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ABSTRACT:

Hyperspectral images have a strong potential for landcover/landuse classification, since the spectra of the pixels can highlight subtle

differences between materials and provide information beyond the visible spectrum. Yet, a limitation of most current approaches is

the hypothesis of spatial independence between samples: images are spatially correlated and the classification map should exhibit

spatial regularity. One way of integrating spatial smoothness is to augment the input spectral space with filtered versions of the bands.

However, open questions remain, such as the selection of the bands to be filtered, or the filterbank to be used. In this paper, we consider

the entirety of the possible spatial filters by using an incremental feature learning strategy that assesses whether a candidate feature

would improve the model if added to the current input space. Our approach is based on a multiclass logistic classifier with group-lasso

regularization. The optimization of this classifier yields an optimality condition, that can easily be used to assess the interest of a

candidate feature without retraining the model, thus allowing drastic savings in computational time. We apply the proposed method

to three challenging hyperspectral classification scenarios, including agricultural and urban data, and study both the ability of the

incremental setting to learn features that always improve the model and the nature of the features selected.

1. INTRODUCTION

Remote sensing technologies allow to observe the Earth from a

distance. The use of satellite and aerial data allows to monitor the

processes occurring at the surface in a non-extrusive way, both at

the local and global scale [Lillesand et al., 2008, Richards and

Jia, 2005]. The reduced revisit time of satellites, in conjunction

with the potential for quick deployment of aerial and unmanned

systems, made remote sensing systems more and more appealing

and nowadays the use of satellite data has become a standard for

researchers and public bodies.

In order to be usable by end-users and decision makers, remote

sensing pixel information must be processed and converted into

products depicting a particular facet of the processes occurring at

the surface. Among the different products traditionally available,

land cover maps issued from image classification1 are the most

common (and probably also the most used). Land cover maps

can then be used for urban planning [Taubenbock et al., 2012],

agriculture surveys [Alcantara et al., 2012] or surveying of defor-

estation [Asner et al., 2005].

The quality of land cover maps is of prime importance. There-

fore, a wide panel of research works consider image classifica-

tion algorithms and their impact on the final maps [Plaza et al.,

2009, Camps-Valls et al., 2011]. This challenge is not trivial, as

remote sensing systems are often high dimensional ( number of

spectral bands acquired), spatially and spectrally correlated and

affected by noise [Camps-Valls et al., 2014]. Moreover, temporal

dependencies are also present, since a type of land cover evolves

throughout the year.

∗Corresponding author.
1In this paper, we refer to classification as the process of attributing

one land cover type (type of material) or land use (use of the land, e.g.,

road vs parking) type to each pixel in the scene.

Among these aspects of the data, spatial relations have received

particular attention [Fauvel et al., 2013]: the land cover maps

are generally smooth, in the sense that neighboring pixels tend

to belong to the same type of land cover [Schindler, 2012]. On

the contrary, the spectral signatures of pixels of a same type of

cover tend to become more and more variable, especially with

the increase of spatial resolution. Therefore, we want to describe

a smooth land cover random field using spectral information with

a high within-class variability. Solutions to this problem have

been proposed in the community and mostly recur to spatial fil-

tering [Fauvel et al., 2013] – i.e., work at the level of the input

vector – and Random Fields/graph cuts [Moser et al., 2013] – i.e.

work within the optimization of a context-aware energy function.

In this paper, we consider the first family of methods, i.e. those

based on the extraction of spatial filters. Methods proposed in

remote sensing image classification tend to pre-compute a large

quantity of spatial filters, related to the user’s preference and

knowledge of the problem: texture [Pacifici et al., 2009], Ga-

bor [Li and Du, in press], morphological [Benediktsson et al.,

2005, Tuia et al., 2009, Dalla Mura et al., 2010] or bilateral fil-

ters [Schindler, 2012] are among those used in recent literature.

Even if successful, these studies relied on the definition a-priori

of a filterbank. As shown in Fig. 1a, the filter bank is applied to

each band of the image, resulting into a (f×b)-dimensional filter

bank, where f is the number of filters and b the number of bands.

This proved to be unfeasible for high dimensional datasets, such

as hyperspectral data, for which the traditional way to deal with

the problem is to perform a principal components analysis (PCA)

and then extract the filters from the p << b principal components

related to maximal variance [Benediktsson et al., 2005]. In that

case, the final input space is (f × p)-dimensional. In all cases,

the dimensionality of the final vector makes it necessary to run

a feature selection step, to select the subset which is the most

effective for the classification.
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Figure 1: Spatio-spectral classification with contextual filters. (a) Using pre-defined filterbanks, applied on the first principal component

(p = 1). (b) The proposed incremental system based on active set and sparse SVM.

Proceeding this way is suboptimal in two senses: first, one forces

to restrict the number and parameters of filters to be used to a sub-

set, whose appropriateness only depends on the prior knowledge

of the user. Second, generating hundreds (if not thousands) of

spatial filters and use them in a classifier, that also might operate

with a feature selection strategy, increases the computational cost

significantly. Also note that, if the spatial filters considered bear

continuous parameters (e.g. Gabor or angular features), there is

theoretically an infinite number of feature candidates. An in-

tegrated approach, which would incrementally build the set of

filters from an empty subset and select only the filters that im-

prove class discrimination to the classifier is of great importance.

Two approaches are of particular interest in this sense: Graft-

ing [Perkins et al., 2003] and Group Feature Learning [Rako-

tomamonjy et al., 2013], which incrementally select the most

promising feature among a batch of features extracted from the

universe of all possible features admitted. Since this selection is

based on a heuristic criterion ranking the features by their infor-

mativeness when added to the model, it may be seen as perform-

ing active learning [Crawford et al., 2013] in the space of possible

features (in this case, the active learning oracle is replaced by the

optimality condition, for which only features improving the cur-

rent classifier are selected).

In this paper, we extend the Group Feature Learning model [Rako-

tomamonjy et al., 2013] to multiclass logistic regression (also

known as multinomial regression). The use of a group-lasso reg-

ularization [Yuan and Lin, 2007] allows to jointly select the rele-

vant features and also to derive efficient conditions for evaluating

the discriminative power of a new feature. In [Rakotomamonjy et

al., 2013], authors propose to use group-lasso for multitask learn-

ing by allowing to use an additional sparse average classifier com-

mon to all tasks. Adapting their model in a multiclass classifica-

tion setting leads to the use of the sole group-lasso regularization.

Note that one could use a ℓ1 support vector machine as in [Tuia et

al., in press] to select the relevant feature in a One-VS-All setting

but this approach is particularly computationally intensive, as the

incremental problem is solved for each class separately. This im-

plies the generation of millions of features, that may be useful for

more than one class at a time. The proposed group lasso regular-

ization allows to select features useful for many classes, even if it

does not show the highest score for a particular class. This means

sharing information among the classes, similarly to what would

happen in a multitask setting [Leiva-Murillo et al., 2013].

Moreover we propose in this work to learn a multiclass logistic

classifier (MLC) with a softmax loss instead of a SVM classifier.

This approach indeed allows to natively handle several classes

without using the well known One-Against-All approach and has

the advantage of providing probabilistic prediction scores that can

more easily be used in any post-processing methods (markov-

random fields,. . . ).

We test the proposed method on two landcover classification tasks

with hyperspectral images of agricultural areas and on one lan-

duse classification example over an urban area exploiting jointly

hyperspectral and LiDAR images. In all cases, the proposed fea-

ture learning method solves the classification tasks with at least

state of the art numerical performances and returns compact mod-

els including only features that are discriminative for more than

one class.

The remainder of this paper is as follows: Section 2. details the

proposed method, as well as the multiclass feature selection us-

ing group-Lasso. In Section 3., we present the datasets and the

experimental setup. In Section 4. we present and discuss the ex-

perimental results. Section 5. concludes the paper.

2. FEATURE LEARNING WITH MULTICLASS

LOGISTIC CLASSIFICATION

The proposed methodology is described in this Section. We first

present the multiclass logistic classification and then derive its

optimality conditions, which are used in the active set algorithm.

2.1 Multiclass logistic classifier with group Lasso regular-

ization

Consider an image composed of pixels xi ∈ R
d. A subset of lc

pixels is labeled into one of C classes: {xi, yi}
lc
i=1, where yi are

integer values ∈ {1, . . . , C}. We consider a (possibly infinite)

set of θ-parametrized functions φθ(·) mapping each pixel in the

image into the feature space of the filter defined by θ. As in [Tuia

et al., in press], we define as F the set of all possible finite subsets

of features and ϕ as an element of F composed of d features

ϕ = {φθj}
d
j=1. We also define Φϕ(xi) as the stacked vector of



all the values obained by applying the filters ϕ to pixel xi and

Φϕ ∈ R
nl×d the matrix containing the features in ϕ computed

for all the labeled pixels.

In this paper we consider the classification problem as a multi-

class logistic regression problem. Learning such a classifier for a

fixed amount of features ϕ corresponds to learning a weight ma-

trix W ∈ R
d×c and the bias vector b ∈ R

1×C using the softmax

loss. In the following, we refer to wc as the weights correspond-

ing to class c, which corresponds to the c-th column of matrix W.

The k-th line of matrix W is denoted as Wk,·. The optimization

problem for a fixed feature set ϕ is defined as:

L(ϕ) = min
W,b

1

lc

lc
∑

i=1

log
(

C
∑

c=1

exp
(

(wc −wyi)
⊤Φϕ(xi) +

(bc − byi)
)

)

+ λΩ(W) (1)

where the first term corresponds to the soft-max loss and the sec-

ond term is a group lasso regularizer. In this paper, we use the

mixed ℓ1 − ℓ2 norm:

Ω(W) =

d
∑

k=1

||Wk,·||2 (2)

This regularization term promotes group sparsity, due to its non

differentiability at zero. In this case we grouped the coefficients

of W by lines, meaning that it will promote joint feature selection

for all classes. Note that this approach can be seen as multi-task

learning where the tasks corresponds to the classifier weights of

each class [Obozinski et al., 2006, Rakotomamonjy et al., 2011].

As a result, if a variable (filter) is active, it will be active for all

classes. In our opinion, this makes particular sense in a multiclass

setting, because a feature that helps in detecting a given class also

helps in “not detecting” the others in the C − 1 other classifiers.

In order to discuss the proposed algorithm, we first have to derive

the optimality conditions of the problem. To this end, we com-

pute the sub-differential of the cost function defined in Eq. (1):

∂L = Φ
⊤
ϕR+ λ∂Ω(W) (3)

where, R is a lc×C matrix that, for a given sample i ∈ {1, ., lc}
and a class c ∈ {1, ., C}, equals:

Ri,c =
exp(Mi,c −Mi,yi)− δ{yi−c}

∑C

k=1 exp(Mi,k −Mi,yi)

lc
∑C

k=1 exp(Mi,k −Mi,yi)
(4)

where M = ΦϕW + 1b and δ{yi−c} = 1 if c = yi and 0 oth-

erwise. In the following, we set G = Φ
⊤
ϕR a d× C matrix cor-

responding to the gradient of the data fitting term w.r.t W. Note

that this gradient is simply computed by multiple scalar product

between the features Φϕ and the multiclass residual R. The op-

timality conditions can be obtained separately for each group j,

i.e. for each line j of the W matrix. Ω(W) is a non differen-

tiable norm-based regularization [Bach et al., 2011]. The opti-

mality condition for an Euclidean norm regularization consists in

a constraint with its dual norm (namely itself):

||Gj,·||2 ≤ λ ∀j ∈ ϕ (5)

which in turn breaks down to:
{

||Gj,·||2 = λ if Wj,· 6= 0

||Gj,·||2 ≤ λ if Wj,· = 0
(6)

These optimality conditions suggest the use of an active set al-

gorithm. Indeed, if the norm of correlation of a feature with the

Algorithm 1 Multiclass active set selection for MLC

Inputs

- Initial active set ϕ0

1: repeat

2: Solve a MLC with current active set ϕ
3: Generate a minibatch {φθj}

p
j=1 /∈ ϕ

4: Compute G as in (7) ∀j = 1 . . . p
5: Find feature φ∗

θj
maximizing ||rθj ||2

6: if ||Gθ∗
j
,·||2 > λ+ ǫ then

7: ϕ = φ∗
θj

∪ ϕ
8: end if

9: until stopping criterion is met

residual matrix is below λ, it means that this feature is not useful

and its weight will be set to 0 for all the classes.

2.2 Proposed active set criterion

In this paper, we want to learn jointly the best set of filters ϕ∗ ∈
F and the corresponding MLC classifier. This is achieved by

minimizing Eq. (1) jointly on ϕ and W,b, respectively. As

in [Rakotomamonjy et al., 2013], we can extend the optimality

conditions in (6) to all filters with zero weights that are not in-

cluded in the current active set ϕ:

||Gφθ,·||2 ≤ λ ∀φθ /∈ ϕ (7)

Indeed, if this constraint holds for a given feature not in the cur-

rent active set, then adding this feature to the optimization prob-

lem will lead to a row of zero weights W(d+1),· for this feature.

This also means that if we find a feature that violates Eq. (7), its

inclusion in ϕ will i) make the global MLC cost decrease and ii)

provide a feature with non-zero coefficients for all classes after

reoptimization.

The proposed algorithm is illustrated in Fig. 1b and pseudocode

is given in Algorithm 1: we initialize the active set ϕ0 with the

spectral bands and run a first MLC minimizing Eq. (1). Then we

generate a random minibatch of candidate features, Φθj , involv-

ing spatial filters with random types and parameters. We then

assess the optimality conditions with (7): if the feature φ∗
θj

with

maximal ||Gθj ,·||2 is greater than λ + ǫ, it is selected and added

to the current active set [φ∗
θj

∪ ϕ].

3. DATA AND SETUP

3.1 Datasets

We tested the proposed active set method on three hyperspectral

classification tasks:

a) Indian Pines 1992 (AVIRIS spectrometer, HS): the first dataset

is a 20-m resolution image taken over the Indian Pines (IN)

test site in June 1992 (see Fig. 2). The image is 145 ×
145 pixels and contains 220 spectral bands. A ground sur-

vey of 10366 pixels, distributed in 16 crop types classes, is

available. The classes are unevenly sampled (see Table 1).

This dataset is a classical benchmark to validate model ac-

curacy and is known to be very challenging because of the

strong mixture of the classes’ signatures, since the image

has been acquired shortly after the crops were planted. As a

consequence, all signatures are contaminated by soil signa-

ture, making thus a spectral-spatial processing compulsory

to solve the classification problem. As preprocessing, 20

noisy bands covering the region of water absorption have

been removed.



(a) (b)

Figure 2: Indian Pines 1992 AVIRIS data.(a) False color compo-

sition and (b) Ground truth (for color legend, see Tab. 1). Unla-

beled samples are in black.

Table 1: Classes and Samples (nc
l ) of the ground truth of the

Indian Pines 1992 dataset (cf. Fig. 2).

Class nc
l Class nc

l

Alfalfa 54 Oats 20

Corn-notill 1434 Soybeans-notill 968

Corn-min 834 Soybeans-min 2468

Corn 234 Soybeans-clean 614

Grass/Pasture 497 Wheat 212

Grass/Trees 747 Woods 1294

Grass/Past.-mowed 26 Towers 95

Hay-windrowed 489 Other 380

Total 10366

(a) (b)

Figure 3: Indian Pines 2010 SpecTIR data.(a) RGB composition

and (b) Ground truth (for color legend, see Tab. 2). Unlabeled

samples are in black.

b) Indian Pines 2010 (ProSpecTIR spectrometer, VHR HS):

the ProSpecTIR system acquired multiple flightlines near

Purdue University, Indiana, on May 24-25, 2010 (Fig. 3).

The image subset analyzed in this study contains 445×750

pixels at 2m spatial resolution, with 360 spectral bands of

5nm width. Sixteen land cover classes were identified by

field surveys, which included fields of different crop residue,

vegetated areas, and man-made structures. Many classes

have regular geometry associated with fields, while others

are related with roads and isolated man-made structures. Ta-

ble 2 shows class labels and number of training samples per

class.

Table 2: Classes and Samples (nc
l ) of the ground truth of the

Indian Pines 2010 dataset (cf. Fig. 3).

Class nc
l Class nc

l

Corn-high 3387 Hay 50045

Corn-mid 1740 Grass/Pasture 5544

Corn-low 356 Cover crop 1 2746

Soy-bean-high 1365 Cover crop 2 2164

Soy-bean-mid 37865 Woodlands 48559

Soy-bean-low 29210 Highway 4863

Residues 5795 Local road 502

Wheat 3387 Buildings 546

Total 198074

Table 3: Classes and Samples (nc
l ) of the ground truth of the

Houston 2013 dataset (cf. Fig. 4).

Class nc
l Class nc

l

Healthy grass 1231 Road 1219

Stressed grass 1196 Highway 1224

Synthetic grass 697 Railway 1162

Trees 1239 Parking Lot 1 1233

Soil 1152 Parking Lot 2 458

Water 325 Tennis Court 428

Residential 1260 Running Track 660

Commercial 1219 Total 14703

c) Houston 2013 (CASI spectrometer VHR HS + LiDAR data).

The third dataset depicts an urban area nearby the campus

of the University of Houston (see Fig. 4). The dataset was

proposed as the challenge of the IEEE IADF Data Fusion

Contest 2013 [Pacifici et al., 2013]. The area has been im-

aged by the CASI hyperspectral sensor (144 spectral bands

at 2.5m resolution) and scanned by a LiDAR. From the lat-

ter, a digital surface model (DSM) at the same resolution has

been extracted. Both imaging sources have been coregis-

tered. 15 urban land-use classes are to be classified (Tab. 3).

Two preprocessing steps have been performed: 1) histogram

matching has been applied to the large shadowed area in the

right part of the image (cf. Fig 4: the shadowed area has

been extracted by segmenting a near-infrared band and the

matching with the rest of the image has been applied. 2) A

height trend has been removed from the DSM, by applying

a linear detrending of 3m from the West along the x-axis.

3.2 Setup of experiments

For all dataset, all the features have been mean-centered and nor-

malized to unit norm. This normalization is mandatory due to the

optimality conditions, which is based on a scalar product. In or-

der to compare fairly the alignment of all the candidate features to

the residual, all feature must have the same norm (See Eq. (7).).

In all experiments, we use the multiclass logistic classifier with

ℓ1 − ℓ2 norm implemented in the SPAMS package2. We start

by training a model with all available bands (plus the DSM in

the HOUSTON2013 case) and use its result as the first active set.

Regarding the active set, we used the following parameters:

- The stopping criterion is a number of iterations (150).

- A minibatch is composed of filters extracted from 30 bands,

randomly selected. In the HOUSTON 2013 case, the DSM

is added to each minibatch.

2http://spams-devel.gforge.inria.fr/

http://spams-devel.gforge.inria.fr/


(a) CASI image after local histogram matching
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Figure 4: Houston 2013.(a) RGB composition of the CASI data, (b) DSM issued from the LiDAR point cloud and (c) ground truth.

(for color legend, see Tab. 2). Unlabeled samples are in black.

- The possible filters are listed in Tab. 4. These filters are

those generally used in remote sensing hyperspectral clas-

sification literature [Fauvel et al., 2013], but any type of

spatial filter can be used in the process. Structuring ele-

ments (SE) can be disks, diamonds, squares or lines. If a

linear structuring elements is selected, an additional orien-

tation parameter is also generated (α ∈ [−π/2, . . . π/2]).

- A single minibatch can be used twice (i.e. once a first filter

has been selected, it is removed and Eq. (7) is re-evaluated

on the remaining filters).

In each experiment, we start by selecting an equal number of la-

beled pixels per class lc: we extracted 30 random pixels per class

in the INDIAN PINES 1992 case, 60 in the INDIAN PINES 2010

and in the HOUSTON 2013 case. The difference in the amount

of labeled pixels per class is related to i) the amount of labeled

pixels available per task and ii) the complexity of the problem at

hand. As test set, we considered all remaining labeled pixels, but

disregard those in the spatial vicinity of the pixels used for train-

ing. In the INDIAN PINES 1992 case, we consider all labeled

pixels out of a 3 × 3 window around the training pixels, in the

INDIAN PINES 2010 case a 7× 7 window. The difference is ba-

sically related to the image resolutions. In the HOUSTON 2013

case, a spatially disjoint test set was provided in a separate file

and was used for testing purposes.

Each experiment was repeated 10 times, by varying the initial

training set (the test set also varies, since it depends on the spe-

cific location of the training samples). Average performances,

along with their standard deviation, are reported.

Table 4: Filters considered in the experiments (Bi, Bj : input

bands (i, j ∈ [1, . . . b]); s: size of moving window, SE : type

of structuring element; α: angle).

Filter θ

M
o

rp
h

o
lo

g
ic

al Opening / closing Bi, s, α
Top-hat opening / closing Bi, s, SE, α
Opening / closing by re-

construction

Bi, s, SE, α

Opening / closing by re-

construction top-hat

Bi, s, SE, α

T
ex

tu
re

Average Bi, s
Entropy Bi, s
Standard deviation Bi, s
Range Bi, s

A
tt

ri
b
u

te Area Bi, Area threshold

Bounding box diagonal Bi, Diagonal threshold

R
at

io
s

Simple Bi/Bj

Normalized (Bi −Bj)/(Bi +Bj)

4. EXPERIMENTAL RESULTS

Performances along the iterations. Numerical results for the

three datasets are provided in Fig. 5: the left column illustrates

the evolution of the Kappa statistic [?] along the iterations and

for three levels of ℓ1 − ℓ2 regularization λ. The right column

shows the evolution of the number of features in the active set.

For all the datasets, the iterative feature learning corresponds to a

continuous, almost monotonic, increase of the performance. This

is related to the optimality conditions of Eq. (1): each time the
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Figure 5: Left: numerical performance (Kappa statistic) for dif-

ferent degrees of regularization λ and filtering the original bands.

Right: number of active features during the iterations.

model adds one filter φθ∗
j

to ϕ, the MLC cost function decreases

while the classifier performances raises. Overfitting is prevented

by the group-lasso regularization: on the one hand this regularizer

promotes sparsity through the ℓ1 norm, while on the other hand it

limits the magnitude of the weight coefficients W and promotes

smoothness of the decision function by the use of the ℓ2 norm.

Note that for the HOUSTON 2013 dataset, the final classification

performance is at the same level as the one of the winners of the

contest, thus showing the credibility of our approach.

For each case study, the model with the lowest sparsity (λ =
0.0001) shows the initial best performance (it utilizes more fea-

tures, as shown in the right column) and then keeps providing the

best performances. However, the model with λ = 0.001 has an

initial sparser solution and shows a steeper increase of the curve

in the first iterations. When both models provide similar perfor-

mance, they are actually using the same number of features in

all cases. The sparsest model (λ = 0.01) shows the worst re-

sults in two out of the three datasets and in general is related to

less features selected: our interpretation is that the regularization

(λ = 0.01) is too strong, leading to a model that discards rele-

vant features and is too biased for a good prediction (even when

more features are added). As a consequence, the learning rate is

surely steeper than for the other models, but the model does not

converge to an optimal solution.

Numerical performances at the end of the feature learning.

Comparisons with competing strategies where the MLC classi-

fier is learned on pre-defined feature sets are reported in Table 5.

First we discuss the performance of our active set approach when

learning the filters applied on the original bands (AS-BANDS):

in the INDIAN PINES 1992 case, the AS-BANDS method obtains

an average Kappa of 0.83 using 96 features. This is a good result

if compared to the upper bound of 0.86 obtained by a classifier

Table 5: Results by MLC classifiers trained with the spectral

bands (ω), with spatial features extracted from the three first

PCAs (s, including morphological and attribute filters) or with

the proposed active set. In the HOUSTON 2013 case, features

extracted from the DSM have also been added to the input space.

Method Ω PINES 1992 PINES 2010 HOUSTON 2013

MLC-ω ℓ1 0.42± 0.02 0.58± 0.01 0.61± 0.01
# features 60± 3 107± 9 54± 3

MLC-ω ℓ2 0.59± 0.03 0.90± 0.01 0.80± 0.01
# features 200 360 145

AS-BANDS ℓ1ℓ2 0.83± 0.02 0.98± 0.01 0.92± 0.01
# features 96± 5 68± 5 71± 3

MLC-s ℓ1 0.85± 0.02 0.84± 0.01 0.76± 0.01
# features 85± 7 64.2± 3 82± 5

MLC-s ℓ2 0.85± 0.01 0.96± 0.01 0.88± 0.01
# features 217 228 303

AS-PCAS ℓ1ℓ2 0.89± 0.03 0.99± 0.01 0.92± 0.01
# features 82± 4 83± 8 64± 4

using the complete set of 14‘627 morphological and attribute fea-

tures extracted from each spectral band (result not reported in the

table)3. On the two other datasets, the AS-BANDS method pro-

vided average Kappa of 0.98 and 0.92, respectively.

We compared these results to those obtained by classifiers trained

on fixed raw bands (MLC−ω) or on sets of morphological and at-

tribute filters extracted form the three first principal components

(MLC-s). We followed the generally admitted hypothesis that the

first(s) PCA(s) contain most of the relevant information in hyper-

spectral images [Benediktsson et al., 2005]. On all the datasets,

the proposed AS-BANDS method performs remarkably well com-

pared with models using only the spectral information (MLC-ω)

and compares at worse equivalently (and significantly better in

the INDIAN PINES 2010 and HOUSTON 2013 cases) with mod-

els using ℓ2 classifiers (thus without sparsity) and three to four

times more features. The good performance of the ℓ2 method

on the INDIAN PINES 1992 dataset (Kappa observed of 0.85)

is probably due to the application of the PCA transform prior to

classification, which, besides allowing to decrease the dimension-

ality of the data, also decorrelates the signals and isolates the bare

soil reflectance, which is present for almost all classes (cf. the

data description). For this reason, we also investigated a variant

of our approach where, instead of working on the spectral space,

we filtered the PCA components extracted from the original data

(AS-PCAS). In the INDIAN PINES 1992 case, the increase in

performance is striking, with a final Kappa of 0.89. For the two

other datasets, the results remain in the same range as for the AS-

BANDS results.

Selected features: for the three images, the active set models

end up with a maximum of 70 − 100 features, shared by all

classes. This model is very compact, since it corresponds to only

30− 50% of the initial dimensionality of the spectra. Due to the

optimization problem, the features selected are active for several

classes simultaneously, as shown in Fig. 6, which illustrates the

weights matrix W
⊤ for the INDIAN PINES 2010 and HOUSTON

2013 experiments at the end of the feature learning for one spe-

cific run with λ = 0.0001. Each column corresponds to a feature

selected by the proposed algorithm and each row to a class; the

color corresponds to the strength of the weight (positive or neg-

ative). One can appreciate that the selected features (columns)

have large coefficients – corresponding to strong green or brown

tones in the figures – for more than one class (the rows).

3Only squared structuring elements were used and the filter size range

was pre-defined by expert knowledge.



Figure 6: Final weight matrix for a run of the INDIAN PINES

2010 (top) and HOUSTON 2013 (bottom) experiments.

Finally, Fig. 7 illustrates some of the features selected for the

HOUSTON 2013 case. Each column corresponds to a different

zoom in the area and highlights a specific class. We visualized

the features of the same run as the bottom row of Fig. 6 and vi-

sualized the six features with highest ||Wj,·||2, corresponding to

those active for most classes with the highest squared weights.

By analysis of the features learned, one can appreciate that they

clearly are discriminative for the specific classification problem:

this shows that, by decreasing the overall loss, adding these fea-

tures to the active set really improves class discrimination.

5. CONCLUDING REMARKS

In this paper we proposed an active set algorithm for the au-

tomatic selection of contextual features in hyperspectral image

classification. The proposed method uses an optimality criterion

based on the mixed-norm group lasso and the multiclass logis-

tic regression classifier. For a minibatch of candidate features, it

selects those that lead to a non-null coefficient in all the classes

and therefore yields a decrease in the cost function. Compared

to other existing active set algorithms, our approach integrates

all the classes information simultaneously through the multiclass

soft-max loss function, avoids the computation of irrelevant fea-

tures with respect to the multi class classification problem and

is much faster, since it solves a single active set problem instead

of one per class. Experiments on three benchmark hyperspectral

images illustrated the benefits of the approach, which reaches at

least state of the art performances with a reduced set of features,

and without the need of defining them by prior/expert knowledge.

Extension to contextual classifier based on spatial priors (MRF,

CRF) is the logical next step.
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Figure 7: Visualization of the features with highest ||Wj,·||2 for one run of the HOUSTON 2013 results (cf. bottom matrix of Fig. 6).

First row: RGB subsets; Second row: ground truth; Third row: output of the classification with the proposed approach; Fourth row to

end: visualization of the six features with highest squared weights.
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