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A NEW ALGORITHM BASED ON FACTORIZATION FOR

HETEROGENEOUS DOMAIN DECOMPOSITION

MARTIN J. GANDER∗, LAURENCE HALPERN† , AND VÉRONIQUE MARTIN‡

Abstract. Often computational models are too expensive to be solved in the entire domain of
simulation, and a cheaper model would suffice away from the main zone of interest. We present for
the concrete example of an evolution problem of advection reaction diffusion type a heterogeneous
domain decomposition algorithm which allows us to recover a solution that is very close to the
solution of the fully viscous problem, but solves only an inviscid problem in parts of the domain.
Our new algorithm is based on the factorization of the underlying differential operator, and we
therefore call it factorization algorithm. We give a detailed error analysis, and show that we can
obtain approximations in the viscous region which are much closer to the viscous solution in the entire
domain of simulation than approximations obtained by other heterogeneous domain decomposition
algorithms from the literature.

Key words. Heterogeneous domain decomposition, viscous problems with inviscid approxima-
tions, transmission conditions, factorization algorithm

AMS subject classifications. 65M55, 65M15

1. Introduction. The coupling of different types of partial differential equa-
tions is an active field of research, since the need for such coupling arises in various
applications. A first main area is the simulation of complex objects, composed of dif-
ferent materials, which are naturally modeled by different equations; fluid-structure
interaction is a typical example, and many techniques have been developed for this
type of coupling problems, see for example the book [33], or the review on the im-
mersed boundary method [32], and [9] for domain decomposition coupling techniques.
A very important area of application is the simulation of the cardiovascular system
[16]. A second main area is when homogeneous objects are simulated, but the par-
tial differential equation modeling the object is too expensive to solve over the entire
object, and a simpler, less expensive model would suffice in most of the object to
reach the desired accuracy; air flow around an airplane is a typical example, where
viscous effects are important close to the airplane, but can be neglected further away,
see the early publication [10], and also [7] and the references therein. An automatic
approach for neglecting the diffusion in parts of the domain is the χ-formulation, see
[27] [5], and there are also techniques based on virtual control, originating in [11], see
[1] for the case with overlap, and [25] for the case without, and also [12] for virtual
control with variational coupling conditions. A third emerging area is the coupling of
equations across dimensions, for example the blood flow in the artery can be modeled
by a one dimensional model, but in the heart, it needs to be three dimensional, see
for example [15]. All these techniques have become known in the domain decompo-
sition community under the name heterogeneous domain decomposition methods, a
terminology sparked by the review [36], and the literature has become vast in this
field.

We are interested in this paper in the second situation, where the motivation
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for using different equations comes from the fact that we would like to use simpler,
less expensive equations in areas of the domain where the full model is not needed,
and we use as our guiding example the advection reaction diffusion equation. We
are in principle interested in the fully viscous solution, but we would like to solve
only an advection reaction equation for computational savings in part of the domain.
Coupling conditions for this type of problem have been developed in the seminal
paper [23], but with the first situation described above in mind, i.e. there is indeed
a viscous and an inviscid physical domain, and the coupling conditions are obtained
by a limiting process as the viscosity goes to zero, see also [24], and [3, 8] for an
innovative correction layer, and [6] for the steady case.

Dubach developed in his PhD thesis [13] coupling conditions based on absorbing
boundary conditions, and such conditions have been used in order to define heteroge-
neous domain decomposition methods in [18]. A fundamental question however in the
second situation described above is how far the solution obtained from the coupled
problem is from the solution of the original, more expensive one on the entire do-
main. A first comparison of different transmission conditions focusing on this aspect
appeared in [19]. In [20], coupling conditions were developed for stationary advec-
tion reaction diffusion equations in one spatial dimensions, which lead to solutions
of the coupled problem that can be exponentially close to the fully viscous solution,
and rigorous error estimates are provided. The coupling conditions are based on the
factorization of the differential operator, see also [29], and the exact factorization can
be used in this one dimensional steady case. We study in this paper time dependent
advection reaction diffusion problems, where the exact factorization of the differential
operator can not be used any more, due to the non-local nature of the factors, and
new ideas are needed in order to obtain better coupling conditions than the classical
ones developed for situation one, where the domains are really physically different.

We present in Section 2 our new factorization algorithm. In Section 3 and 4 we
give a detailed error analysis of our algorithm, and prove asymptotic error estimates
when the viscosity is becoming small. In Section 5 we present numerical experiments
which show that our theoretical error estimates are sharp, and that the new factor-
ization algorithm gives approximate solutions which are one order of magnitude more
accurate in the viscous region than the best heterogeneous domain decomposition
methods known from the literature.

2. A new coupling algorithm based on factorization. We now explain how
the factorization technique that led to coupling conditions of excellent quality for one
dimensional problems in [20] can be used to obtain a new coupling algorithm for
evolution problems which we will call factorization algorithm.

2.1. Model problem. We consider the time dependent advection reaction dif-
fusion equation

Ladu := ∂tu− ν∂2
xu+ a∂xu+ cu = f in (−L1, L2)× (0, T ),

B1u(−L1, ·) = g1 on (0, T ),
B2u(L2, ·) = g2 on (0, T ),

u(x, 0) = h in (−L1, L2),

(2.1)

where a is the velocity field, ν > 0 is the viscosity, and c > 0 is a reaction term.
The Bj, j = 1, 2 are suitable boundary operators, representing Dirichlet or absorbing
boundary conditions. We consider the following choice of these operators, depending
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on the sign of the advection term a,

B1 B2

a > 0 Id ∂t + a∂x + c
a < 0 Id Id

(2.2)

In the case a > 0, the flow is given at the inflow boundary, and an absorbing boundary
condition is prescribed at the outflow boundary. This can be compared to the situation
of the tail of a wing, where the flow goes from the complicated model region into the
simplified model region. For negative a, the flow is prescribed at the inflow and outflow
boundary, which can be compared to the situation of the front of the wing, where the
flow goes from the simplified model region into the complicated model region, and a
boundary layer forms.

We assume that the initial data h is compactly supported in (−L1, 0). The forcing
term f is compactly supported in (−L1, L2)× (0, T ], and the boundary values g1 and
g2 are compactly supported in (0, T ] . Regularity and compatibility conditions on the
data need to be enforced to have a sufficiently regular solution, see Section 3.

2.2. The new algorithm based on factorization. Using Nirenberg’s factor-
ization, we can factor the advection-diffusion operator into a product of two evolution
operators in opposite x directions,

−ν∂2
x + a∂x + c+ ∂t = −ν(∂x + P+(∂t)) (∂x + P−(∂t)) (mod C∞).

This factorization has been used to design absorbing boundary conditions and paraxial
equations for hyperbolic problems, see [2]. For parabolic problems, Nataf and coau-
thors [29, 34] computed approximations of u via a double sweep, and also obtained
transmission conditions for Schwarz domain decomposition methods [35], which led
to the new class of optimized Schwarz methods, see [17] for an overview. The same
factorization can also be used to obtain incomplete LU preconditioners [21, 22], and
is the underlying mathematical structure of the recently developed sweeping precon-
ditioner [14]. We now use this factorization to define our new factorization algorithm:
we define two subdomains, Ω1 = (−L1, 0) and Ω2 = (0, L2), and want to couple the
advection-diffusion equation in Ω1 with an advection equation in Ω2, defined by the
transport operator La ≡ ∂t + a∂x + c. Our goal is to obtain a coupled solution which
is as close as possible to the fully viscous solution of the original problem.

We start with the case a > 0, where according to (2.2) the exterior boundary

condition is Lau(L2, ·) = g2. Suppose there exists a decomposition Lad = L̃maLa

with La a transport operator propagating to the right, and L̃ma a transport operator
propagating to the left. The original problem





L̃maLau = f in Ω× (0, T ),

u(−L1, ·) = g1 on (0, T ),

Lau(L2, ·) = g2 on (0, T ),

u(·, 0) = h in Ω

can then be solved by introducing uma := Lau, and solving the two problems





L̃mauma = f in Ω2 × (0, T ),

uma(L2, ·) = g2 on (0, T ),

uma(·, 0) = Lau(·, 0) in Ω2,





L̃maLauad = f in Ω1 × (0, T ),

uad(−L1, ·) = g1 on (0, T ),

Lauad(0, ·) = uma(0, ·) on (0, T ),

uad(·, 0) = h in Ω1,

(2.3)
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which leads to uad = u|Ω1
. Unfortunately, the exact factorization Lad = L̃maLa is

expensive, but we can use an approximation with a remainder,

Lad =
ν

a2
(LmaLa −R ) with R = (∂t + c)2 and Lma = ∂t − a∂x + c+

a2

ν
. (2.4)

The viscous solution u satisfies LmaLau = a2f/ν+Ru, and the algorithm correspond-
ing to (2.3) is





Lmauma =
a2

ν
f +Ru in Ω2 × (0, T ),

uma(L2, ·) = g2 on (0, T ),

uma(·, 0) = f(·, 0) + νd2xh in Ω2,





Laduad = f in Ω1 × (0, T ),

uad(−L1, ·) = g1 on (0, T ),

Lauad(0, ·) = uma(0, ·) on (0, T ),

uad(·, 0) = h in Ω1.

Since u is unknown to evaluate the remainder, we approximate it by solving an ad-
vection equation, and our new factorization algorithm is





Lau
k
a = f in Ω2 × (0, T ),

uk
a(0, ·) = uk−1

ad (0, ·) on (0, T ),

uk
a(·, 0) = h in Ω2,




Lmau
k
ma =

a2

ν
f +Ruk

a in Ω2 × (0, T ),

uk
ma(L2, ·) = g2 on (0, T ),

uk
ma(·, 0) = f(·, 0) + νd2xh in Ω2,

(2.5)





Ladu
k
ad = f in Ω1 × (0, T ),

uk
ad(−L1, ·) = g1 on (0, T ),

Lau
k
ad(0, ·) = uk

ma(0, ·) on (0, T ),

uk
ad(·, 0) = h in Ω1,

where we start with a given initial guess u0
ad(0, ·) = g0ad. We will prove well posedness

of this algorithm in Section 3, and give precise error estimates when ν is small, which
show that the new factorization algorithm gives one and a half orders of magnitude
better solutions in the viscous subregion than the best other coupling algorithms from
the literature.

When a < 0, we have the factorization with remainder in reverse order, Lad =
ν
a2 (LaLma−R ), and now the operator La propagates to the left, and Lma to the right.
The viscous solution u satisfies LaLmau = a2f/ν+Ru, and introducing ua := Lmau,
the algorithm corresponding to (2.3) is





Laua =
a2

ν
f +Ru in Ω2 × (0, T ),

ua(L2, ·) = Lmau(L2, ·) on (0, T ),

ua(·, 0) = Lmau(·, 0) in Ω2,





Laduad = f in Ω1 × (0, T ),

uad(−L1, ·) = g1 on (0, T ),

Lmauad(0, ·) = ua(0, ·) on (0, T ),

uad(·, 0) = h in Ω1.

Since u is unknown to evaluate the remainder and the boundary conditions, we approx-
imate it again by solving an advection equation, and our new factorization algorithm
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becomes




Lau
1
a = f in Ω2 × (0, T ),

u1
a(L2, ·) = g2 on (0, T ),

u1
a(·, 0) = h in Ω2,




Lau
2
a =

a2

ν
f +Ru1

a in Ω2 × (0, T ),

u2
a(L2, ·) = Lmau

1
a(L2, ·) on (0, T ),

u2
a(·, 0) = Lmau

1
a(·, 0) in Ω2,

(2.6)





Laduad = f in Ω1 × (0, T ),

uad(−L1, ·) = g1 on (0, T ),

Lmauad(0, ·) = u2
a(0, ·) on (0, T ),

uad(·, 0) = h in Ω1,

where one could also directly compute Lmau
1
a(L2, ·) = 2g′2 + (2c+ a2/ν)g2 − f(L2, ·)

and Lmau
1
a(·, 0) = f(·, 0) − 2adxh + a2h/ν. There is no iteration for a < 0 in the

algorithm, because the boundary condition g2 at x = L2 in the first step can not be
updated naturally from the viscous solution uad in Ω1. We will study this algorithm
in detail in Section 4, and show that it gives an order of magnitude better solutions
in the viscous subregion than the other coupling algorithms from the literature.

2.3. Well-posedness results for advection reaction diffusion problems.

We work in the usual Sobolev spaces in time and space,Hs(0, T ) andHs(Ω) for Ω ⊂ R,
Hs(Ω× (0, T )) in the hyperbolic case, and the anisotropic spaces Hr,s(Ω× (0, T )) in
the parabolic case. For clarity, we will add an index defining time or space in the
Sobolev space, for instance Hs

t ≡ Hs(0, T ). We introduce for any domain Ω ⊂ R the
anisotropic Sobolev spaces (see [28])

Hr,s(Ω× (0, T )) = L2(0, T ;Hr(Ω)) ∩Hs(0, T ;L2(Ω)). (2.7)

If u is in Hr,s(Ω× (0, T )), then for any integer j and k, we have

∂j

∂xj

∂k

∂tk
u ∈ Hµ,ν(Ω× (0, T )), where

µ

r
=

ν

s
= 1− (

j

r
+

k

s
). (2.8)

We introduce the space V r,s of traces of functions in Hr,s(Ω×(0, T )) for the half-space
Ω = R− (and similarly for Ω = R+). Denoting by fk the trace of the k-th derivative
in time on the initial line, x ∈ R−, and by gj the trace of the j-th derivative in space
on the boundary x = 0, t ∈ (0, T ), the trace space V r,s is defined by

V r,s :=
{
(fk, gj) ∈

∏
k<s− 1

2
Hpk(Ω)×

∏
j<r− 1

2
Hµj (0, T ),

pk = r
s (s− k − 1

2 ), µj =
s
r (r − j − 1

2 ),
∂kgj
∂tk

(0) = ∂jfk
∂xj (0), if j

r + k
s < 1− 1

2 (
1
r + 1

s ),

∫∞
0

|∂
jfk
∂xj (σ

s)−
∂kgj
∂tk

(σr)|2 dσ
σ < ∞, if j

r + k
s = 1− 1

2 (
1
r + 1

s )
}
.

(2.9)

Theorem 2.1 ([28]). For positive real numbers r and s such that 1− 1
2 (

1
r+

1
s ) > 0,

the trace map

u 7→

{
{
∂ku

∂tk
(x, 0)}k<s− 1

2
, {

∂ju

∂xj
(0, t)}j<r− 1

2

}
(2.10)
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is defined and continuous from Hr,s(Ω× (0, T )) onto V r,s.
We start with well-posedness results for the advection equation, by stating a

general result, applicable to La in Ω or Ω2, and Lma in Ω2. To this end, we introduce
O = (x1, x2) and consider

Lbv := ∂tv + b ∂xv + ηv = p in O × (0, T ). (2.11)

Let Mb be the spatial part of the operator Lb, i.e. Lb = ∂t + Mb. We denote the
boundary point where the flux enters the domain by x−, the other boundary point
by x+, and define the characteristic time τ(x) := inf{t ≥ 0, s.t. x− at /∈ Ō}. If b > 0,
x− = x1 and τ(x) = x−x1

b , and if b < 0, x− = x2 and τ(x) = x−x2

b . Note that τ
is a continuous function of x. We therefore equip (2.11) with initial and boundary
conditions

v(·, 0) = h, v(x−, ·) = g. (2.12)

The following well-posedness result can be found in [31].
Theorem 2.2. If p ∈ L2(O × (0, T )), g ∈ L2(0, T ) and v0 ∈ L2(O), then the

transport problem (2.11,2.12) has a unique weak solution v ∈ L2
x,t, given by (the

characteristic function of ω in R2 is denoted by 1ω)

v(x, t) = h(x− bt)e−ηt1t<τ(x) + g(t− τ(x))e−ητ(x)1t>τ(x)

+

∫ t

(t−τ(x))+
p(x− b(t− s), s)e−η(t−s) ds.

(2.13)

If for some γ > 0 we have h ∈ Hγ(O), g ∈ Hγ(0, T ) and p ∈ Hγ(O × (0, T )), with
the compatibility conditions

dkt g(0) = (

k−1∑

j=0

(−Mb)
j∂k−1−j

t p)(x−, 0) + (−Mb)
kh(x−) for 0 ≤ k ≤ γ − 1, (2.14)

then v ∈ Hγ(O×(0, T )) and v(x+, ·) ∈ Hγ(0, T ). Furthermore, we have for 0 ≤ k ≤ γ
the estimates

η‖∂k
t v‖

2
L2

x,t
+ |b|‖∂k

t v(x
+, ·)‖2L2

t
≤

1

η
‖∂k

t p‖
2
L2

x,t
+ ‖∂k

t v(·, 0)‖
2
L2

x
+ |b|‖dkt g‖

2
L2

t
. (2.15)

Similarly, we also use well-posedness results for the advection reaction diffusion equa-
tion

Ladu := ∂tu− ν∂2
xu+ a∂xu+ cu = f in O × (0, T ),

B1u(x1, ·) = g1 on (0, T ),
B2u(x2, ·) = g2 on (0, T ),

u(x, 0) = h in O,

(2.16)

with boundary operators according to (2.2). We define Mad to be the spatial part of
the operator Lad, i.e. Lad = ∂t +Mad.

Theorem 2.3. For γ > 0, let f ∈ H2γ,γ(O × (0, T )), g1 ∈ H
γ+ 3

4
t , g2 ∈ H

γ+ 3
4

t

for negative a, and g2 ∈ H
γ− 1

4
t for positive a, h ∈ H2γ+1

x (O), with the compatibility
conditions for 0 ≤ k < γ − 1

2 and 0 ≤ k′ < γ − 3
2 for negative a given by

1 ≤ j ≤ 2, dkt gj(0) = (−Mad)
kh(xj) + (

k−1∑

j=0

(−Mad)
j∂k−1−j

t f)(xj , 0),

(2.17)
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and for positive a the second compatibility condition is replaced by

dk
′

t g2(0)− ν

k′−1∑

j=0

(−Mad)
j∂k′−1−j

t ∂2
xf(x2, 0)− νd2x(−Mad)

k′

h(x2) = ∂k′

t f(x2, 0),

(2.18)

then problem (2.16) has a unique solution u in H2(γ+1),γ+1(O × (0, T )).
Proof. Existence and regularity results are well-known for Dirichlet boundary con-

ditions on both sides, see [28, 31], so we do not consider the case of negative advection
further. In [31] more precise results with error bounds in ν for the hyperbolic equa-
tion (see Theorem 3.3) can be found. In the case where a > 0, due to the absorbing
boundary, we need to modify the proof on the right boundary, and we use a Fourier
transform in time. A weak solution is obtained by a variational formulation, like in
[30, 4] for instance. The regularity is obtained as follows: we first modify the bound-

ary condition in (2.16) on the right at x = x2 to Dirichlet data g̃2 ∈ H
γ+ 3

4
t . Because

of the compatibility conditions on the left, and imposing symmetric compatibility
conditions on g̃2 on the right, there is a unique solution ũ ∈ H2(γ+1),(γ+1)(O× (0, T )),
see [28]. The difference v = u − ũ is solution of the homogeneous case of equation
(3.1), but the boundary condition on the right becomes La(u − ũ) = q2 := g2 − Laũ.

By the regularity results above, q2 is in H
γ− 1

4
t . To estimate v, we will make use of the

Fourier transform. We extend all functions by 0 in R−, and smoothly into (T,+∞),
and define

v̂(ω) =
1

2π

∫

R

e−iω tv(t) dt.

Since the initial value vanishes, the equation is Fourier transformed in time to

L̂adv̂ := −ν∂2
xv̂ + a∂xv̂ + (c+ iω)v̂ = 0 on O × C.

This is for each ω an ordinary differential equation, with characteristic roots

λ+(ω) =
1

2ν
(a+

√
a2 + 4ν(c+ iω)), λ−(ω) =

1

2ν
(a−

√
a2 + 4ν(c+ iω)), (2.19)

with Re(λ+) > 0 and Re(λ−) < 0. The general solution is

v̂(x, ω) = ℓ+(ω)e
λ+x + ℓ−(ω)e

λ−x.

Using the boundary conditions, we then get the solution

v̂(x, ω) = q̂2(ω)
eλ+(x−x1) − eλ−(x−x1)

νλ2
+e

λ+(x2−x1) − νλ2
−e

λ−(x2−x1)
, (2.20)

where we have used the relation c+ iω + aλ± = ν(λ±)2. The value at x = x2 can be
equivalently written as

v̂(x2, ω) = q̂2(ω)
e−(λ+−λ−)(x2−x1) − 1

νλ2
+

(
(λ−

λ+
)2e−(λ+−λ−)(x2−x1) − 1

) . (2.21)

In order to estimate the regularity of v(x2, ·), we need to estimate the multiplicative

factor on the right for large ω. We can see from (2.19) that λ+(ω) ∼ −λ−(ω) ∼
√

iω
ν .
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Therefore |v̂(x2, ω)| ∼
∣∣∣ q̂2(ω)
νλ2

+

∣∣∣ ∼
∣∣∣ q̂2(ω)

ω

∣∣∣ . Since q2 ∈ H
γ− 1

4
t , we conclude that v(x2, ·) ∈

H
γ+ 3

4
t . Then v is solution of the advection-diffusion equation with Dirichlet boundary

conditions, and the data has sufficient regularity to conclude.

3. Properties of the factorization algorithm for positive advection. We
consider the advection-diffusion equation in Ω = (−L1, L2) with Dirichlet bound-
ary condition on the left, and absorbing boundary condition given by the transport
operator on the right (see [26]),

Ladu := ∂tu− ν∂2
xu+ a∂xu+ cu = f in Ω× (0, T ),

u(−L1, ·) = g1 on (0, T ),
Lau(L2, ·) = g2 on (0, T ),

u(·, 0) = h in Ω.

(3.1)

We suppose in this section that f and g1 are compactly supported in (0, T ], that h
is compactly supported in Ω1 = (−L1, 0), and that for each t the function f(·, t) is
compactly supported in Ω. We further assume that the boundary condition at L2 is
absorbing, that is g2 = 0. Therefore the compatibility conditions are satisfied to any

order on both ends of the interval Ω, and for f ∈ H
9
2 ,

9
4 (Ω × (0, T )), h ∈ H

11
2

x , and

g1 ∈ H3
t , u is defined in H

13
2 , 134 (Ω× (0, T )).

3.1. Well-posedness. The remainder R for computing uk
ma in the new factor-

ization algorithm (2.5) contains two time derivatives, which lead to an important loss
of regularity at each iteration. We will however see that the error order in ν can
not be improved further after two iterations, and hence we only study the first two
iterations in detail. We start with the well-posedness of the algorithm.

Algorithm (2.5) starts with an initial guess g0ad as boundary condition for ua.
We assume that g0ad ∈ H4

t and is compactly supported in (0, T ]. Using that f ∈
H4(Ω2 × (0, T )), that h vanishes in Ω2, and that the compatibility conditions at
x = 0, t = 0 are satisfied, the solution of

Lau
1
a = f in Ω2, u1

a(0, ·) = g0ad, u1
a(·, 0) = 0

satisfies u1
a ∈ H4(Ω2 × (0, T )).

The right hand side for the modified advection equation in (2.5) is then f1
ma =

a2

ν f +Ru1
a ∈ H2(Ω2 × (0, T )), and solving

Lmau
1
ma = f1

ma in Ω2, u1
ma(L2, ·) = 0, u1

ma(·, 0) = 0,

the compatibility conditions at x = L2 are again satisfied to any order, which implies
that u1

ma ∈ H2(Ω2 × (0, T )) and u1
ma(0, ·) ∈ H2(0, T ). The latter then becomes the

right boundary data for the advection diffusion problem in Ω1,

Ladu
1
ad = f in Ω1, u1

ad(−L1, ·) = g1, Lau
1
ad(0, ·) = u1

ma(0, ·), u1
ad(·, 0) = h.

We have seen already that the compatibility conditions on the left are satisfied, and
on the right, at the corner (0, 0), with the regularity of u1

ma, the condition u1
ma(0, 0)−

νd2xh(0) = f(0, 0) holds, since both sides of this equality vanish. Since f ∈ H
9
2 ,

9
4 (Ω×

(0, T )), h ∈ H
11
2

x , g1 ∈ H3
t , and u1

ma(0, ·) ∈ H2
t , we obtain u1

ad ∈ H
13
2 , 134 (Ω1 × (0, T ))

and u1
ad(0, ·) ∈ H3

t , and at the corner (0, 0), we have for g1ad := u1
ad(0, ·)

g1ad(0) = h(0), dtg
1
ad(0) +Madh(0) = f(0, 0),

d2t g
1
ad(0)−M2

adh(0) = ∂tf(0, 0)−Madf(0, 0).
(3.2)
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We now start the second iteration with the computation of u2
a, using u1

a(0, ·) = g1ad =
u1
ad(0, ·) ∈ H3

t . Since h is compactly supported in Ω1, M
p
adh(0) = Mp

ah(0) = 0, and
(3.2) are appropriate compatibility conditions to compute u2

a ∈ H3(Ω2 × (0, T )). We
define the new right hand side

f2
ma =

a2

ν
f +Ru2

a ∈ H1(Ω2 × (0, T )),

and compute the solution of

Lmau
2
ma = f2

ma in Ω2, u2
ma(L2, ·) = 0, u2

ma(·, 0) = 0.

We thus obtain u2
ma ∈ H1(Ω2 × (0, T )) and u2

ma(0, ·) ∈ H1(0, T ). The last step of the
second iteration is to compute u2

ad solution of

Ladu
2
ad = f in Ω1, u1

ad(−L1, ·) = g1, Lau
1
ad(0, ·) = u2

ma(0, ·), u1
ad(·, 0) = h,

and we need only to satisfy a compatibility condition on the left, which implies that
u2
ad ∈ H

9
2 ,

9
4 (Ω× (0, T )).

3.2. Error estimates for the factorization algorithm. We present now
asymptotic error estimates for small viscosity ν when u, the viscous solution of
(3.1), is approximated by (uk

ad, u
k
a), the solution obtained by our new factoriza-

tion algorithm (2.5). We define the error quantities eka := uk
a − u, ekad := uk

ad − u,
ekma := uk

ma−Lau := uk
ma−uma, and suppose that all our data is C∞ in all variables.

The error equations are





Lae
k
a = −ν∂2

xu in Ω2,

eka(0, ·) = ek−1
ad (0, ·),

eka(·, 0) = 0,





Lmae
k
ma = R eka in Ω2,

ekma(L2, ·) = 0,
ekma(·, 0) = 0,





Lade
k
ad = 0 in Ω1,

ekad(−L1, ·) = 0,
Lae

k
ad(0, ·) = ekma(0, ·),

ekad(·, 0) = 0,
(3.3)

with e0ad(0, ·) := g0ad − u(0, ·). We need more precise estimates than those provided
by Theorems 2.2 and 2.3. First, we state precisely the initial conditions for all the
equations involved: the parabolic problems in Ω and Ω1 will use

∂k
t u(·, 0) = (−Mad)

kh and ∂k
t u

p
ad(·, 0) = (−Mad)

kh,

the forward hyperbolic problem in Ω2 uses

∂k
t u

p
a(·, 0) = (−Ma)

kh = 0,

and the backward hyperbolic problem in Ω2 uses

∂k
t u

p
ma(·, 0) =

k−1∑

j=0

(−Mma)
j∂k−1−j

t fp
ma(·, 0) + (−Mma)

kuma,0 = 0.

The solution of the exact backward hyperbolic problem in Ω2 has as initial condition

∂k
t uma(·, 0) =

k−1∑

j=0

(−Mma)
j∂k−1−j

t fma(·, 0) + (−Mma)
kuma,0 = 0,

9



from which we infer the initial values for the errors such that

∂k
t e

p
ad(·, 0) = 0 in Ω1, ∂k

t e
p
a(·, 0) = 0 and ∂k

t e
p
ma(·, 0) = 0 in Ω2. (3.4)

We start with estimates for the solution of the advection-diffusion equation (3.1)
with vanishing initial data and vanishing boundary data g1. A first lemma gives
results for the problem with g2 = 0, based on energy estimates, and a second lemma
gives estimates where only the right-hand side f is non-zero.

Lemma 3.1. Suppose that a > 0, and that h vanishes identically in Ω, g1 and g2
vanish on (0, T ), and that f is in C∞

0 (Ω× (0, T ]). Then there is a positive constant C
such that for any ν > 0, and any k ≤ γ, the solution u1 of (3.1) satisfies the estimates

‖∂k
t u1‖

2
L2

x,t
+ ‖∂k

t u1(L2, ·)‖
2
L2

t
+ ν‖∂k

t ∂xu1‖
2
L2

x,t
≤ C‖∂k

t f‖
2
L2

x,t
, (3.5)

ν‖∂k
t ∂

2
xu1‖L2

x,t
≤ ‖∂k

t f‖L2
x,t
. (3.6)

Proof. Since the compatibility conditions are satisfied, u1 is in H∞, and the initial
value of ∂k

t u1 vanishes as well. We start with k = 0: multiplying the equation by u1

and integrating over Ω, taking into account that u1 vanishes at −L1 gives

1

2

d

dt
‖u1(·, t)‖

2
L2

x
+ c‖u1(·, t)‖

2
L2

x
+ ν‖∂xu1(·, t)‖

2
L2

x

+
a

2
u2
1(L2, t)− ν(u1∂xu1)(L2, t) =

∫

Ω

f(x, t)u1(x, t)dx.

Using the boundary condition at L2 yields

1

2

d

dt
(‖u1(·, t)‖

2
L2

x
+

ν

a
u2
1(L2, t)) + c‖u1(·, t)‖

2
L2

x
+ ν‖∂xu1(·, t)‖

2
L2

x

+ (
a

2
+

νc

a
)u2

1(L2, t) =

∫

Ω

f(x, t)u1(x, t)dx,

and by Cauchy-Schwarz and Young’s inequality we obtain
∫

Ω

f(x, t)u1(x, t)dx ≤ ‖u1(·, t)‖L2
x
‖f(·, t)‖L2

x
≤

c

2
‖u1(·, t)‖

2
L2

x
+

1

2c
‖f(·, t)‖2L2

x
.

Integrating in time over (0, T ), and dropping the first term which is positive, we
obtain, since the initial data vanishes, the inequality

c‖u1‖
2
L2

x,t
+ 2ν‖∂xu1‖

2
L2

x,t
+ a‖u1(L2, ·)‖

2
L2

t
≤

1

c
‖f‖2L2

x,t
,

which proves (3.5) for k = 0. To prove (3.6), we multiply the equation by −∂2
xu1 and

integrate in x,

ν‖∂2
xu1(·, t)‖

2
L2

x
− (∂tu1(·, t), ∂

2
xu1(·, t)) − a(∂xu1(·, t), ∂

2
xu1(·, t))

− c(u1(·, t), ∂
2
xu1(·, t)) = −(f(·, t), ∂2

xu1(·, t)).

An integration by parts leads to

ν‖∂2
xu1(·, t)‖

2
L2

x
+

1

2

d

dt
‖∂xu1(·, t)‖

2
L2

x
+ c‖∂xu1(·, t)‖

2
L2

x
− [∂xu1(·, t)(∂tu1 +

a

2
∂xu1

+ cu1)(·, t)]
L2

−L1
= −(f(·, t), ∂2

xu1(·, t)).
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By the boundary conditions, the boundary terms become

a(∂xu1)
2(−L1, t) +

1

a
(∂tu1 + cu1)

2(L2, t) > 0.

We can now integrate in time and use Cauchy-Schwarz and Young’s inequality to
obtain

ν‖∂2
xu1‖

2
L2

x,t
≤

1

ν
‖f‖2L2

x,t
.

The estimates with the time derivative are obtained by applying the equation to ∂k
t u.

Lemma 3.2. Assume that a > 0. Then there are constants ν̄ > 0 and C > 0 such
that for ν ≤ ν̄, and for any g2 ∈ C∞

0 ((0, T ]), the solution u2 of (3.1) with zero data
h, f and g1 satisfies for all k ≤ γ the inequalities

∀x ∈ [−L1, L2], ‖∂k
t u2(x, ·)‖L2

t
≤ Cν‖g2‖Hk

t
, (3.7)

‖∂k
t u2‖L2

x,t
≤ Cν

3
2 ‖g2‖Hk

t
, ‖∂x∂

k
t u2‖L2

x,t
≤ Cν

1
2 ‖g2‖Hk

t
,

‖∂2
x∂

k
t u2‖L2

x,t
≤ Cν−

1
2 ‖g2‖Hk

t
.

Proof. We use a Fourier transform argument as in the proof of Theorem 2.3, and
rewrite (2.20) as

û2(x, ω) = ĝ2(ω) e
λ+(x−L2)

e−(λ+−λ−)(x+L1) − 1

νλ2
+

(
(λ−

λ+
)2e−(λ+−λ−)(L2+L1) − 1

) . (3.8)

Now we search for estimates in ν that are uniform in ω. We have for the roots λ± the
estimates

|λ−/λ+| < 1, Re(λ+ − λ−) ≥ a/ν, |λ+| ≥ a/ν.

The numerator in (3.8) is bounded by 2. A lower bound for the denominator is

obtained by writing |νλ2
+| ≥

a2

ν together with

∣∣∣∣∣1−
(
λ−
λ+

)2

e−(λ+−λ−)(L2+L1)

∣∣∣∣∣ ≥ 1−

∣∣∣∣
λ−
λ+

∣∣∣∣
2

e−Re(λ+−λ−)(L2+L1) ≥ 1− e−
a
ν
(L2+L1).

Inserting these estimates into (3.8) gives

|û2(x, ω)| ≤
2ν

a2
|ĝ2(ω)|e

Reλ+(x−L2)
1

1− e−
a
ν
(L2+L1)

.

Since 1/|1− µ| < 2 for µ < 1/2, for ν sufficiently small so that e−
a
ν
(L2+L1) < 1/2, we

have for any ω,

|û2(x, ω)| ≤
4ν

a2
|ĝ2(ω)|e

Reλ+(x−L2) ≤ Cν |ĝ2(ω)|. (3.9)

By Parseval’s identity, we obtain

‖u2(x, ·)‖L2(R+) ≤ Cν ‖g2‖L2(R+). (3.10)
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Modifying now g2 to vanish in [T + ǫ,∞), the solution in (0, T ) remains unaffected
by causality and for any positive ǫ,

‖u2(x, ·)‖L2(0,T ) ≤ Cν ‖g2‖L2(0,T+ǫ).

Since ǫ is arbitrary, we conclude that

‖u2(x, ·)‖L2(0,T ) ≤ Cν ‖g2‖L2(0,T ).

From (3.9) we also obtain for all ω

‖û2(·, ω)‖
2
L2

x
≤

Cν2

Reλ+
|ĝ2(ω)|

2 ≤ Cν3 |ĝ2(ω)|
2.

We thus obtain

‖u2‖L2
x,t

≤ Cν
3
2 ‖g2‖L2

t
.

For the derivative in space, we compute

∂xû2(x, ω) = ĝ2(ω)
λ+eλ+(x+L1)−λ−eλ−

(x+L1)

νλ2
+eλ+(L2+L1)−νλ2

−
eλ−

(L2+L1)

= ĝ2(ω) e
λ+(x−L2)

λ
−

λ+
e−(λ+−λ

−
)(x+L1)−1

νλ+

(

(
λ
−

λ+
)2e−(λ+−λ

−
)(L2+L1)−1

) .

For small ν, we therefore get as before

|∂xû2(x, ω)| ≤
4

ν|λ+|
|ĝ2(ω)| e

Reλ+(x−L2) ≤
4

a
|ĝ2(ω)| e

Reλ+(x−L2),

which gives ‖∂xû2‖
2
L2(Ω×R) ≤ Cν‖ĝ2‖

2
L2(R), and using the same arguments as before,

‖∂xu2‖L2
x,t

≤ Cν
1
2 ‖g2‖L2

t
.

In the same way we find that

‖∂2
xu2‖L2

x,t
≤ Cν−

1
2 ‖g2‖L2

t
.

Theorem 3.3. Let a > 0. Then there exist positive constants C and ν̄ such that
for any ν ≤ ν̄, and for any set of data h ∈ C∞

0 (Ω), f ∈ C∞
0 (Ω×(0, T ]), g1 ∈ C∞

0 ((0, T ])
and g2 ≡ 0, if U is the solution of the transport equation

LaU = f in Ω× (0, T ), U(·, 0) = h U(−L1, ·) = g1, (3.11)

then the solution u of the advection-diffusion equation (3.1) satisfies the estimate

‖∂k
t (u− U)‖2L2

x,t
+ ‖∂k

t (u − U)(L2, ·)‖
2
L2

t
+ ν‖∂k

t ∂x(u− U)‖2L2
x,t

(3.12)

+ ν2‖∂k
t ∂

2
x (u− U)‖2L2

x,t
≤ Cν2‖∂k

t ∂
2
xU‖2L2

x,t
.

Hence u also satisfies the estimate

‖∂k
t u‖

2
L2

x,t
+ ‖∂k

t u(L2, ·)‖
2
L2

t
+ ‖∂k

t ∂xu‖
2
L2

x,t
(3.13)

+ ‖∂k
t ∂

2
xu‖

2
L2

x,t
≤ C(‖f‖2

Hk+2
x,t

+ ‖h‖2
Hk+2

x
+ ‖g1‖

2
Hk+2

t

).
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Proof. Since the data is compactly supported, the compatibility conditions are
automatically satisfied, so that the solutions of the parabolic and hyperbolic equations
are in C∞

0 (Ω × (0, T ]). The estimates (3.12) follow directly from Lemma 3.1, using
that u − U is solution of the advection-diffusion equation in Ω with right hand side
ν∂2

xU , and zero initial and boundary conditions on the left. The boundary condition
on the right also vanishes, La(u−U) = −f(L2, ·) = 0, since f is compactly supported
in Ω. We define now Bk = ‖f‖2

Hk
x,t

+ ‖h‖2Hk
x
+ ‖g1‖

2
Hk

t

, and use for U the hyperbolic

estimates (2.15) in O = Ω,

‖∂k
t U‖2L2

x,t
+ ‖∂k

t U(L2, ·)‖
2
L2

t
≤ CBk.

Next, from the advection equation, we deduce that

a∂xU = −(∂t + c)U + f, and a2∂2
xU = (∂t + c)2U + (a∂x − (∂t + c))f,

so that

‖∂k
t ∂xU‖2L2

x,t
≤ CBk+1, ‖∂k

t ∂
2
xU‖2L2

x,t
≤ CBk+2,

and from (3.12) we obtain

‖∂k
t (u− U)‖2L2

x,t
+ ‖∂k

t (u− U)(L2, ·)‖
2
L2

t
≤ Cν2Bk+2,

‖∂k
t ∂x(u− U)‖2L2

x,t
≤ CνBk+2, ‖∂k

t ∂
2
x(u− U)‖2L2

x,t
≤ CBk+2.

Writing u = u− U + U gives

‖∂k
t u‖

2
L2

x,t
+ ‖∂k

t u(L2, ·)‖
2
L2

t
≤ C(Bk + ν2Bk+2),

‖∂k
t ∂xu‖

2
L2

x,t
≤ C(Bk+1 + νBk+2), ‖∂k

t ∂
2
xu‖

2
L2

x,t
≤ CBk+2.

Therefore there is a new constant C and ν̄ such that for ν ≤ ν̄, (3.13) holds.
We now present an improved estimate for the solution of the modified advection

problem in Ω2.
Theorem 3.4. Let a > 0. Then there exist positive constants C and ν̄ such that,

for ν ≤ ν̄, and for any set p compactly supported in Ω2 × (0, T ], the solution v of the
initial boundary value problem with modified advection





Lmav = p in (0, L2)× (0, T ),
v(L2, ·) = 0 on (0, T ),
v(·, 0) = 0 in (0, L2)

satisfies the estimate

‖∂k
t v(0, ·)‖

2
L2

t
≤ Cν2

(
‖∂k

t p(0, ·)‖
2
L2

t
+ e−2

aL2
ν ‖∂k

t p(L2, ·)‖
2
L2

t
+ ν‖∂k

t p‖
2
H1

x,t

)
. (3.14)

Proof. We first extend p by 0 on (T,+∞). As in Theorem 2.2, v can be obtained
using the method of characteristics,

v(0, t) =

∫ t

max(t−L2
a

,0)

p(a(t− σ), σ)e−c̃(t−σ)dσ,
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where c̃ = c + a2/ν. Integrating by parts, and denoting by dt the characteristic
derivative, i.e. dtφ = ∂tφ− a∂xφ, we obtain

v(0, t) =
1

c̃

(
p(0, t)︸ ︷︷ ︸

I

−

{
0 for t < L2/a,

p(L2, t−
L2

a )e−c̃
L2
a for t > L2/a︸ ︷︷ ︸

II

−

∫ t

max(t−L2
a

,0)

dtp(a(t− σ), σ)e−c̃(t−σ)dσ

︸ ︷︷ ︸
III

)
.

The norm of the first term is ‖I‖L2
t
= ‖p(0, ·)‖L2

t
, and the norm of the second term

can be estimated as

‖II‖2L2
t
=

∫ +∞

L2
a

p2(L2, t−
L2

a
)e−2c̃

L2
a dt ≤ e−2c̃L2/a‖p(L2, ·)‖

2
L2

t
.

For the norm of the third term, we get

‖III‖2L2
t
=

∫ L2
a

0

(∫ t

0

dtp(a(t− σ), σ)e−c̃(t−σ) dσ
)2

dt

+

∫ +∞

L2
a

(∫ t

t−L2
a

dtp(a(t− σ), σ)e−c̃(t−σ) dσ
)2

dt,

and using the Cauchy-Schwarz inequality, we obtain

‖III‖2L2
t
≤

1

2c̃

( ∫ L2
a

0

∫ t

0

(dtp)
2(a(t− σ), σ) dσ dt+

∫ +∞

L2
a

∫ t

t−L2
a

(dtp)
2(a(t− σ), σ) dσ dt

)

≤
1

2c̃

∫ +∞

0

∫ L2

0

(dtp)
2(x, t)dx dt ≤

1

2c̃
‖p‖2H1

x,t
, (3.15)

which finally leads to the estimate

‖v(0, ·)‖2L2
t
≤

C

c̃2

(
‖p(0, ·)‖2L2

t
+ e−2c̃

L2
a ‖p(L2, ·)‖

2
L2

t
+

1

2c̃
‖p‖2H1

x,t

)
.

Since c̃ ≥
a2

ν
, we get

‖v(0, ·)‖2L2
t
≤ Cν2

(
‖p(0, ·)‖2L2

t
+ e−2

aL2
ν ‖p(L2, ·)‖

2
L2

t
+ ν‖p‖2H1

x,t

)

on the enlarged time interval (0,+∞). Using that the extension is vanishing for
t ≥ T + ǫ gives the estimate (3.14) for k = 0 for any ǫ, and thus on (0, T ). Applying
(3.14) to ∂k

t v gives then the general result.
Theorem 3.5. Assume that a > 0, and let Bk := ‖f‖2

Hk
x,t

+ ‖h‖2Hk
x
+ ‖g1‖

2
Hk

t

.

Then there exist positive constants C and ν̄ such that, for any data h ∈ C∞
0 (Ω1), f ∈

C∞
0 (Ω×(0, T ]), g1 ∈ C∞

0 ((0, T ]) and g2 ≡ 0, and for any initial guess g0ad ∈ C∞
0 ((0, T ])

and any ν ≤ ν̄, the approximation from the new algorithm (2.5) satisfies the error
bounds

‖u− u1
a‖

2
L2

x,t
≤ C(B2 + ‖g0ad‖

2
L2

t
), ‖u− u1

ad‖
2
L2

x,t
≤ Cν5(B5 + ‖g0ad‖

2
H3

t
) (3.16)

‖u− u2
a‖

2
L2

x,t
≤ Cν2(B5 + ν2‖g0ad‖

2
H3

t
), ‖u− u2

ad‖
2
L2

x,t
≤ Cν8(B8 + ν‖g0ad‖

2
H6

t
).

(3.17)
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Proof. We start with the proof for the first iteration of the new algorithm (2.5),
with the initial guess g0ad, which gives e0ad = g0ad−u(0, ·) in the algorithm (3.3) satisfied
by the errors:

Advection: The error e1a is solution of an advection equation in Ω2 with right
hand side −ν∂2

xu. Since the initial conditions vanish as described in (3.4), the hyper-
bolic estimate in Theorem 2.2 gives

‖∂k
t e

1
a‖

2
L2

x,t
+ ‖∂k

t e
1
a(L2, ·)‖

2
L2

t
≤ C(ν2‖∂k

t ∂
2
xu‖

2
L2

x,t
+ ‖e0ad‖

2
Hk

t
).

We bound ‖e0ad‖Hk
t
by ‖g0ad‖Hk

t
+‖u(0, ·)‖Hk

t
. From (3.13), for small ν, ‖∂k

t u(0, ·)‖
2
L2

x,t

(by the trace theorem) and ‖∂k
t ∂

2
xu‖

2
L2

x,t
are bounded by CBk+2, which gives

‖∂k
t e

1
a‖

2
L2

x,t
+‖∂k

t e
1
a(L2, ·)‖

2
L2

t
≤ C(ν2Bk+2+‖e0ad‖

2
Hk

t
) ≤ C(ν2Bk+2+‖g0ad‖

2
Hk

t
+Bk+2).

(3.18)
This equation gives for k = 0 and small ν the first estimate in (3.16).

Modified advection: Let p1a(0, ·) := (∂t+c)2e1a(0, ·) = (∂t+c)2e0ad. We estimate
∂k
t e

1
ma at x = 0 using Theorem 3.4,

‖∂k
t e

1
ma(0, ·)‖

2
L2

t
≤ Cν2(‖∂k

t p
1
a(0, ·)‖

2
L2

t
+ e−2

aL2
ν ‖∂k

t p
1
a(L2, ·)‖

2
L2

t
+ ν‖∂k

t p
1
a‖

2
H1

x,t
)

≤ Cν2(‖e0ad‖
2
Hk+2

t

+ e−2
aL2
ν ‖∂k

t p
1
a(L2, ·)‖

2
L2

t
+ ν‖∂k

t p
1
a‖

2
H1

x,t
). (3.19)

For the last term on the right, we obtain

‖∂k
t p

1
a‖

2
H1

x,t
= ‖∂k

t p
1
a‖

2
L2

x,t
+ ‖∂x∂

k
t p

1
a‖

2
L2

x,t
+ ‖∂k+1

t p1a‖
2
L2

x,t

≤ C(‖p1a‖
2
Hk+1(0,T ;L2

x)
+ ‖∂xp

1
a‖

2
Hk(0,T ;L2

x)
)

≤ C(‖e1a‖
2
Hk+3(0,T ;L2

x)
+ ‖∂xe

1
a‖

2
Hk+2(0,T ;L2

x)
).

Since Lae
1
a = −ν∂2

xu, we get ∂xe
1
a = − 1

a (ν∂
2
xu+(∂t+c)e1a), and hence ‖∂xe

1
a‖Hk+2(0,T ;L2

x)
≤

C(ν‖∂2
xu‖Hk+2(0,T ;L2

x)
+ ‖e1a‖Hk+3(0,T ;L2

x)
). Using (3.18), we finally obtain

‖∂k
t p

1
a‖

2
H1

x,t
≤ C(ν2Bk+5 + ‖e0ad‖

2
Hk+3

t

+ ν2‖∂2
xu‖

2
Hk+2(0,T ;L2

x)
).

We use now (3.13) which gives ‖∂2
xu‖

2
Hk+2(0,T ;L2

x)
≤ CBk+4 and return to (3.19).

From the hyperbolic estimate (3.18), we see that ‖∂k
t e

1
a(L2, ·)‖

2
L2

t

and ‖∂k
t e

1
a‖

2
L2

x,t

are bounded by the same quantity, and hence we can also use the same bound for

e−2
aL2
ν ‖∂k

t p
1
a(L2, ·)‖

2
L2

t

and ν‖∂k
t p

1
a‖

2
H1

x,t

,

‖∂k
t e

1
ma(0, ·)‖

2
L2

t
≤C(ν2‖e0ad‖

2
Hk+3

t

+ ν5Bk+5). (3.20)

Advection-diffusion: e1ad is solution of the advection-diffusion equation with
non-zero data only on the right. Therefore, applying Lemma 3.2 in Ω1 with g2 =
e1ma(0, ·), we obtain

‖e1ad‖
2
L2

x,t
≤ Cν3‖e1ma(0, ·)‖

2
L2

t
.

Using (3.20) with k = 0 for the last term, we obtain

‖e1ad‖
2
L2

x,t
≤ Cν5(‖e0ad‖

2
H3

t
+ ν2B5) ≤ Cν5(B5 + ‖g0ad‖

2
H3

t
). (3.21)
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This equation gives the second estimate in (3.16), but we will also need to estimate
the value of e1ad at x = 0. Using (3.7) we get

‖∂k
t e

1
ad(0, ·)‖

2
L2

t
≤ Cν2‖∂k

t e
1
ma(0, ·)‖

2
L2

t
,

which gives by (3.20) again

‖∂k
t e

1
ad(0, ·)‖

2
L2

t
≤Cν4(ν3Bk+5 + ‖e0ad‖

2
Hk+3

t

). (3.22)

In particular, we have

‖R e1ad(0, ·)‖
2
L2

t
≤ Cν4(ν3B7 + ‖e0ad‖

2
H5

t
). (3.23)

We now prove the error estimates for the second iteration:
Advection: We again use the hyperbolic estimates for e2a. Since the initial values

are also vanishing, we obtain as in (3.18) the estimate

‖∂k
t e

2
a‖

2
L2

x,t
+ ‖∂k

t e
2
a(L2, ·)‖

2
L2

t
≤ C(ν2Bk+2 + ‖e1ad(0, ·)‖

2
Hk

t
). (3.24)

Inserting (3.22) we get

‖∂k
t e

2
a(L2, ·)‖

2
L2

t
+ ‖∂k

t e
2
a‖

2
L2

x,t
≤ C(ν2Bk+2 + ν4(ν3Bk+5 + ‖e0ad‖

2
Hk+3

t

))

≤ Cν2(Bk+5 + ν2‖e0ad‖
2
Hk+3

t

) (3.25)

≤ Cν2(Bk+5 + ν2‖g0ad‖
2
Hk+3

t

+ ν2Bk+5).

The last estimate with k = 0 gives the first result in (3.17).
Modified advection: Defining p2a := R e2a = (∂t + c)2e2a, we obtain using (3.25)

‖∂k
t p

2
a(L2, ·)‖

2
L2

t
+ ‖∂k

t p
2
a‖

2
L2

x,t
≤ Cν2(Bk+7 + ‖e0ad‖

2
Hk+5

t

). (3.26)

We estimate e2ma at x = 0 by Theorem 3.4,

‖e2ma(0, ·)‖
2
L2

t
≤ Cν2(‖p2a(0, ·)‖

2
L2

t
+ e−2

aL2
ν ‖p2a(L2, ·)‖

2
L2

t
+ ν‖p2a‖

2
H1

x,t
). (3.27)

As in the first step, the term at the boundary x = L2 is absorbed in the volume term,
and p2a(0, ·) = R e1ad(0, ·), which can be estimated by (3.23). To estimate the term
‖p2a‖H1

x,t
, we proceed as in the first iteration, to obtain

‖p2a‖
2
H1

x,t
≤ C(‖e2a‖

2
H3(0,T ;L2

x)
+ ν2‖∂2

xu‖
2
H2(0,T ;L2

x)
)

≤ C(‖e2a‖
2
H3(0,T ;L2

x)
+ ν2B4)

≤ Cν2(B8 + ν2‖e0ad‖
2
H6

t
). (3.28)

Inserting (3.23) and (3.28) into (3.27) we get

‖e2ma(0, ·)‖
2
L2

t
≤ Cν2(ν4(ν3B7 + ‖e0ad‖

2
H5

t
) + ν3(B8 + ν2‖e0ad‖

2
H6

t
))

≤ Cν5(B8 + ν‖e0ad‖
2
H6

t
).

Advection-diffusion: e2ad is solution of the advection-diffusion equation with
data only on the right. Therefore, applying Lemma 3.2 in Ω1 with g2 = e2ma(0, ·), we
obtain

‖e2ad‖
2
L2

x,t
≤ Cν3‖e2ma(0, ·)‖

2
L2

t
≤ Cν8(B8 + ν‖e0ad‖

2
H6

t
).
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4. Properties of the factorization algorithm for negative advection. We
consider now the advection-diffusion equation for a < 0 in Ω = (−L1, L2) with Dirich-
let boundary conditions on both sides,

Ladu := ∂tu− ν∂xxu+ a∂xu+ cu = f in Ω× (0, T ),
u(−L1, ·) = g1 in (0, T ),
u(L2, ·) = g2 in (0, T ),
u(·, 0) = h in Ω.

(4.1)

We suppose again that f and (g1, g2) are compactly supported in (0, T ], and that h
is compactly supported in Ω1 = (−L1, 0), and that for each t the function f(·, t) is
compactly supported in Ω.

4.1. Well-posedness of the factorization algorithm. For u1
a, suppose that

f ∈ H3+ 3
4 (Ω × (0, T )), g2 ∈ H3+ 3

4 (0, T ), h ∈ H3+ 3
4 (Ω), and that the compatibility

conditions (2.14) are satisfied. Then we have a unique solution u1
a in W 3+ 3

4 (Ω2 ×

(0, T )). For u2
a, using the previous result, we have f −Ru1

a ∈ H1+ 3
4 (Ω2× (0, T )), and

Lmau
1
a ∈ H2+ 3

4 (Ω2 × (0, T )). Therefore the traces at x = L2 and t = 0 are in H1+ 3
4

and compatible. Thus (2.6) defines a unique u2
a in H1+ 3

4 (Ω2 × (0, T )). Furthermore

u2
a(0, ·) ∈ H

5
4 (0, T ). For uad, Theorem 2.3 applies with γ = 5

4 , and (2.6) defines

a unique uad in H
9
2 ,

9
4 (Ω1 × (0, T )). Finally for u, using the regularity assumptions

above, u ∈ H2(γ+1),γ+1(Ω× (0, T )) with γ = 11
8 .

4.2. Error estimates for the factorization algorithm. We need a further
lemma in order to obtain our asymptotic estimates.

Lemma 4.1. Suppose a < 0, and let g ∈ L2(0, T ). Then there exists a constant
C > 0, such that for all ν > 0 the solution v of

Ladv = 0 in Ω1 × (0, T ),
v(−L1, ·) = 0 on (0, T ),

(∂t − a∂x + (a
2

ν + c))v(0, ·) = g on (0, T ),
v(·, 0) = 0 in Ω1,

(4.2)

satisfies the a priori estimate

‖v‖2L2
x,t

≤ Cν2‖g‖2L2
t
.

Proof. Multiplying the equation by v, integrating on (−L1, 0) and using the
boundary condition at x = −L1 yields

1

2

d

dt
‖v(·, t)‖2L2

x
−

|a|

2
v2(0, t) + ν‖∂xv(·, t)‖

2
L2

x
− ν∂xv(0, t)v(0, t) + c‖v(·, t)‖2L2

x
= 0.

Inserting the boundary condition at x = 0 we obtain

1

2

d

dt
(‖v(·, t)‖2L2

x
+

ν

|a|
v2(0, t)) + (

|a|

2
+

νc

|a|
)v2(0, t)

+ν‖∂xv(·, t)‖
2
L2

x
+ c‖v(·, t)‖2L2

x
=

ν

|a|
g(t)v(0, t).

Using the inequality ν|g(t)v(0, t)|/|a| ≤ ν2

|a|3 g
2(t) + |a|

4 v2(0, t) and integrating on the

time interval (0, T ) gives for all t ∈ (0, T )

c‖v‖2L2
x,t

≤
ν2

|a|3

∫ t

0

g2(τ) dτ.
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We can now prove our main theorem for negative advection.
Theorem 4.2. Suppose a < 0. Then there are positive constants C and ν̄ such

that for any h ∈ C∞
0 (Ω1), f ∈ C∞

0 (Ω× (0, T ]), g1, g2 ∈ C∞
0 ((0, T ]), and for any ν ≤ ν̄,

the solution obtained by the new factorization algorithm (2.6) satisfies the estimates

‖u− u1
a‖L2

x,t
≤ Cν‖∂2

xu‖L2
x,t
, (4.3)

‖u− uad‖L2
x,t

≤ Cν2(‖u‖H2,2
x,t

+ ‖f(·, 0)‖H2
x
+ ‖h‖H4

x
+ ‖∂2

xu(L2, ·)‖L2
t
), (4.4)

which implies that

‖u− u1
a‖L2

x,t
. ν, ‖u− uad‖L2

x,t
. ν2.

Proof. We define the errors e1a := u1
a − u, ead := uad − u, and e2a := u2

a − Lmau.
Since Lmau(·, 0) = f(·, 0)− 2adxh+ a2h/ν + νd2xh, the equations for the error are





Lae
1
a = −ν∂2

xu in Ω2,
e1a(L2, ·) = 0,
e1a(·, 0) = 0,





Lae
2
a = R e1a in Ω2,

e2a(L2, ·) = Lmae
1
a(L2, ·),

e2a(·, 0) = −νd2xh,





Ladead = 0 in Ω1,
ead(−L1, ·) = 0,
Lmaead(0, ·) = e2a(0, ·),
ead(·, 0) = 0.

We now analyze each of the three solves separately:
First advection equation in Ω2: With Theorem 2.2, we find that the error e1a

satisfies for k = 0, 1 and 2 the estimate

‖∂k
t e

1
a‖

2
L2

x,t
+ |a|‖∂k

t e
1
a(0, ·)‖

2
L2

t
≤ C

(
ν2‖∂k

t ∂
2
xu‖

2
L2

x,t
+ ‖∂k

t e
1
a(·, 0)‖

2
L2

x

)
. (4.5)

The case k = 0 yields the first result of the theorem. We further compute

∂te
1
a(·, 0) = −νd2xh, ∂2

t e
1
a(·, 0) = ν(adx + c)d2xh− νd2x∂tu(·, 0),

with ∂tu(·, 0) = f(·, 0)− (adxh+ ch− νd2xh), so that

‖∂te
1
a(·, 0)‖

2
L2

x
≤ ν2‖h‖H2

x
, ‖∂2

t e
1
a(·, 0)‖

2 ≤ ν2(‖f(·, 0)‖2H2
x
+ ‖h‖2H4

x
).

We thus obtain for R e1a = (c+ ∂t)
2e1a the estimate

‖R e1a‖
2
L2

x,t
≤ Cν2(‖u‖2

H2,2
x,t

+ ‖f(·, 0)‖2H2
x
+ ‖h‖2H4

x
). (4.6)

Second advection equation in Ω2: Using again Theorem 2.2, we obtain the
estimate

‖e2a(0, ·)‖
2
L2

t
≤ C(‖R e1a‖

2
L2

x,t
+ ν2‖h‖2H2

x
+ ‖Lmae

1
a(L2, ·)‖

2
L2

t
).

To evaluate Lmae
1
a(L2, ·), we observe that u(L2, ·) = ua(L2, ·), so that we have

Lmae
1
a(L2, ·) = −a∂xe

1
a(L2, ·) = ν∂2

xu(L2, ·). Therefore, using (4.6), we get

‖e2a(0, ·)‖
2
L2

t
≤ Cν2(‖u‖2

H2,2
x,t

+ ‖f(·, 0)‖2H2
x
+ ‖h‖2H4

x
+ ‖∂2

xu(L2, ·)‖
2
L2

t
). (4.7)

Advection-diffusion equation in Ω1: With Lemma 4.1 we obtain

‖ead‖
2
L2

x,t
≤ Cν2‖e2a(0, ·)‖

2
L2

t
.
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Fig. 5.1. Left: contour plot for the right hand side in space and time. Right: initial condition
a > 0

We can thus conclude using (4.7).
It remains to estimates ‖∂2

xu(L2, ·)‖L2
t
and ‖∂2

xu‖L2(Ω2×(0,T )). If the data is com-
pactly supported, there is only one boundary layer, at x = −L1, and (see [31])

u(t, x) = U(t, x) + ea(x+L1)/νU(t, 0) +O(ν), (note a < 0).

Here, U is the solution of the advection equation in Ω with data g2 at x = L2. The
norm of ∂xxu, though not bounded in the entire interval Ω, is bounded in Ω2, since

‖d2xe
a(x+L1)/ν‖2L2(Ω2)

=
|a|3

2ν3
(e2aL1/ν − e2a(L2+L1)/ν) ∼

|a|3

2ν3
e2aL1/ν ,

which tends to zero as ν goes to zero, because a < 0. Similarly the value at L2 is
bounded.

5. Numerical Experiments. We use a Crank-Nicolson scheme for the advection-
diffusion equation and an implicit upwind scheme for the advection equation. We
discretize Ω := (−1, 1) with N = 64000 points, which leads to a spatial step ∆x =
3.125× 10−5 and the time step ∆t = ∆x. We choose c = 1, g1 ≡ g2 ≡ 0, T = 1 and
the right hand side, shown in Figure 5.1 on the left, is

f(x, t) = f1(t)f2(x, t),

f1(t) = (sin4(4π(t− t0)) + sin4(2π(t− t0))/2)χt>t0 , t0 = 0.1,

f2(x, t) = e−100x2/4 + e−100(x−t/4−0.4)2 + e−100(x+t/2+0.4)2 .

5.1. Positive advection. We choose a = 1, with the initial condition, shown
in Figure 5.1 on the right,

u0(x) = e−100(x−x0)
2

, with x0 = −0.6.

Figure 5.2 shows first snapshots in time of the right hand side, and then of the viscous
solution (3.1) and the solution obtained by the factorization algorithm (2.5) after one
and two iterations when ν = 10−3. We see that in the first iteration the solution
u1
ad is very close to the viscous solution. This solution is improved with the second

iteration when ua is also improved.
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Fig. 5.2. From left to right: snapshots at time t = 0.25, 0.5 and 0.75. First line: right hand
side. Second line: solution of Algorithm (2.5) at iteration k = 1. Third line: solution of Algorithm
(2.5) at iteration k = 2

Figure 5.3 shows the L2 space-time error as a function of the viscosity becoming
small for the factorization algorithm (2.5) and gives a comparison to algorithms from
the literature. These algorithms solve an advection-diffusion equation Laduad = f
in Ω1 and an advection equation Laua = f in Ω2, and use for a > 0 either non-
variational transmission conditions ∂xuad(0, ·) = ∂xua(0, ·) and uad(0, ·) = ua(0, ·), see
[13, 23], or variational transmission conditions ν∂xuad(0, ·) = 0 and uad(0, ·) = ua(0, ·),
see [23, 24]. We see that the variational transmission conditions do not need an
iteration in this case, one can first solve advection-diffusion, and then advection. The
error is however O(ν

3
2 ) in the viscous region Ω1. With only one iteration of the

factorization algorithm, the error is O(ν
5
2 ), and with two iterations we get O(ν4),

both corresponding to our theoretical results in Theorem 3.5. The non-variational
transmission conditions also give an error O(ν

5
2 ), as good as with one iteration of

the factorization algorithm, but one needs to iterate and choosing a good relaxation
parameter to ensure convergence is not easy; we chose heuristically θ = 1

450
√
ν
in our

computations. In the inviscid subregion Ω2, the error of all methods is O(ν), only the
initialization step in the factorization algorithm has an error of O(1), as predicted by
Theorem 3.5.
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5.2. Negative advection. We now consider a negative advection example, a =
−1, with initial condition

u0(x) = e−100(x−x0)
2

, with x0 = 0.5.

Figure 5.4 shows the L2 space-time error between the viscous solution and the solution
of the factorization algorithm (2.6), and also a comparison to the errors of the other
coupling algorithms from the literature; the variational coupling conditions for a < 0
are −ν∂xuad(0, ·) + auad(0, ·) = aua(0, ·), and the non-variational ones are uad(0, ·) =
ua(0, ·). Once again the error in Ω2 is O(ν) for each algorithm, since each algorithm
solves the same advection equation in Ω2. However the factorization algorithm solves
then a second advection equation which provides a better boundary value for the
advection-diffusion problem in Ω1 and thus can provide an error O(ν2), whereas the
other algorithms only give an approximation O(ν) in Ω1.

6. Conclusions. We introduced a new algorithm to solve advection diffusion
problems with pure advection approximation in a subregion. We call this algorithm
factorization algorithm, because it is based on a factorization of the underlying op-
erator. We proved rigorous error estimates that show that our new algorithm gives
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solutions that are closer to the fully viscous solution of interest than other coupling
algorithms in the literature. Our numerical experiments indicate that our estimates
are sharp, an issue we are currently investigating using multiscale expansions.
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