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Hyperspectral images have a strong potential for landcover/landuse classification, since the spectra of the pixels can highlight subtle differences between materials and provide information beyond the visible spectrum. Yet, a limitation of most current approaches is the hypothesis of spatial independence between samples: images are spatially correlated and the classification map should exhibit spatial regularity. One way of integrating spatial smoothness is to augment the input spectral space with filtered versions of the bands. However, open questions remain, such as the selection of the bands to be filtered, or the filterbank to be used. In this paper, we consider the entirety of the possible spatial filters by using an incremental feature learning strategy that assesses whether a candidate feature would improve the model if added to the current input space. Our approach is based on a multiclass logistic classifier with group-lasso regularization. The optimization of this classifier yields an optimality condition, that can easily be used to assess the interest of a candidate feature without retraining the model, thus allowing drastic savings in computational time. We apply the proposed method to three challenging hyperspectral classification scenarios, including agricultural and urban data, and study both the ability of the incremental setting to learn features that always improve the model and the nature of the features selected.

INTRODUCTION

Remote sensing technologies allow to observe the Earth from a distance. The use of satellite and aerial data allows to monitor the processes occurring at the surface in a non-extrusive way, both at the local and global scale [Lillesand et al., 2008, Richards and[START_REF] Richards | Remote Sensing Digital Image Analysis: An Introduction[END_REF]. The reduced revisit time of satellites, in conjunction with the potential for quick deployment of aerial and unmanned systems, made remote sensing systems more and more appealing and nowadays the use of satellite data has become a standard for researchers and public bodies.

In order to be usable by end-users and decision makers, remote sensing pixel information must be processed and converted into products depicting a particular facet of the processes occurring at the surface. Among the different products traditionally available, land cover maps issued from image classification1 are the most common (and probably also the most used). Land cover maps can then be used for urban planning [Taubenbock et al., 2012], agriculture surveys [START_REF] Alcantara | Mapping abandoned agriculture with multi-temporal MODIS satellite data[END_REF] or surveying of deforestation [START_REF] Asner | Ecology: Selective logging in the Brazilian Amazon[END_REF].

The quality of land cover maps is of prime importance. Therefore, a wide panel of research works consider image classification algorithms and their impact on the final maps [START_REF] Plaza | Recent advances in techniques for hyperspectral image processing[END_REF][START_REF] Camps-Valls | Remote Sensing Image Processing[END_REF]. This challenge is not trivial, as remote sensing systems are often high dimensional ( number of spectral bands acquired), spatially and spectrally correlated and affected by noise [START_REF] Camps-Valls | Advances in hyperspectral image classification[END_REF]. Moreover, temporal dependencies are also present, since a type of land cover evolves throughout the year.

Among these aspects of the data, spatial relations have received particular attention [START_REF] Fauvel | Advances in spectral-spatial classification of hyperspectral images[END_REF]: the land cover maps are generally smooth, in the sense that neighboring pixels tend to belong to the same type of land cover [START_REF] Schindler | An overview and comparison of smooth labeling methods for land-cover classification[END_REF]. On the contrary, the spectral signatures of pixels of a same type of cover tend to become more and more variable, especially with the increase of spatial resolution. Therefore, we want to describe a smooth land cover random field using spectral information with a high within-class variability. Solutions to this problem have been proposed in the community and mostly recur to spatial filtering [START_REF] Fauvel | Advances in spectral-spatial classification of hyperspectral images[END_REF] -i.e., work at the level of the input vector -and Random Fields/graph cuts [START_REF] Moser | Landcover mapping by Markov modeling of spatial-contextual information[END_REF] -i.e. work within the optimization of a context-aware energy function.

In this paper, we consider the first family of methods, i.e. those based on the extraction of spatial filters. Methods proposed in remote sensing image classification tend to pre-compute a large quantity of spatial filters, related to the user's preference and knowledge of the problem: texture [START_REF] Pacifici | A neural network approach using multi-scale textural metrics from very highresolution panchromatic imagery for urban land-use classification[END_REF], Gabor [Li and Du, in press], morphological [START_REF] Benediktsson | Classification of hyperspectral data from urban areas based on extended morphological profiles[END_REF][START_REF] Tuia | Classification of very high spatial resolution imagery using mathematical morphology and support vector machines[END_REF][START_REF] Dalla Mura | Morphological attribute profiles for the analysis of very high resolution images[END_REF] or bilateral filters [START_REF] Schindler | An overview and comparison of smooth labeling methods for land-cover classification[END_REF] are among those used in recent literature.

Even if successful, these studies relied on the definition a-priori of a filterbank. As shown in Fig. 1a, the filter bank is applied to each band of the image, resulting into a (f ×b)-dimensional filter bank, where f is the number of filters and b the number of bands. This proved to be unfeasible for high dimensional datasets, such as hyperspectral data, for which the traditional way to deal with the problem is to perform a principal components analysis (PCA) and then extract the filters from the p << b principal components related to maximal variance [START_REF] Benediktsson | Classification of hyperspectral data from urban areas based on extended morphological profiles[END_REF]. In that case, the final input space is (f × p)-dimensional. In all cases, the dimensionality of the final vector makes it necessary to run a feature selection step, to select the subset which is the most effective for the classification. Proceeding this way is suboptimal in two senses: first, one forces to restrict the number and parameters of filters to be used to a subset, whose appropriateness only depends on the prior knowledge of the user. Second, generating hundreds (if not thousands) of spatial filters and use them in a classifier, that also might operate with a feature selection strategy, increases the computational cost significantly. Also note that, if the spatial filters considered bear continuous parameters (e.g. Gabor or angular features), there is theoretically an infinite number of feature candidates. An integrated approach, which would incrementally build the set of filters from an empty subset and select only the filters that improve class discrimination to the classifier is of great importance. Two approaches are of particular interest in this sense: Grafting [START_REF] Perkins | Grafting: Fast, incremental feature selection by gradient descent in function space[END_REF] and Group Feature Learning [START_REF] Rakotomamonjy | Learning with infinitely many features[END_REF], which incrementally select the most promising feature among a batch of features extracted from the universe of all possible features admitted. Since this selection is based on a heuristic criterion ranking the features by their informativeness when added to the model, it may be seen as performing active learning [START_REF] Crawford | Active learning: Any value for classification of remotely sensed data?[END_REF] in the space of possible features (in this case, the active learning oracle is replaced by the optimality condition, for which only features improving the current classifier are selected).

In this paper, we extend the Group Feature Learning model [START_REF] Rakotomamonjy | Learning with infinitely many features[END_REF] to multiclass logistic regression (also known as multinomial regression). The use of a group-lasso regularization [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF] allows to jointly select the relevant features and also to derive efficient conditions for evaluating the discriminative power of a new feature. In [START_REF] Rakotomamonjy | Learning with infinitely many features[END_REF], authors propose to use group-lasso for multitask learning by allowing to use an additional sparse average classifier common to all tasks. Adapting their model in a multiclass classification setting leads to the use of the sole group-lasso regularization. Note that one could use a ℓ1 support vector machine as in [Tuia et al., in press] to select the relevant feature in a One-VS-All setting but this approach is particularly computationally intensive, as the incremental problem is solved for each class separately. This implies the generation of millions of features, that may be useful for more than one class at a time. This approach indeed allows to natively handle several classes without using the well known One-Against-All approach and has the advantage of providing probabilistic prediction scores that can more easily be used in any post-processing methods (markovrandom fields,. . . ).

We test the proposed method on two landcover classification tasks with hyperspectral images of agricultural areas and on one landuse classification example over an urban area exploiting jointly hyperspectral and LiDAR images. In all cases, the proposed feature learning method solves the classification tasks with at least state of the art numerical performances and returns compact models including only features that are discriminative for more than one class.

The remainder of this paper is as follows: Section 2. details the proposed method, as well as the multiclass feature selection using group-Lasso. In Section 3., we present the datasets and the experimental setup. In Section 4. we present and discuss the experimental results. Section 5. concludes the paper.

FEATURE LEARNING WITH MULTICLASS LOGISTIC CLASSIFICATION

The proposed methodology is described in this Section. We first present the multiclass logistic classification and then derive its optimality conditions, which are used in the active set algorithm.

Multiclass logistic classifier with group Lasso regularization

Consider an image composed of pixels xi ∈ R d . A subset of lc pixels is labeled into one of C classes: {xi, yi} lc i=1 , where yi are integer values ∈ {1, . . . , C}. We consider a (possibly infinite) set of θ-parametrized functions φ θ (•) mapping each pixel in the image into the feature space of the filter defined by θ. As in [Tuia et al., in press], we define as F the set of all possible finite subsets of features and ϕ as an element of F composed of d features ϕ = {φ θ j } d j=1 . We also define Φϕ(xi) as the stacked vector of all the values obained by applying the filters ϕ to pixel xi and Φϕ ∈ R n l ×d the matrix containing the features in ϕ computed for all the labeled pixels.

In this paper we consider the classification problem as a multiclass logistic regression problem. Learning such a classifier for a fixed amount of features ϕ corresponds to learning a weight matrix W ∈ R d×c and the bias vector b ∈ R 1×C using the softmax loss. In the following, we refer to wc as the weights corresponding to class c, which corresponds to the c-th column of matrix W.

The k-th line of matrix W is denoted as W k,• . The optimization problem for a fixed feature set ϕ is defined as:

L(ϕ) = min W,b 1 lc lc i=1 log C c=1 exp (wc -wy i ) ⊤ Φϕ(xi) + (bc -by i ) + λΩ(W) (1)
where the first term corresponds to the soft-max loss and the second term is a group lasso regularizer. In this paper, we use the mixed ℓ1 -ℓ2 norm:

Ω(W) = d k=1 ||W k,• ||2 (2) 
This regularization term promotes group sparsity, due to its non differentiability at zero. In this case we grouped the coefficients of W by lines, meaning that it will promote joint feature selection for all classes. Note that this approach can be seen as multi-task learning where the tasks corresponds to the classifier weights of each class [START_REF] Obozinski | Multi-task feature selection[END_REF][START_REF] Rakotomamonjy | lp-lq penalty for sparse linear and sparse multiple kernel multitask learning[END_REF]. As a result, if a variable (filter) is active, it will be active for all classes. In our opinion, this makes particular sense in a multiclass setting, because a feature that helps in detecting a given class also helps in "not detecting" the others in the C -1 other classifiers.

In order to discuss the proposed algorithm, we first have to derive the optimality conditions of the problem. To this end, we compute the sub-differential of the cost function defined in Eq. ( 1):

∂L = Φ ⊤ ϕ R + λ∂Ω(W) (3) 
where, R is a lc × C matrix that, for a given sample i ∈ {1, ., lc} and a class c ∈ {1, ., C}, equals:

Ri,c = exp(Mi,c -Mi,y i ) -δ {y i -c} C k=1 exp(M i,k -Mi,y i ) lc C k=1 exp(M i,k -Mi,y i ) (4 
) where M = ΦϕW + 1b and δ {y i -c} = 1 if c = yi and 0 otherwise. In the following, we set G = Φ ⊤ ϕ R a d × C matrix corresponding to the gradient of the data fitting term w.r.t W. Note that this gradient is simply computed by multiple scalar product between the features Φϕ and the multiclass residual R. The optimality conditions can be obtained separately for each group j, i.e. for each line j of the W matrix. Ω(W) is a non differentiable norm-based regularization [START_REF] Bach | Convex optimization with sparsity-inducing norms[END_REF]. The optimality condition for an Euclidean norm regularization consists in a constraint with its dual norm (namely itself):

||Gj,•||2 ≤ λ ∀j ∈ ϕ (5)
which in turn breaks down to: Compute G as in ( 7) ∀j = 1 . . . p

||Gj,•||2 = λ if Wj,• = 0 ||Gj,•||2 ≤ λ if Wj,• = 0 (6)

5:

Find feature φ * θ j maximizing ||r θ j ||2

6:

if ||G θ * j ,• ||2 > λ + ǫ then 7: ϕ = φ * θ j ∪ ϕ 8:
end if 9: until stopping criterion is met residual matrix is below λ, it means that this feature is not useful and its weight will be set to 0 for all the classes.

Proposed active set criterion

In this paper, we want to learn jointly the best set of filters ϕ * ∈ F and the corresponding MLC classifier. This is achieved by minimizing Eq. ( 1) jointly on ϕ and W, b, respectively. As in [START_REF] Rakotomamonjy | Learning with infinitely many features[END_REF], we can extend the optimality conditions in (6) to all filters with zero weights that are not included in the current active set ϕ:

||G φ θ ,• ||2 ≤ λ ∀φ θ / ∈ ϕ (7)
Indeed, if this constraint holds for a given feature not in the current active set, then adding this feature to the optimization problem will lead to a row of zero weights W (d+1),• for this feature. This also means that if we find a feature that violates Eq. ( 7), its inclusion in ϕ will i) make the global MLC cost decrease and ii) provide a feature with non-zero coefficients for all classes after reoptimization.

The proposed algorithm is illustrated in Fig. 1b and pseudocode is given in Algorithm 1: we initialize the active set ϕ0 with the spectral bands and run a first MLC minimizing Eq. ( 1). Then we generate a random minibatch of candidate features, Φ θ j , involving spatial filters with random types and parameters. We then assess the optimality conditions with (7): if the feature φ * θ j with maximal ||G θ j ,• ||2 is greater than λ + ǫ, it is selected and added to the current active set [φ * θ j ∪ ϕ].

DATA AND SETUP

Datasets

We tested the proposed active set method on three hyperspectral classification tasks: a) Indian Pines 1992 (AVIRIS spectrometer, HS): the first dataset is a 20-m resolution image taken over the Indian Pines (IN) test site in June 1992 (see Fig. 2). The image is 145 × 145 pixels and contains 220 spectral bands. A ground survey of 10366 pixels, distributed in 16 crop types classes, is available. The classes are unevenly sampled (see Table 1). This dataset is a classical benchmark to validate model accuracy and is known to be very challenging because of the strong mixture of the classes' signatures, since the image has been acquired shortly after the crops were planted. As a consequence, all signatures are contaminated by soil signature, making thus a spectral-spatial processing compulsory to solve the classification problem. As preprocessing, 20 noisy bands covering the region of water absorption have been removed. The third dataset depicts an urban area nearby the campus of the University of Houston (see Fig. 4). The dataset was proposed as the challenge of the IEEE IADF Data Fusion Contest 2013 [START_REF] Pacifici | Report on the 2013 IEEE GRSS data fusion contest: Fusion of hyperspectral and LiDAR data[END_REF]. The area has been imaged by the CASI hyperspectral sensor (144 spectral bands at 2.5m resolution) and scanned by a LiDAR. From the latter, a digital surface model (DSM) at the same resolution has been extracted. Both imaging sources have been coregistered. 15 urban land-use classes are to be classified (Tab. 3). Two preprocessing steps have been performed: 1) histogram matching has been applied to the large shadowed area in the right part of the image (cf. Fig 4 : the shadowed area has been extracted by segmenting a near-infrared band and the matching with the rest of the image has been applied. 2) A height trend has been removed from the DSM, by applying a linear detrending of 3m from the West along the x-axis.

Setup of experiments

For all dataset, all the features have been mean-centered and normalized to unit norm. This normalization is mandatory due to the optimality conditions, which is based on a scalar product. In order to compare fairly the alignment of all the candidate features to the residual, all feature must have the same norm (See Eq. ( 7).).

In all experiments, we use the multiclass logistic classifier with ℓ1 -ℓ2 norm implemented in the SPAMS package2 . We start by training a model with all available bands (plus the DSM in the HOUSTON2013 case) and use its result as the first active set.

Regarding the active set, we used the following parameters:

-The stopping criterion is a number of iterations (150).

-A minibatch is composed of filters extracted from 30 bands, randomly selected. In the HOUSTON 2013 case, the DSM is added to each minibatch. -The possible filters are listed in Tab. 4. These filters are those generally used in remote sensing hyperspectral classification literature [START_REF] Fauvel | Advances in spectral-spatial classification of hyperspectral images[END_REF], but any type of spatial filter can be used in the process. Structuring elements (SE) can be disks, diamonds, squares or lines. If a linear structuring elements is selected, an additional orientation parameter is also generated (α ∈ [-π/2, . . . π/2]).

-A single minibatch can be used twice (i.e. once a first filter has been selected, it is removed and Eq. ( 7) is re-evaluated on the remaining filters).

In each experiment, we start by selecting an equal number of labeled pixels per class lc: we extracted 30 random pixels per class in the INDIAN PINES 1992 case, 60 in the INDIAN PINES 2010 and in the HOUSTON 2013 case. The difference in the amount of labeled pixels per class is related to i) the amount of labeled pixels available per task and ii) the complexity of the problem at hand. As test set, we considered all remaining labeled pixels, but disregard those in the spatial vicinity of the pixels used for training. In the INDIAN PINES 1992 case, we consider all labeled pixels out of a 3 × 3 window around the training pixels, in the INDIAN PINES 2010 case a 7 × 7 window. The difference is basically related to the image resolutions. In the HOUSTON 2013 case, a spatially disjoint test set was provided in a separate file and was used testing purposes.

Each experiment was repeated 10 times, by varying the initial training set (the test set also varies, since it depends on the specific location of the training samples). Average performances, along with their standard deviation, are reported. 

EXPERIMENTAL RESULTS

Performances along the iterations. Numerical results for the three datasets are provided in Fig. 5: the left column illustrates the evolution of the Kappa statistic [?] along the iterations and for three levels of ℓ1 -ℓ2 regularization λ. The right column shows the evolution of the number of features in the active set.

For all the datasets, the iterative feature learning corresponds to a continuous, almost monotonic, increase of the performance. This is related to the optimality conditions of Eq. ( 1 model adds one filter φ θ * j to ϕ, the MLC cost function decreases while the classifier performances raises. Overfitting is prevented by the group-lasso regularization: on the one hand this regularizer promotes sparsity through the ℓ1 norm, while on the other hand it limits the magnitude of the weight coefficients W and promotes smoothness of the decision function by the use of the ℓ2 norm. Note that for the HOUSTON 2013 dataset, the final classification performance is at the same level as the one of the winners of the contest, thus showing the credibility of our approach.

For each case study, the model with the lowest sparsity (λ = 0.0001) shows the initial best performance (it utilizes more features, as shown in the right column) and then keeps providing the best performances. However, the model with λ = 0.001 has an initial sparser solution and shows a steeper increase of the curve in the first iterations. When both models provide similar performance, they are actually using the same number of features in all cases. The sparsest model (λ = 0.01) shows the worst results in two out of the three datasets and in general is related to less features selected: our interpretation is that the regularization (λ = 0.01) is too strong, leading to a model that discards relevant features and is too biased for a good prediction (even when more features are added). As a consequence, the learning rate is surely steeper than for the other models, but the model does not converge to an optimal solution.

Numerical performances at the end of the feature learning. Comparisons with competing strategies where the MLC classifier is learned on pre-defined feature sets are reported in Table 5. First we discuss the performance of our active set approach when learning the filters applied on the original bands (AS-BANDS): in the INDIAN PINES 1992 case, the AS-BANDS method obtains an average Kappa of 0.83 using 96 features. This is a good result if compared to the upper bound of 0.86 obtained by a classifier We compared these results to those obtained by classifiers trained on fixed raw bands (MLC-ω) or on sets of morphological and attribute filters extracted form the three first principal components (MLC-s). We followed the generally admitted hypothesis that the first(s) PCA(s) contain most of the relevant information in hyperspectral images [START_REF] Benediktsson | Classification of hyperspectral data from urban areas based on extended morphological profiles[END_REF]. On all the datasets, the proposed AS-BANDS method performs remarkably well compared with models using only the spectral information (MLC-ω) and compares at worse equivalently (and significantly better in the INDIAN PINES 2010 and HOUSTON 2013 cases) with models using ℓ2 classifiers (thus without sparsity) and three to four times more features. The good performance of the ℓ2 method on the INDIAN PINES 1992 dataset (Kappa observed of 0.85) is probably due to the application of the PCA transform prior to classification, which, besides allowing to decrease the dimensionality of the data, also decorrelates the signals and isolates the bare soil reflectance, which is present for almost all classes (cf. the data description). For this reason, we also investigated a variant of our approach where, instead of working on the spectral space, we filtered the PCA components extracted from the original data (AS-PCAS). In the INDIAN PINES 1992 case, the increase in performance is striking, with a final Kappa of 0.89. For the two other datasets, the results remain in the same range as for the AS-BANDS results.

Selected features: for the three images, the active set models end up with a maximum of 70 -100 features, shared by all classes. This model is very compact, since it corresponds to only 30 -50% of the initial dimensionality of the spectra. Due to the optimization problem, the features selected are active for several classes simultaneously, as shown in Fig. 6, which illustrates the weights matrix W ⊤ for the INDIAN PINES 2010 andHOUSTON 2013 experiments at the end of the feature learning for one specific run with λ = 0.0001. Each column corresponds to a feature selected by the proposed algorithm and each row to a class; the color corresponds to the strength of the weight (positive or negative). One can appreciate that the selected features (columns) have large coefficients -corresponding to strong green or brown tones in the figures -for more than one class (the rows). By analysis of the features learned, one can appreciate that they clearly are discriminative for the specific classification problem: this shows that, by decreasing the overall loss, adding these features to the active set really improves class discrimination.

CONCLUDING REMARKS

In this paper we proposed an active set algorithm for the automatic selection of contextual features in hyperspectral image classification. The proposed method uses an optimality criterion based on the mixed-norm group lasso and the multiclass logistic regression classifier. For a minibatch of candidate features, it selects those that lead to a non-null coefficient in all the classes and therefore yields a decrease in the cost function. Compared to other existing active set algorithms, our approach integrates all the classes information simultaneously through the multiclass soft-max loss function, avoids the computation of irrelevant features with respect to the multi class classification problem and is much faster, since it solves a single active set problem instead of one per class. Experiments on three benchmark hyperspectral images illustrated the benefits of the approach, which reaches at least state of the art performances with a reduced set of features, and without the need of defining them by prior/expert knowledge. Extension to contextual classifier based on spatial priors (MRF, CRF) is the logical next step.

Figure 1 :

 1 Figure 1: Spatio-spectral classification with contextual filters. (a) Using pre-defined filterbanks, applied on the first principal component (p = 1). (b) The proposed incremental system based on active set and sparse SVM.

Figure 2 :

 2 Figure 2: Indian Pines 1992 AVIRIS data.(a) False color composition and (b) Ground truth (for color legend, see Tab. 1). Unlabeled samples are in black.

Figure 3 :

 3 Figure 3: Indian Pines 2010 SpecTIR data.(a) RGB composition and (b) Ground truth (for color legend, see Tab. 2). Unlabeled samples are in black.

Figure 4 :

 4 Figure 4: Houston 2013.(a) RGB composition of the CASI data, (b) DSM issued from the LiDAR point cloud and (c) ground truth. (for color legend, see Tab. 2). Unlabeled samples are in black.

Figure 5 :

 5 Figure 5: Left: numerical performance (Kappa statistic) for different degrees of regularization λ and filtering the original bands. Right: number of active features during the iterations.

Figure 6 :

 6 Figure 6: Final weight matrix for a run of the INDIAN PINES 2010 (top) and HOUSTON 2013 (bottom) experiments.Finally, Fig.7illustrates some of the features selected for the HOUSTON 2013 case. Each column corresponds to a different zoom in the area and highlights a specific class. We visualized the features of the same run as the bottom row of Fig.6and visualized the six features with highest ||Wj,•||2, corresponding to those active for most classes with the highest squared weights. By analysis of the features learned, one can appreciate that they clearly are discriminative for the specific classification problem: this shows that, by decreasing the overall loss, adding these features to the active set really improves class discrimination.

Table 1 :

 1 Classes and Samples (n c l ) of the ground truth of the Indian Pines 1992 dataset (cf. Fig.2).

	Class	n c l	Class	n c l
	Alfalfa	54	Oats	20
	Corn-notill	1434	Soybeans-notill 968
	Corn-min	834	Soybeans-min	2468
	Corn	234	Soybeans-clean 614
	Grass/Pasture	497	Wheat	212
	Grass/Trees	747	Woods	1294
	Grass/Past.-mowed	26	Towers	95
	Hay-windrowed	489	Other	380
			Total	10366

Table 2 :

 2 Classes and Samples (n c l ) of the ground truth of the Indian Pines 2010 dataset (cf. Fig.3).

	Class	n c l	Class	n c l
	Corn-high	3387	Hay	50045
	Corn-mid	1740	Grass/Pasture	5544
	Corn-low	356	Cover crop 1	2746
	Soy-bean-high	1365	Cover crop 2	2164
	Soy-bean-mid	37865	Woodlands	48559
	Soy-bean-low	29210	Highway	4863
	Residues	5795	Local road	502
	Wheat	3387	Buildings	546
			Total	198074

Table 3 :

 3 Classes and Samples (n c l ) of the ground truth of the Houston 2013 dataset (cf. Fig.4).

	Class	n c l	Class	n c l
	Healthy grass	1231	Road	1219
	Stressed grass	1196	Highway	1224
	Synthetic grass 697	Railway	1162
	Trees	1239	Parking Lot 1	1233
	Soil	1152	Parking Lot 2	458
	Water	325	Tennis Court	428
	Residential	1260	Running Track 660
	Commercial	1219	Total	14703

c) Houston 2013 (CASI spectrometer VHR HS + LiDAR data).

Table 4 :

 4 

		Filter	θ
	Morphological	Opening / closing Top-hat opening / closing Opening / closing by re-construction Opening / closing by re-	Bi, s, α Bi, s, SE, α Bi, s, SE, α Bi, s, SE, α
		construction top-hat	
	Texture	Average Entropy Standard deviation Range	Bi, s Bi, s Bi, s Bi, s
	Attribute	Area Bounding box diagonal	Bi, Area threshold Bi, Diagonal threshold
	Ratios	Simple Normalized	Bi/Bj (Bi -Bj)/(Bi + Bj)

Filters considered in the experiments (Bi, Bj: input bands (i, j ∈ [1, . . . b]); s: size of moving window, SE : type of structuring element; α: angle).

Table 5 :

 5 Results by MLC classifiers trained with the spectral bands (ω), with spatial features extracted from the three first PCAs (s, including morphological and attribute filters) or with the proposed active set. In the HOUSTON 2013 case, features extracted from the DSM have also been added to the input space. using the complete set of 14'627 morphological and attribute features extracted from each spectral band (result not reported in the table) 3 . On the two other datasets, the AS-BANDS method provided average Kappa of 0.98 and 0.92, respectively.

	Method	Ω PINES 1992 PINES 2010 HOUSTON 2013
	MLC-ω	ℓ1 0.42 ± 0.02 0.58 ± 0.01	0.61 ± 0.01
	# features	60 ± 3	107 ± 9	54 ± 3
	MLC-ω	ℓ2 0.59 ± 0.03 0.90 ± 0.01	0.80 ± 0.01
	# features	200	360	145
	AS-BANDS ℓ1ℓ2 0.83 ± 0.02 0.98 ± 0.01 0.92 ± 0.01
	# features	96 ± 5	68 ± 5	71 ± 3
	MLC-s	ℓ1 0.85 ± 0.02 0.84 ± 0.01	0.76 ± 0.01
	# features	85 ± 7	64.2 ± 3	82 ± 5
	MLC-s	ℓ2 0.85 ± 0.01 0.96 ± 0.01	0.88 ± 0.01
	# features	217	228	303
	AS-PCAS ℓ1ℓ2 0.89 ± 0.03 0.99 ± 0.01 0.92 ± 0.01
	# features	82 ± 4	83 ± 8	64 ± 4

In this paper, we refer to classification as the process of attributing one land cover type (type of material) or land use (use of the land, e.g., road vs parking) type to each pixel in the scene.

http://spams-devel.gforge.inria.fr/

Only squared structuring elements were used and the filter size range was pre-defined by expert knowledge.

First row: RGB subsets; Second row: ground truth; Third row: output of the classification with the proposed approach; Fourth row to end: visualization of the six features with highest squared weights.