ro,}.
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endowed with the following norm || f||, := supg |f|, where Ry is defined in
(1.7). Note that V is a convex subset of C'(R,R"). For f € V we define
G(f) € C*(R,R™) by

G(f)(0) =0, G(f)(t) = _/t+°° F'(w+ f)()dr for t € R. (4.5)
We use the following estimate (4.6)
7o+ f(7)] = [ro| = [f(7)] = (Jv] = Ro) 7], (4.6)

for 7 € Rand f € V. Using (4.1) and (4.6) we obtain that

T (L4 Vo + f(D)))dr _ 280v/n(1 + vn(jv] + Ry))
R
col<sva [ i S Ry S R
(4.7)
for t € R (we used the definition of Ry and the inequality |v| > ul).
Now let (f1, f2) € V2. Using (4.3) and (4.6) we have
(f1: f2) (4.3) and (4.6)
Flo+ h) = Flot fI) € s~ fl
nBy(1+ vn(|v] + Ro))l7| (f1 = f2)(5)]
TTAF R RIDT L s
nB} + g (L Valol + Ro))
S (E3 (e i - LR I
for 7 € R. Therefore we obtain
: : B+ O(1+\/_(||+ o))
G0 — 0] < 2n” T T A - Bl (49)

a([v| = Ro)

for t € R.

From (4.7), (4.9) and condition |v| > p! it follows that the operator G is
a i-contraction map from V to V. Set 2, (v,t) = tv + f(¢t) for t € R, where f
denotes the unique fixed point of G in V. Then z, (v, .) satisfies (1.8), (1.9),
(1.10). 0

We will use the following properties of the solutions 2.
Lemma 4.1. Let (p,0) € [u!, +00) x S""1. Then we have
R0|$|

|22 (pb, g) —s6| < , for s e R. (4.10)
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In addition for (s,0) € R x S"~! we have

lim p(z—(pb, ;) — s6) :/0 /_OO B'(ub)fdudo. (4.11)

p—-+00

Proof of Lemma 4.1. The estimate (4.10) follows from (1.9) and (1.10). The
limit (4.11) follows from (1.10), (4.10) and the identity

(o9, 2=0) = [ [ 0 (=9 e . 2B 0. ) (0,5 dude,
(4.12)
that holds for (p,0) € [u!, +00) x S"71. O

To prove Lemma 2.2 we need the following standard lemma.

Lemma 4.2. Let z € C*(R,R") satisfy equation (1.1) and let z € C*(R,R")
satisfy equation (1.8). Assume that there exists v € R", v # 0, so that
(t) = v and 2(t) - v as t — +oo. Then

sup |r—z| < oo and sup (1+1t)|E— 2|(t) < oc. (4.13)
(0,400) te(0,+00)

Proof of Lemma 2.2. We need the following preliminary estimate (4.16). Ob-
serve that for f € Mg,

R
sup |f| < g0 <7 (4.14)
(~00,0) N
From the formula g(7) )+ [y 9(s)ds for g € CH(R,R™) it follows

that

(i = ) ()| < sup |fi — fol + 7| sup |fi — fol for 7 € R, (4.15)
(—O0,0) (07+OO)
and for (f1, f2) € Mp,.. Hence

o Com P S ()] 2 o || Com, )= 1) 2 rirl (M),
(4.16)

for (f,7) € Mg, x R and for any = € R" so that < z,v_ >= 0. We used
the inequality |z + 7v_| > % + \T|% (< z,v_ >= 0) and (4.15) (for
(f1, f2) = (f,0) and f € Mp,), (4.14) and (1.10).

Hence the integral fj;o F(z_(v_,.)+x_+f)(7)dr is absolutely convergent
for any f € Mg,. And when y_ € Mg, is a fixed point for A then z_(v_,.)+
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x_ +y_ satisfies equation (1.1) (see (2.2) and (2.3)) and 2_(v_,t) + y_(?)
f Flz_(v_, )+x_+y_)(r)dr — a(v_,z_) as t — +o0, Where a(v_,x ) i
deﬁned in (2.10). Then from Lemma 4.2 it follows that sup ;o [2-(v—,.) +
o4y —zy(a(vo,x2),.)| < +00 and supc (g o0y (1 + )2 (v, 1) + 9 (t) —
Zi(a(v_,x_),t)| < oo, and the integral on the right hand side of (2.12) is
absolutely convergent. Then the decomposition (2.9) follows from the equality
A(y_) = y_ and straightforward computations. O

1

n

5 Proof of Lemma 2.1

We shorten z_(v_,.) to z_ in this paragraph.
We first prove the estimates (5.4), (5.5) and (5.7) given below. Let f €
Mpg,,. Using (4.2) and (4.16) we have

Vifa(l + Vn(jo-| + R) o)
(1+€|\m[‘ r+|7|(|”- R’))O‘“’

[F2(z +ex+ f)(7)] <

for 7 € R and for £ € [0,1]. Then from (2.3) it follows that

()] < ‘/ (o=t 2+ )~ Fe)m)dr],  (52)
for t € R. Using (4.3) and (4.16) we obtain
(L=r+pbz + (‘“f- B
+n52((1 —wla_|+|fi = (1) (1 + VAsup.coy |2 +efi + (1 =€) fal)

|| |v—|

(1- T+ (T—R’)M)a“
for (fi, f2) € Mg, and for (7,u) € R x [0,1]. We integrate (5.1) and (5.3)

over (—oo,t), and we use the estimates |f(7)| < r and |f(7)| < R(1 —r +

(‘i’/‘— R')|7|)~" for 7 < 0, sup O00)\f| < R, and we obtain

|Fl(z- +a- + f1)(7) = Fl(2- + pa— + fo)(1)] <

(5.3)

) < ARV £ ) )0V LR
(a+1)( R’)(l—r—(—Q—R’)t)
A < MBI e L ) P DUV LR
a(a+1)( R’) (1—r— (—2—R’)t)
for t <0.



Let t > 0 and [v_| > V2R'. Integrating (5.3) over (0,t) and using the
estimate sup g 4 ) |f| < R, and (4.15) (for (f1, f2) = (f,0)), we obtain

/Wﬁu_ah+fx) F'(z_)(r)|dr (5.6)

iR+t R(HNU |+R>) nba(j] +7) (1 + va(o_| + R))
< |
: e [ N eV =y (e

Hence combining (5.2), (5.1) integrated over (0, ), (5.6) and (5.4) (at "¢t = 0”)
we obtain

nBiR + nfymti— (1+\/_(|v |+ R))

A f
|A<f>(t)‘ < Oz('v_ R,) ( )a

+naR+a¢m%@fnx|+m 1) (1 + va(o-| + R))
(a+1)(% = R)(1 —r)ett

(5.7)

Then estimate (2.7) follows from (5.4), (5.5) and (5.7).

Now we prove the estimates (5.10), (5.11) and (5.13) given below. Es-
timate (2.8) follows from those latter estimates. Let |v_| > v2R', and let
(f1, f2) € M. From (4.4) and (4.16) it follows that

’< ”62|f1—f2|(7')

T (e B (5 - Rl

+n5§|f1—f2|( ) (14 vrsup.eqy |2 +efi(m) + (1 =€) fo(7)])
1= B + (5 e

|Fo(z- +x+ fi)(1) = F(z- + 2+ fo)(7)

(5.8)

for 7 € R. We integrate (5.8) over (—oo,t), and we have

l/ F*(ee + 2+ f)(7) — F*ee+ 2 + f2)(r)|d7

S/t 132 SUD e (—o0,0) (1 (‘7— VNsDIf = fal(s)dr
—o (1_7»4_( — )|7.‘ )a+3

N /t nB3(1+ vnl(lo-| + R)) sup_oo ) 11 = foldr

e (L=r+ (55 - Rl
(6+6ﬂﬂaLﬂimf £l

= ) 5.9
T (a+ (B - R (1 -1+ (I - Ry (5.9)
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An estimate similar to (5.9) holds for F! in place of F'*, and combining these
two latter estimates we obtain

o s~ p
|A(f1)(t) A(fQ)(t” < (\i’/_\ R/) (1 —r—+ ( \/— R/)|t‘)a+1
Bl + Byt B+ fRER
V2 V2

) (a+1) " (a+2)(1—r+ ('v | R’)|t|)> (5.10)
A | —A N n”fl_f2”
A0 = AN S (e

Bl +6 1+\/_(\U [+R) 6 +le+\/_ lv—|[+R)

\/_ \/_

. o " (a+2)(1—r+ (‘” | R')|t|)> (5-11)

Let t > 0 and |v_| > V2R, r <1, and let (fy, f2) € M%,. We integrate
(5.8) over (0,t), and we use the estimate (4.15), and we have

nf2 sup (0,+00) ‘fl - f2|
(a4 (5 = B) (1 —r+ e

/0 |Fo(z- 4+ + fi)(1) = F*(z- + 2 + fo)(1)|dr <

+nﬁ§ SUP(_ oo 0y |1 = fol (1 + V(o] + R')))
(0 +2) (17 = R) (1 =7+ 5o
+n6§sup(o,+oo VIfi = (14 Va(lv-| + RY)))

(&+1)(Iv | R’) ( T_,_%)aﬂ ’

(5.12)

A similar estimate holds for F! in place of F*. Then combining these two
latter estimates and (5.10) (at “t = 0”), we obtain

v nllfi = £l By
GO ~ A0 < (e (o e

Bo+ B Bl 1+n(lv |+ R)

(a+1)(1-7r) « (\f} R
203 B5 + 20, Ba
o P (a+m@—r)'ED' (5-13)
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6 Proof of Theorems 1.1 and 2.4

Proof of Theorem 2.4. We shorten z_(v_,.), as.(v_,z_), a(v_,z_) and bs.(v_, z_)
to z_, age, a and by, in this proof. Computations similar to (5.4) show that

B SUP (o [9-]

sup |g-| = sup |A(y-
(—oo?t)'y | (—oo?t)' = a7 = R)(1 - )
G G K (R (R e
(a+1)(F - B) (-7 = (5 - r))°
Hence using condition (2.16) we obtain
L < e+ 2+ V| + ) 62

2Cen (e (B —r) (== (B = ry)™T

which gives (2.21) (we also use (2.13)). Computations similar to (5.7) show
that

(208 + 2 (1+ Va(o- | + R)))

V3
a(‘”—\/é‘ —R)(1—r)
+2\/ﬁﬁz(\/ﬁ(\x,\ +7)+1)(1+ Vn(jv_| + R))
(a+1)(5% = R) (1 —r)ot!
Then we use condition (2.16) and (2.13), and we obtain (2.22). The estimate
(2.23) follows by integrating over R both sides of the estimate (5.1) (“(e, f) =
(1,4)7) and both sides of an estimate similar to (5.1) with ' in place of
F3.
Now we prove (2.24) and (2.25). We rewrite y, as follows

sup[g-| < suplg|
R R

(6.3)

Ur = ho + hy, (6.4)
where
ho(t) :== —/t Fé(z_+x_+y_)(T)dT, hi(t) == —/t (F'(z—ta_+y_)—F'(z4(a
(6.5)

for t > 0. We estimate hy. We also need the following estimate (6.7). For
e, € €(0,1) and 7 > 0 we have
(1 =€) (2-(7) + y-(7)) + e24(a,7) + 2|
> e +Tvo |- (1=&)|z_(r)—Tv_|—(1—¢)RT — 7
—e|z4(T) — Tal — elas|T
el e

Sh T (ﬁ — R+ (1 —€)R) — ¢las|T. (6.6)

v
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We used (1.10) for “v”= v_ and for “v”= a (by conservation of the energy
|v_| = a). Then we use (2.16), (6.6) and (2.23), and we have for (e,&') €
(0,1)>and 7 >0

\(1—6)(z(7)+y(T))+5z+(a,7)+8’x|>e|—\/§|— +7 (|i)/§| R'). (6.7)

From (5.1) it follows that

ho(t)] < / TV (e oty )| (n)dr

< Bsv/n(L+ /n(lo-| + R'))
T (et D - R+ (B - Rypyert”

(6.8)

for ¢ > 0. Now set

V_ .
5(t) = sw (1—r+ (= R ), 8= sup e+ ual, (69
s€(t,+00) \/i (0,4-00)

for t > 0. We remind that 4, (¢) and d, are finite by Lemma 4.2 (for “(z, 2)"=
(z—+2_+y_,z:(a,.))). Then we use (4.3) and (6.7), and we obtain

1 . (1- 7’+T(|” | R/))a+2 Tao

nB01(t) + nBy(ds + lz_[)(1 + vn(|v-| + R))
(a+ 1)1 = R (1 —r +t(1% - RY))ett

, (6.10)

for ¢ > 0. Hence combining (6.4), (6.8) and (6.10) and condition (2.16) we
have

) _ (0380 o)+ VA VAL T RY) o
> =t D(5 - R) (L 115 - R))
for t > 0. In addition from (2.11) and (6.2) it follows that
bt 40)] = fy- ()] < 2P EDUT VD) g

ofa+ 1) (- R (1-1)°

Then we use the estimate (6.12) and the estimate (6.11) that gives an esti-
mate on |§,(t)| for ¢ > 0, and we obtain

2055(02 + 2|z +3)(1 + v/n(|v-| + K))

9y <
ala+ (]~ R0 —r)e

(6.13)
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Using twice condition (2.16) one has

L e [+ VAl 4 R) s
2 ala+ 1)1 = R2(1—r)e 2
Then 6, < r, and from (6.11) and (6.13) we have (2.25) and
5o < Ao+ 200+ Vo] + ) 615
ala+ D)( = RR(1—r)e
Estimate (2.24) follows from (6.15), (2.13) and the limit y,(¢) — 0 as t —

+00.
Note that similarly to (6.6) one has for (¢,n) € [0,1]?, e <n and 7 > 0

24(a, ) + 0wy +ey ()] = [nr- + 70| = T(Sup 24 (a,.) — al + las]) — 02

> n% +T(%_Rf). (6.16)

Note also that under condition (2.16) we have

max ( sup r1t1ax(11—7’4—(m

$€(0,+00) ’ \/5

0|

~B))lin(), (5~ R swp [y.]) < R

(0,4-00)
(6.17)
We now shorten zy(a,.) to z, for the rest of the paragraph. We also set
e_ =0and e, = 1. We need the following Lemma.

Lemma 6.1. Set

+oo +o0
1) =us) = [ [ (Balo) +n) - Bleale) 2 (dsdr, (615)
t T
fort € R. Then the following estimates are valid

nRB(L+ 715) (1 + =) V(1 + v/ila-| + ex))

()] < V3
h/ ()‘ (Oz—l—l)(‘v_ R,)( —r 4 (|v_ R/)M)a-‘rl

(6.19)
for £t >0,
| AnBR(1 + )(1+%) +2y/nBa(1 + nlz_|)
A_(t)] < o 1)(% TR . (6.20)
fort>0.
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Proof of Lemma 6.1. Note that

A_(t) = A(y_)(t)—A(0) ()~ / (VV (z_(0)+2_)~VV'(2_(0)))do, for t € R.

(6.21)
The term A(y_)(t) — A(0)(t) is estimated by (5.11) for t < 0. We use the
growth properties of V! and V* (see (1.4) and (1.5)) and we use (4.16)
(“f =07) to estimate fjoo (VV(2_(s) + z_) — VV!(z_(s)))ds, t < 0. Then
we obtain (6.19) for y_. To prove (6.19) for ,, we consider an identity sim-
ilar to (6.21), and we use (6.16), and we repeat the proof of (5.11) with
appropriate substitutions of “(z_,z_,y_)” by “(z4,z4,y+)”, and we also es-
timate f;roo (VV(24(s) + 1) — VV(24(s)))ds, t > 0, by using (6.16) and
the growth properties of V¥, V! (we also use that |b,| < 1). For t > 0 we
again use the identity (6.21), and we use the following estimate that follows
from (2.22), (2.14) and (2.16):

o1 sup g | <

Ots)  (a+D)(T—7)
Then we repeat the proof of (5.13) where we use the bound (6.22) on sup g 4 ) |9
in the estimate similar to (5.12) with F' in place of F* and with “(fy, fo) =
(y—,0)” (otherwise we only use the bound ||y_|| < R). Thus we obtain

(6.22)

(6.20). O
We prove (2.26). First note that from (2.17) it follows that
4
A=>"A, (6.23)
j=1

where we set

+o0
A= — /Oo (VV(2(1)) = VV(rv_ + x_))dr, (6.24)
Ay = —/ / VV(x(o))dodr, (6.25)
Ag —/+OO/ (B(xz(0))&(0))—B(tv_4z_)(B(ov_+z_)v_))dodr,
(6.26)
Ay = /+°° (B(:E(T)) — B(z_(7) + 2_ (6.27)
/ /81 )+ax)— Bl(z_(32)))2’_(52)d32d31)v_d7.
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We prove the estimates (6.28)—(6.32) given below that provide a bound
for A;, i =1,...,4. Then we collect those bounds and the bounds obtained
for Sup(g 400y 7=, SUP(—0,0) |7-| and sup(_ o) [7-| (see Lemma 6.1), and we
use the decomposition (6.23) and (2.13), and we obtain (2.26).

We use the growth properties of V' (see (1.4) and (1.5)) and we use (4.15)
and (4.16), and we obtain

A < ndy /+°° (I7]($UP(0 400y [9-| + sUPg [2- — v_|) +sUD(_o ) |y-|)dT
N o0 (1+ 55 —r + |7|(%5 = R))er
ng /+°° (I71(8UD(0 400y 19| + sUPR [2- — v_|) +sUD(_oo ) ly-|)dT
3 X — v—
o (145 —r 4 [7](85 — R))t2
< 2nft A
(b — 21+ —r)eta (@ 1)1+ 2l )
% -)- (6.28)

(a+2)(1+‘x—\[‘—7’)

We use (1.4), (1.5) and (4.16), and we obtain

|Ba| < n%(/RS]uE|Bj,k(l‘(7'))|d7')(/SUp|§;/( (0))|do)
! b 2
(‘7\7 R)N2(1 \_\/—5| _T)Qa(a + (ot 1)1+ % _T))Q(6.29)

We use the identity

B(z(7))(B(z(0))@(0)) — B(tv- +x_)(B(ov— +x_)v_) (6.30)

(
= (Blx(r )) B(rv- +2.))(B(x(0))i(0))
+B(rv- + 2 )(B(z(0)) — Blov- +x-))i(0))
+B(tv_ 4+ x_)B(ov_ +z_)(i(c) —v_) for (o,7) € R?,

and we use, in particular, the growth properties of B ((1.4), (1.5)) and (4.15)
and (4.16), and we obtain

g < SUERMATR) B Bt Bs )
T lE RO e ek DA ) (e 21+ B )
(A G ) S b )’ (631)

«Q (a+1)(1+‘x—\/’§‘ — ) + (‘%‘)2(1+ %)za (a+1)(1+ %)
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First, under condition (2.16), the function [7__ [*! (B(z_(s2)+z_)—B'(2_(s2)))%_(s2)dsads1,
7 € R, belongs to Mp,. Then we use the growth properties of B, (4.15) and
(4.16), and we obtain

SUD(_00,0) | V- |+|T|SUP(0+oo Y|
A < ] [ B (5] 2
(1—r+ = (B Rryjr])ot

=
X( p 3v Bg)dT
L—r+ 24 (B — R
2n2\v| <sup(_oo,0)|7—|( B3 n B2 )
(B —R)(1—r+ eV 1—r B Mo+ )1 —r+ ) a1l

| SUP(400) [F- ( B3 @))_ (6.32)

%—R’ (a+1)(1- 'r+‘xf|) o

It remains to prove (2.27). From (2.11), (2.12), and (2.2) at t = 0 (A(y-) =
y_) it follows by straightforward computations that

bee = y_(0) — =W+ / / Fé(v_+m_ dea—/+OO/+OOFS (w_ +x_)(7)drdo

/ / Bé(tv_ + x_ )/ B(siv_ + x_)v_dsidrdo
+o0 +o0
—/ / B*(tv_ + x_)(/ B(sjv_ + x_)v_d31>d7'da
0 g — 00

7
HW Y Qo - Q). (6.33)

j=1

where we set

/0 / (VV'(@(7)) = VV!(22(7) + 22) ) drdo, (6.34)
/0 / (VV*(x(1)) — VV3(ro_ + 2_))drdo, (6.35)

O pp—— B () | YV (a(s))ds,drdo, (6.36)
[ L meon ]

Qx4 ;:/ /0 /T (B*(x(7))(B(z(51))i(s1))—B* (tv_+a_ ) (B(siv_4z_)v_))dsidrdo,
e (6.37)
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—B* (2 (1) + 2 +/ / +ax_)— Bl(z_(52)))2_(32)d52d51))v_dea,

e /0 /0 (B'(@(r) = B'(s2(7) + 25 (6.39)
LOO /100 (25(s2) +25) — B (2’1(52)))2¢(52)d82d81))z'jF(r)drda,

%:ﬁiLwLmOB%()>B%ﬁ(ﬂwﬂwﬂﬂ+9@ﬂﬂ+%yﬁvﬂdﬁa

(6.40)
We prove the estimates (6.41)-(6.49) given below that give a bound for
Q1,5 = 1...7. Then we collect those bounds and the bounds obtained
for Sup (g 1) =1, SUPLsc(0,100) [12(5)] and SUDL e (g 100y [72(5)] (see Lemma
6.1), and we use the decomposition (6.33), and we obtain (2.27) (we also use
the estimate (2.13)). From the growth properties of V*, V!, B, B! (1.4) and
(1.5), and from (4.15), (4.16) and (6.16), it follows that

0| < 1B SUDe (0, +00) Y (F5)] < npa R ’
" T ale+ DI - R21-r)e T ala+ 1)(EE - RP(1-r)
(6.41)
Q70| < P8 SO oo 10| (6.42)
T et D(a+ 2 - my2(1 - e
/ / n3|7|(supg |2- — v_| + sup(g 4 o0) |9 \deO')
(1—7r+ Iﬂ\ﬁfl +(|1\}f| R)|7|)e+3
< npsR’ ( 1 n l)
T e+ ) - Rpa-r+ EDeNar )1 -+ ) @
drdo
9) 2 .
Qx3 < (ex+1)n 52/ / (1—r+ lz_ |+<\i}/_ RY)|7|)o+2 (6.43)
X/ (e |v TR - )dr
1+ +(f‘ Ro)[r))ett (145 + (5 — Ro)|r[)**?
- (e + Ln2 5 AL Ba )
T ala+ ) - RPI-r+ Bt a (@4 )0



(e + Dn? (|v-| + R) R max(f,, )

[Qra| < . . (6.44)
alat D ~ R+ B
afs 2 1
X((5i+ : | ) (= BN )
(a+D)A=r+57F) @ (a+2)(1-r+"7F)
@ (a+)1-r+E)  (a+2)1-r+ )
3
1 Bl SUp(_ony 17
Q5] < TR —_— (6.46)
(-t Dla+ (]~ R~ 1+ Bl

n%B§|v | SUP(,OO70)|'Y_| SUP (0,+00) |’Y |
€24 5] < ( ),

@t DEF - RPQ-r+ B at2 (R
(6.47)

3
nzfa(lv_| + R') SUPse 0 400 s
06| < Ba(lv-| v)| Dsc(0,+00) |17 (F9)] (6.48)
ala+1)(H — R)*(1—r)*
12 By (T + SUPe (0,400 (1 = 7+ (5 — R)Is|) 3= (Fs)])
|Q$,7| < \/5 o]
ala+1)(ZH — R)*(L—r)*

(6.49)
For the bound for 46 in (6. 48) we also used under condition (2.16) that
the function h(r eroof (B(z4(s2) + m4) — B'(24(2))) 24 (s2)dsadsy,
€ (0, +00), satlsﬁes the same estimates as y, does in (6.17). O

Proof of Theorem 1.1. Note that for the vector valued function W = (W, . ..
defined by (2.18) we have

pW;(p0, ) =

n 400 1 T
S ek/ / < VB, (52_(,09, LI RIS RS
k—1 —00 0 P

T (o= 202 )
ple-top D =m0+ [ [ (B85 ) = B (o8 )
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for (,x) € TS*! and p € (0,+00) and j = 1...n. Then the limit (1.17)
follows from (6.50), Lemma 4.1 and (2.26).

Note that for the vector valued function Whs = (W}, ... W) defined
by (2.20), we have

PWE (06, 1) = Zek/ / /VBS ;)+(1—5)70+x (6.51)

l 59 Z- (p97 872)
+ep~ / / —(pf, —) +2) — B'(2_(p#, ;)))TdSQde)dE,
S9 07
p(z (p@ — 70) / / ) + ) — B'(z_(p#h, ;)))%d@d& > drdo

u 0 7 z*,j<p97z) ! T
*Z/m/mTp <), Tl )

. 2 (pb, %)
+ep! B —(pb, —) l’)TdSQdSl

+p_1/ / (B'(z—(p9, —) + ) — B'(2_(p#h, ;))) (Ppe, p)d$2d51>d
/ / B (e (o, %2 2 (p8, %)
—(pb, ) x)ip dssds; > drdo

0 o T Z 0’ 51
+/ / B'(z_(pb, z) + x) / B*(z_(p0, ﬁ) + :E)Mdsldﬂla
—o00 J —o0 P —00 P

p
_/O+oo /Jrooiﬁk /01 < VB; . (ez-(p0, %) +(1—e)rf+x
l S9 z*<p97 %)
+ep” / / _(po, —) + ) — B (2_(pf, ;)))Tdszdsl)dg,
p(z, (p, —) - 79)
sy A (pl, 22
/ / p@ —) -+ .T}) l(Zf(p& ;)))¥d82d81) > drdo
too ptoo M 2L (a(pb,x), ) [t T
—/ /o Z +(olef, 2) p)/ < VBik(er(a(pH,x),;) + b(pb, x)
400 ptoo 9’ ,
+ep~ / / B*(z4(a(pb, x), )+b(p0 :L‘)) Hla (Pp 7 )d82d81
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+p_1/; OO/ * (Bl(z+(a(p9,$), %) + b(p@,l‘)) — Bl(z+(a(P0,l‘)a S_;)))

S1

24 (a(ph, x), %)

dSQdSl) s

Zi(a(ph, x), %)

P
/ ) / " Bz (alph, @), =) 4 b(¢8,1)

+wa1fw3%@@mﬁ@%%»+@

+OO 2:'+ a (9’;5 7ﬂ
(/ Bs(er(a(p@’x), %) + b(p@,x)) ( <p ) p>

dn> drdo.

for (0,2) € TS ! and p € (0,+0c) and j = 1...n. Then the limit (1.18)
follows from (6.51), Lemma 4.1 and (2.27). O
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