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Abstract

Given a pair of stereo images and the transformation existing between the corresponding

camera coordinate systems, the depth of a scene point can be computed from its projections on

both images. Despite the difficulties related to the matching of such projections across homo-

geneous regions and the occlusion phenomenon, state of the art methods have already produced

accurate results on classical stereo datasets. This article proposes a new way of approaching

depth estimation. Instead of searching for dense pixel correspondences, a gross estimation

of the disparities is initially performed at the region level, resulting in a regional disparity

map which highlights the principal depth layers of the image. The disparity map is then sys-

tematically refined by considering finer partitions of the image. To this end, the watershed

of the image colour gradient is selected in order to compute the image partitions alongside a

meaningful hierarchy. We show that the ability to be driven by labelled markers enables the

watershed algorithm to generate a co-segmentation of both stereo images given the regional dis-

parities, which constitutes the main contribution of this paper. This co-segmentation allows

one to reliably compute the disparities of pixels along the region contours. Finally, the contour

disparities are transferred to the concerned regions after a careful analysis of their occlusion

state with respect to each adjacent region. Though approximate, we show that the proposed

method yields regional disparity maps which are close enough to ground truths in the view

of performing the desired refinements. We also expose the perspectives of this methodology

with respect to challenging stereo imagery, i.e. which is affected by noise or which contains a

considerable amount of homogeneous regions.
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1 Introduction

The problem of depth map computation from stereo dates back to the 70s and is traditionally

solved by working out pixel correspondences between the images. Early approaches rely

on feature points and contour matching in that respect [10, 16]. Based on a set of sparse

measurements, the objective consists of finding the depth surface which best fits every sample.

Most current methods however concentrate on the establishment of dense correspondences.

Local methods perform the matchings based on the dissimilarity costs of patches centred

around the pixels forming the candidate match. There are two main difficulties: the choice

of an appropriate dissimilarity measure, an exhaustive list of which can be found in [9], and

the definition of the relevant matching support or weighting within the patch, which purpose

is to ensure that more importance is given to the neighbours of the candidate pixel that

belong to the same object. Aggregation of the matching costs may be performed to enforce

consistency between scan-lines and is then followed by a refinement process. These methods

are generally favoured when good runtime performance is required and produce very good

results on standard datasets [7]. However, results are theoretically unpredictable across large

and fully homogeneous regions due to the local nature of these approaches.

Global methods on the other hand aim at finding the best trade-off between the minimiza-

tion of the matching costs, the preservation of features and the realization of smooth depth

transitions, the smoothness being for example weighted by the negative of the image gradient

in order to tolerate discontinuities along borders [8]. The dependencies of a pixel depth on its

matching cost and neighbourhood depths can be modelled by Conditional Random Fields for

which the associated energy is minimized by means of minimum cuts or belief propagation

[19]. The resulting algorithms are usually much slower than the local ones [6]. It is however

possible to approximate the minimization result by using semi-global approaches gathering

and aggregating the optimal results along different search lines without affecting the end result

[12].

The exploitation of regions within depth estimation algorithms is progressively gaining

popularity. Related approaches may be distinguished between super-pixels and layer-based

categories. In the first case, one is interested in matching super-pixels directly whilst the

smoothness of depth is enforced across neighbouring regions having close colour distributions

[20]. In the second case, the estimation process is guided by depth layers for which the planar

equations are estimated [5, 19] or which serve as defining the object boundaries where sharp

depth discontinuities are permitted [1]. Finally, regions are of a particular interest when

dealing with occluded pixels [15, 14] as they enclose pixels which turn out to be visible in

both images and which are likely to share similar depth when they are sufficiently close.

A region may be described according to its contour and the feature points it contains.

However, when regions are perfectly homogeneous or noise interferes with the detection of

feature points, contours provide the only clues of depth. The diffusion of contour disparities



to regions requires to take care of the state of a given contour with respect to each of its

adjacent region: does it stand for an occlusion border or a physical frontier? This information

is of vital importance in the context of regularization and has been little addressed so far,

apart from [18] which exploits boundaries junctions to this end.

In this work, a depth map is generated by systematic depth refinements at every stage of the

process. The reference image is first segmented using a marker driven watershed segmentation

as presented in section 2. The markers are automatically extracted so as to highlight the salient

objects in the scene and prevent region fusion caused by leaking gradients. The saliency is

moreover controlled so as to obtain hierarchical segmentations of the same image. Section

3 presents the concept of regional disparity which measures the average displacement of a

region across two stereo images and explains its relationship with the actual depth being

searched for. Section 4 shows how the regional disparities are computed over fine levels of the

segmentation using the results obtained for the coarse partition as a prior. Building up on the

estimation of regional disparities obtained for the fine partition, a co-segmentation of both

stereo images is produced (section 5) and the region related contour features are extracted

(section 6). The results are presented for each step of the proposed method and perspectives

are discussed in section 7.

Hereafter, it is assumed that the images constituting the stereo pair are rectified, which

means that the scene points projections are vertically aligned but have different abscissa. The

measured difference in abscissa corresponds to the disparity and is inversely proportional to

the depth [11]. The image which the depth if estimated for is referred to as the reference

image, whilst the other image is denoted as the second image.



Symbol Description

Morphological operators

B and H are structuring elements
H is an isotropic structuring element of elementary size
h is a structuring element pointing towards a specific direction of the processing grid
δB (f) Dilation of f : δB (f) [x] = supx∈B f [x]
εB (f) Erosion of f : εB (f) [x] = infx∈B f [x]
D1

g(f) Geodesic dilation of f under mask g:
D1

g(f) = inf (δH (f) , g)
Rg (f) Geodesic reconstruction of g from marker f :

Rg (f) = D+∞
g (f) = D1

g

(

. . .
(

D1
g(f)

)

. . .
)

R∗g (f) Dual geodesic reconstruction of g from marker f :
R∗g (f) = −R−g (−f)

Table 1. Notation

2 Reference Image Segmentation

The watershed algorithm partitions an image into a series of connected components satisfying

each an homogeneity criterion. They are obtained by flooding a topological surface, typically

the colour gradient of the image, from a set of markers. Each marker gives birth to a lake

which a unique label is assigned to and each lake in turn results in one region. As the flooding

goes on and uniformly increases in altitude, watersheds are constructed so as to prevent

lakes with different labels from merging. The interested reader will find the details of the

watershed construction in [2] as well as practical details for an effective implementation based

on hierarchical priority queues in [4].

The segmentation result is sensitive to the image gradient quality and the choice of ap-

propriate markers. A colour gradient expressed as the supremum of the individual hue,

saturation and luminance gradient magnitudes is used whilst the markers are computed from

the h-minima of the colour gradient. The rest of this section focuses on the generation of

segmentation markers.

2.1 Segmentation markers

In mathematical morphology, a marker is not limited to a single pixel but usually represents

a connected component. Markers control the behaviour of the watershed segmentation: they

should preferably lie at the bottom of the topological surface being flooded and discriminate

every region to be segmented. We derive here a method of marker extraction which processes

the h-minima of the colour gradient.

2.1.1 h-minima

Let g be a function mapping a point in 2d space to a real number. x belongs to the h-minima

of g if and only if there exists a path Γ : [0, 1]→ R from x = Γ(0) to one of the minima of g,
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Figure 1. (a) Input image, (b) The h-minima of the input image colour gradient are represented over the
image gradient. The main structures of the images are highlighted by the resulting indicator function,
however there exists markers which target more than one region due to leakages in the gradient. (c) In
order to circumvent this limitation, an adaptive erosion is applied on the h-minima. This way, small
markers are preserved whilst markers split where the gradient leaks. (d) Choosing those markers leads
to the watershed obtained for the coarse partition represented over the input image.

say x0 = Γ(1), such that g(Γ(si)) ≥ g(Γ(sj)) for every si < sj and g(x) − g(x0) < h. Hence,

the h-minima of g are given by the following indicator function:

M(g, h)[x] =







1 if
(

R∗g (g + h)− g
)

[x] > 0

0 otherwise
(1)

The operator expressed in equation 1 is extensive with respect to h, which implies that

M(g, hi) ⊂ M(g, hj) for all hi < hj as proved in [3]. In other words, increasing h yields

markers which are bound to enforce the contrast between the regions they designate. Figure

1(b) shows the result of the h-minima for h sufficiently large. One can notice that gradient

leakages cause undesired marker overlaps between two target regions.



2.1.2 Adaptive erosion on h-minima

Figure 1(c) shows the effect of applying an adaptive erosion on the h-minima of the gradient.

The objective is to encourage markers splitting at locations where markers get thinner due to

gradient leakages. A distance function d is computed by construction of successive erosions

applied on the binary mask corresponding to the h-minima of g, i.e. M(g, h). Thin structures

belonging to the mask corresponds to valleys in function d. New markers are therefore given

by the connected components resulting from the indicator function

R(d, α)[x] =







1 if (d− Rd (αd)) [x] > 0

0 otherwise
(2)

where 0 ≤ α < 1 controls the sensitivity to the valleys depth. Small values of α hence limit

the splitting operation to the deepest valleys of d only. This erosion is said to be adaptive

because it preserves small markers, contrary to fixed size erosions or openings.

2.1.3 Fine partition markers

In order to exploit hierarchical relationships between the image coarse and fine partitions,

every region belonging to the fine partition must be included in only one region of the coarse

partition. Lowering h within the computation of h-minima allows one to highlight new regions

which are less contrasted, but when used with an adaptive erosion, an additional processing is

required to satisfy the aforementioned constraint. It is essential to impose the watershed lines

of the coarse partition on the fine partition: hence, the topological surface being flooded for

the generation of the fine partition is an augmented colour gradient reaching the maximum

possible value at locations covered by the coarse watershed. Finally, amongst the fine partition

markers, at least one marker must be included in every cells forming the coarse partition. Such

verification can be performed by a reconstruction of the coarse partition from the markers

chosen for the fine partition. Cells which have not been reconstructed simply inherit from the

corresponding coarse partition marker.



3 Regional Disparities

The regional disparity is a measure assigned to every region of a reference image partition. It

quantifies the relative displacement of each region across the stereo image pair.

Let R = {R1, · · · , Rn} be the set of regions obtained for the reference image. Ri(x, y) is an

indicator value that equals 1 for every pixel (x, y) belonging to region Ri, 0 otherwise. Also let

gR and gS be the colour gradients of the reference and second images respectively. For each

region Ri, the translation t(i) applied on gS that provides the best overlap of the reference

and second image gradients within Ri is estimated. As stereo images are assumed to be

rectified, the translation only occurs along the x-axis, so t(i) = (d(i), 0). Optimal translations

are determined by equation 3.

d(i) = argmin
d

∑

(x,y)|Ri(x,y)=1

|gR(x, y)− gS(x− d, y)| (3)

Assuming that all points in the second image have an abscissa smaller than or equal to their

correspondence in the reference image, the regional disparity obtained for region Ri is d
(i).

3.1 Interpretation

The link between regional disparities and pixel disparities can be explained as follows:

• Transferring the regional disparity of a region to its pixels is valid if the region is fronto-

parallel to the camera and the region contours are representative of the region physical

frontier.

• The regional disparity of regions representing holes within objects is likely to inherit

from the disparities of occlusion contours, in particular if there is no gradient information

inside the hole, and thus cannot be used to provide an estimate of the disparities inside

those regions, but around the holes.

• The regional disparity of slanted regions belongs to the range of the actual pixel dispar-

ities. They may only serve as a gross estimate of the true disparities.

When regions undergo semi-occlusions preserving at least a piece of frontier contour, several

optimal overlaps of the stereo gradients are plausible with respect to equation 3, which may

lead to incorrect regional disparities. It is however possible to compute a rectified regional

disparity map to take these semi-occlusions into account.

3.2 Rectified regional disparities

The rectification algorithm proposed below aims at detecting occlusion contours and rectifying

the mistaken regional disparities accordingly. It first assigns to every region two disparities:
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Figure 2. Comparison between (a) brute and (b) rectified regional disparities which handle semi-
occluded regions on the coarse partition of Middlebury Art image [13].

one that is representative of the disparity near the left contour of the region, the other of

the right contour. To do so, regions obtained for the reference image are vertically split into

left and right subregions and regional disparities for these subregions are estimated. Second,

the following neighbourhood relationships between regions are defined: Nl(Ri) includes all

regions Rj ∈ R that are adjacent to the left subregion of Ri and the same goes for Nr(Ri)

with respect to the right subregion of Ri. Third, algorithm 1 is executed for every region Ri:

Algorithm 1 Regional disparities rectification

1: function RectifyDisparities(R, i)
2: dl ← getLeftContourDisparity(Ri)
3: dr ← getRightContourDisparity(Ri)
4: if dl > dr + τ then

5: for all Rj ∈ Nl(Ri) do

6: d
(j)
r ← getRightContourDisparity(Rj)

7: if |dl − d
(j)
r | < τ then

8: dl ← dr
9: end if

10: end for

11: else if dr > dl + τ then

12: for all Rj ∈ Nr(Ri) do

13: d
(j)
l ← getLeftContourDisparity(Rj)

14: if |dr − d
(j)
l | < τ then

15: dr ← dl
16: end if

17: end for

18: end if

19: return (dl, dr)

20: end function

The intuition behind this algorithm is straightforward: when a region is assigned to sig-



nificantly different left and right disparity values according to the chosen threshold τ (i.e.

when algorithm condition 4 or 11 is fulfilled), either the highest disparity value is due to an

occluding contour or the region is simply not fronto-parallel. In the case of an occlusion, one

checks whether condition 7 or 14 holds. In the affirmative, the disparity that is the smallest

between the left and right disparities is assigned to the entire region.



4 Refinement of regional disparity maps

The computation of regional disparities on fine partitions significantly improves the quality

of the resulting disparity maps when input images contain a lot of texture. Fine partitions

though are prone to include parasite regions subject to total occlusions. In order to estimate

the regional disparity for each of these regions, one has to take account of the hierarchical rela-

tionship that exists between coarse and fine regions. For every occluded region, the matching

support is transferred to the close non-occluded fine regions which are part of the same gross

region. The occlusion areas are detected using the regional disparity map computed for the

coarse partition. Finally a relaxation process is applied on the resulting regional disparities

in order to enforce their smooth evolution across each coarse region.

4.1 Evaluation

Figure 3 shows the regional disparity maps obtained for the fine partitions on classical stereo

datasets. If these disparity maps were used as the final result, the corresponding overall

error rate with respect to ground truth would equal 4.27%, 6.92% and 9.20% with an error

tolerance of 2 pixels for the disparities obtained on the Tsukuba, Cones and Teddy test cases

respectively.

As expected, the most important errors occur along homogeneous slanted regions and

reveal the limits of regional disparities. Nonetheless, the latter provide the necessary informa-

tion for the extraction of depth-ordered layers and the generation of equivalent stereoscopic

segmentations described in section 5. Those two ingredients play a central role in the compu-

tation of region contour disparities and their attribution to the concerned regions as shown

in section 6.



Tsukuba Cones Teddy

Figure 3. Regional disparity maps obtained for the fine partitions of three classical images from Middle-
bury stereo database [17]. Top row: input images, middle row: ground truth (black pixels correspond
to unknown disparities), bottom row: regional disparity maps.
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Figure 4. Morphological co-segmentation of the Middlebury Art image induced by regional disparities.
(a) Reference image, (b) Coarse partition obtained for the reference image, (c) Equivalent partition
obtained for the second image of the stereo pair. The use of labelled markers immediately yields a
matching between the regions of the stereo pair.

5 Morphological Co-Segmentation

The morphological co-segmentation consists of obtaining equivalent partitions between the

images composing a stereo pair. In that context, the watershed segmentation driven by

markers remains the tool of choice. The first experiments on the matter were presented in

[2]. The key idea is to propagate the markers obtained for the reference image to the second

image. The rectified regional disparities can therefore be used in that respect as shown in

figure 4.

Given the partition map LR of the reference image, such that LR(x, y) = i⇔ Ri(x, y) = 1,

the second image partition LS is estimated according to the computed regional disparities.

Regions of the reference image are propagated to the second image according to equation 4

LS(x, y) = argmax
i

{

d(i) Ri(x− d(i), y)
}

(4)

In other words, when several pixels overlap due to the translations of different intensities

applied on the reference image regions, the pixel which has the lowest depth (and hence the

highest disparity with respect to the considered stereoscopic configuration) is therefore the

only one to be eventually transposed to partition LS . Those which have not been propagated

are therefore marked as being occluded in the second image of the stereo pair.

Once the partition has been obtained for the second image of the stereo pair, an adaptive

erosion is applied on each cell of the partition so as to create markers which do not overlap

with image borders. The markers obtained after this erosion are however not relabelled. The

watershed segmentation is then computed using these markers and the colour gradient of the

second image. Finally, the marker labelling inherited from the region transfer immediately

yields the matching between the stereo regions.



6 Contour disparities

This section focuses on the extraction and use of disparities which can be recovered along the

watershed of the reference image.

6.1 Contour point matching

The matching of contour points is performed for each scanline of equation y = ys indepen-

dently and relies on dynamic programming. Let LR and LS be the labelled partitions and

IR = {x1, . . . , xm} and IS = {x′1, . . . , x
′
n} denote the ordered lists of the intercepted contour

points abscissa of the reference and second images respectively.

The cost of matching x ∈ IR to x′ ∈ IS depends on the corresponding points descriptors

which originate from the co-labelled partitions and is expressed by equation 5:

c(x, x′) =















0 if for all h, δh (LR(x, ys)) = δh (LS(x
′, ys))

and εh (LR(x, ys)) = εh (LS(x
′, ys))

+∞ otherwise

(5)

The optimal matching cost accumulated along the scanline is then obtained by evaluating

the recursive relation defined by equation 6 at C(m,n) for any occlusion cost coccl > 0:

C(i, j) = min{ C(i− 1, j − 1) + c(xi, x
′
j),

C(i− 1, j) + coccl ,

C(i, j − 1) + coccl } (6)

C(0, 0) = c(x0, x
′
0)

Backtracing the arguments of the minimization that yields the accumulated cost C(m,n)

provides the matching result from which contour disparities are retrieved for every points

which have not been classified as occlusions in one of the stereo images.

Of course, the proposed algorithm enforces the ordering constraint. This property is desir-

able, but for contour points that belong to the same depth layer only. It is however possible

to perform the matchings for each depth layers independently, given the regional disparity

maps.

Figure 5 shows an example of these contour disparities computed over the Teddy image. In

comparison with figure 3, the evolution of depth along the borders of the shed is now clearly

visible. The result is however sensitive to the quality of the watershed: in particular false

contours should not be used. Note that such false contours can be removed by using the first

level of hierarchical algorithms, such as the waterfalls [2].
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Figure 5. Visualization of contour disparities obtained for Teddy under the full range of disparities (a)
and a restricted range of disparities (b). One can notice the evolution of disparities along the contours
of the shed’s roof which were previously not captured by the regional disparities.

Symbol Description

Transfer of contour disparities

h one the 8 directions of the square image grid
Bh Structuring element of direction h

DR Regional disparity map of reference image, s.t.
DR(x, y) = d(i) ⇔ Ri(x, y) = 1

WR Binary watershed function of the reference image
WR(x, y) = 1 iff (x, y) belongs to watershed

WC Contour disparities available along the watershed
WC(x, y) equals the contour disparity at pixel (x, y)
if available, ⊥ otherwise

Table 2. Notation

6.2 Occlusion reasoning and disparity transfer

Before performing any regularization, an essential question remains: which are the regions

concerned by the previously computed contour disparities? A piece of contour always repre-

sents the physical frontier of at least one of the adjacent regions. If one of the adjacent regions

were occluded, then its regional disparity should be inferior to the one of the non-occluded

region.

Based on that observation, we devise an algorithm which transfers the contour disparities

of the watershed to the neighbour pixels of the appropriate region(s). Table 2 describes the

input variables used in the proposed algorithm. In order to detect the surrounding pixels of

the watershed that belong to the region of lowest depth, we compute for each direction h the
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Figure 6. Disparity transfer from contour to regions. (a) Binary watershed WR highlighted with gray
pixels, (b) Regional disparity map DR for which red pixels have a higher disparity than green pixels,
(c) Contour disparities WC , (d) The directional transfer of disparities P← and (e) P→ occurs for pixels
shown in white, (f) The resulting transfer inside appropriate regions yields the measurements enclosed
in Dcontour.

detection map Ph given by the indicator function described in equation 7:

I1(x, y) = 1 ⇔ WC(x, y) ≥ 0

F1 = DR − εBh
(εBh

(DR))

F2 = δH (δH (DR))− εH (εH (DR))

I2 = δBh
(I1)−WR

I3(x, y) = 1 ⇔ F1(x, y) > 0

I4(x, y) = 1 ⇔ F2(x, y) = 0

Ph = I2 ∩ (I3 ∪ I4) (7)

such that I1, . . . , I4 represent binary functions. The map holding the transferred contour

disparities is finally given by equation 8.

Dcontour =







∑
h
Ph δBh

(WC)
∑

h
Ph

where
∑

h Ph > 0

⊥ otherwise
(8)



7 Conclusion

We have proposed a methodology of depth map estimation which, instead of trying to establish

dense pixel correspondences from scratch, reasons about the displacements of gross regions

first, refines the analysis at a finer degree of segmentation and deduces the disparities of

contour points. The regularization step that follows is outside the scope of this paper but is

intended as future work.

In this approach, the morphological segmentation is the prime mechanism for obtaining

segmentation hierarchies and equivalent segmentations of stereo images. The latter drives

the matching of contour points and is bound to remain robust in the presence of noise or

many homogeneous regions, as opposed to features points or dense correspondences, which

is the primary motivation of the region-based approach. However, in the case of more ideal

stereo imagery, nothing prevents the use of regional disparities as a prior for feature points

extraction which could add valuable information to the regularization process.
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