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Abstract. In the present investigation, a space adaptive multiresolution method is devel-
oped to solve the incompressible two-dimensional Navier-Stokes equations in the vorticity-
stream-function formulations including the penalization term. The new method is based
on a multiresolution analysis which allows to reduce the number of active grid points
significantly by refining the grid automatically via nonlinear thresholding of the wavelet
coefficients in a one-to-one correspondence with the grid points. To study the accuracy
of the method, dipole collision with a straight wall is considered as a benchmark, a good
agreement between the results of adaptive simulations and that of uniform grid solver is
obtained. The grid adaptation strategy uses an estimation of the local regularity of the
solution via wavelet coefficients at a given time step. An extension to interactions with
forced deformable bodies, i.e., swimming of a fish, is done using the volume penalization
method. A Lagrangian structure grid with prescribed motion cover the deformable body
interacting with surrounding fluid due to hydrodynamic forces and moment calculated on
an Eulerian reference Cartesian grid. The results of swimming fish are compared with
those of Gazzola et al. where a uniform grid is used. The obtained results show that the
CPU-time of the adaptive simulations can be significantly reduced with respect to sim-
ulations on a regular grid. Nevertheless the accuracy order of the underlying numerical
scheme is preserved.

1 INTRODUCTION

The aim of present investigation is to develop a reliable self-adaptive numerical method
for direct simulation of incompressible flows. Conventional methods for spatial discretiza-
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tion of the PDEs (e.g., finite differences, finite volumes and finite elements) have limited
order of accuracy especially near boundaries, but they are more flexible in dealing with
complex geometries over a suitable grid. On the other hand standard spectral methods
which are widespreadly used in direct numerical simulation of turbulence are limited to
Cartesian grids. One can recognize the poor spectral localization (good spatial local-
ization/resolution) of the former methods while good spectral localization (poor spatial
localization/resolution) of the latter methods [4]. The limitation of mentioned methods,
for problems with widely disparate spatial scales, has encouraged the researcher to use
alternative methods, with limited accuracy but good spatial localization in regions where
high gradient of flow variables is present. Adaptive methods can be divide into r-type
(a fixed number of grid points are redistributed), h-type (regriding is performed occa-
sionally) and p-type (the degree of the polynomial representing the solution is locally
increased) each one with their own advantages and disadvantages as detailed in liter-
atures. Among different methods for grid adaptation h-type refinement proved to be
more advantageous in terms of error control. Among different error-estimating adapta-
tion strategies (which most of them belong to the finite element family) wavelet-based
numerical methods have proved to be an efficient tool in developing adaptive numerical
methods which control the global (usually L2) approximation error. Wavelet transforms
allow to estimate the local regularity of the solutions to a given PDE, with a very efficient
algorithm, and thus can define auto-adaptive discretization with local mesh refinement
[9]. Liandrat and Tchamitchian [1] proposed the first wavelet-based adaptive method for
numerical simulation of PDEs. The currently existing wavelet-based algorithms can be
classified as pure wavelet methods and wavelet optimized grid methods. Pure wavelet
methods, employ wavelets directly for discretization of the governing equations. On the
other hand, wavelet optimized grid (WOG) methods [11] combine classical discretizations
of considered equations (e.g., finite differences or finite volumes) with wavelets, which are
used to define the adaptive grid. See [6] and [13] where a finite volume discretization
of governing equations combined with cell-averaged interpolating wavelet transform for
grid adaptation. In the present work the method of adaptive multiresolution analysis
will be applied to the Navier-Stokes equations in vorticity and stream-function formula-
tion. However the concepts are also applicable to the primitive variables. Thus similar
to WOG methods the role of the wavelet transform is the adaptation of the grid and
the fast interpolation of flow variables at new unknown points. A second-order central
finite difference method with symmetric stencil over an adaptive Cartesian grid is used
for spatial discretization of the equations. Finite difference method represents a suitable
combination with the multiresolution analysis based on the Harten’s point-value wavelet
transform. The concept of symmetric stencils will lead to intermediate (hung) points, that
their values can be interpolated accurately via inverse wavelet transform, see [5]. After
validation of the developed adaptive multiresolution solver, using the results of previous
studies of dipole-wall collision, an extension to fish swimming via the volume penaliza-
tion method will be presented. Volume penalization method is a sub branch of immersed
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boundary methods, see [7] for a complete review of these methods. As a starting point in
the present work we take the two-dimensional vorticity stream-function solver developed
in [12] for a uniform grid and the adaptive solver developed in [15] for simulation of the
flow inside curved geometries. The code is developed in FORTRAN and is accessible for
all [19]. The manuscript is organized as follows; In the following a summary of governing
equations, multiresolution analysis, discrete wavelet transforms and the idea of point se-
lection by filtering of the wavelet coefficients will be presented. After that for validation of
the solver the results of the dipole collision with straight wall is compared with previous
studies. Next a test case from fish swimming will demonstrated as application. Finally,
conclusions and perspectives will be discussed.

2 GOVERNING EQUATIONS

The governing equations of the incompressible flows are the Navier-Stokes equations.
In two-dimensional problems the vorticity ω and stream-function ψ formulation is more
efficient than primitive variables. By taking the curl of the Navier-Stokes equations, one
obtains the vorticity transport equation:

∂tω + (u · ∇)ω = ν∇2ω +∇× F , x ∈ Ω ∈ R
2 (1)

where ω(x, t) = ∇×u = vx−uy denotes the vorticity, Ω is the spatial domain of interest,
u(x, t) is the velocity field, ν = µ/ρf > 0 is the kinematic viscosity of the fluid, ρf
is the density and F(x, t) is a source term. For a complete description of a particular
problem, the above equations need to be complemented to describe an initial/boundary
value problem (IBVP). The equation is parabolic in time and the velocity components
are (u, v) = (∂yψ,−∂xψ) with ψ being the stream-function, satisfying a Poisson equation

−∇2ψ = ω (2)

which is an elliptic equation in space. The penalization term for unit mass of the fluid
reads,

F = −η−1χ(u− uP ) (3)

where uP (x, t) is the velocity field of the immersed body. The Navier-Stokes equations are
written for unit mass of the fluid, therefore the dimension of the terms like F is accelera-
tion, i.e., [LT−2]. Penalization parameter η is the porosity (permeability) coefficient of the
immersed body with dimension [T ]. The mask (characteristic) function χ is dimensionless
and describes the geometry of the immersed body.

χ(x, t) =

{

1 x ∈ Ωb

0 x ∈ Ωf
(4)

where Ωf represents the domain of the flow and Ωb represents the immersed body in the
domain of the solution. The solution domain Ω = Ωf ∪ Ωb is governed by the Navier-
Stokes equations in the fluid regions and by Darcy’s law in the penalized regions, when
η → 0.
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3 MULTIRESOLUTION ANALYSIS

Denoting by E(∆t) the discrete time evolution operator, the global algorithm can
schematically be summarized by

ωn+1 = E(∆t)

[

M−1 · S · T (ϵ) ·M

]

ωn (5)

where M and M−1 are the direct (WT) and inverse (IWT) wavelet transform operators.
T (ϵ) is the thresholding operator and S represents the safety zone operator. For an Euler
explicit time integration we have

E(∆t)ωn = ωn +∆t RHS(ωn). (6)

where RHS operator contains all the terms of the considered evolutionary equation to be
integrated except time derivative. The summary of the multiresolution method is given
in Algorithm 1. Some important notes are given in the following: (1) Before interpolation
of the values of an independent variables via IWT (from the coarsest level up to the finest
level) in some grid points (with wavelet coefficients equal to zero, d = 0), it is necessary
to mark all the intermediate necessary points for having a consistent WT, (from the
finest level down to the coarsest level) and adding them to the list of the points to be
interpolated. (2) In time integration via multi-step methods such as Runge-Kutta family
before calculation of spatial derivatives at intermediate steps, the value of u∗ for the
hung points, must be interpolated again from the new values of active points. But 6-(a)
and 6-(b) will be done once in each time step. (3) In the case of the two-dimensional
Navier-Stokes equations in vorticity stream-function formulation, before calculation of the
spatial derivatives it is necessary to solve an elliptic equation, i.e., Eq. (2) for updating
stream-function, for more details see [17].

3.1 Biorthogonal wavelet transform

To explain the concept of WT, we consider the case of Harten’s point values repre-
sentation [3] over a uniform grids, which is well adapted for finite difference methods,
versus Harten’s cell average method which is more suitable for finite volume methods. By
considering in a unit interval, the hierarchy of uniform dyadic grids will obtain from

Xj = {xj,i ∈ R : xj,i = i2−j, i = 0, · · · , 2j}, j = 0, · · · , J (7)

with spacing 2−j, where j is the level and i represents the position. The number of points
must always be odd (N = 2J +1) to have a point in the middle. A given discrete function
f(x) can be represented with the use of wavelet basis as follows

f(x) =
2J
∑

i=0

f0,iΦ0,i(x) +
J
∑

j=0

2J
∑

i=0

dj,iΨj,i(x) (8)
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Algorithm 1 Multiresolution analysis

1. Start from an initial condition over a dyadic grid

2. Apply WT to the active points (from the finest level down to the coarsest level) to
compute the wavelet coefficients of the independent variable

3. Perform thresholding T (ϵ) to remove all the points from the list of the active points
which their wavelet coefficients are below the corresponding threshold ϵj

4. Add safety zone to the list of the new active points

(a) Add neighbor points at the same and one above levels

(b) Guarantee the gradedness of the new active points (optional)

(c) Add necessary points to the current list of the active points, for having a
consistent direct or inverse WT

5. Apply IWT to the new active points to compute the values of the independent
variables (or interpolate the values of all newly added points via IWT with d = 0)

6. Perform the time evolution of the independent variable for all the active points

(a) Search for the nearest active point to determine dist for all active points

(b) Check for the existence of all other neighbors of the active points with distance
dist, mark all the missing points as the hung points

(c) Interpolate the values of the hung points via IWT with d = 0

(d) compute the spatial derivatives for the given PDE via FDM with symmetric
stencils

7. Go to step 2, if T < Tend
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where the orthonormal basis are considered scaling functions Φj,i and wavelets Ψj,i. In-
terpolating wavelet coefficients are defined as

dj,i = ⟨f,Ψj,i⟩ = fj+1,2i+1 − f̃j+1,2i+1 (9)

where cubic (third-order) interpolation can be used as follows,

f̃j+1,2i+1 =
−fj,i−1 + 9fj,i + 9fj,i+1 − fj,i+2

16
(10)

near boundaries forward/backward stencil must be used for interpolation, for more details
see [17].

3.2 Filtering of wavelet coefficients

Given a threshold parameter for the finest ϵJ or the coarsest ϵ1 level, data compression
will be obtained by thresholding of the detail coefficients, also called nonlinear filtering,
applied to wavelet coefficients in wavelet space. After performing the direct transform,
wavelet coefficients smaller than a threshold are set to zero and the corresponding point
can be eliminated from the set of the points, in other words we can find the value of that
point by interpolation and the error remains bounded by the threshold value.

dj,i =

{

0 if |dj,i| ≤ ϵj,
dj,i else

(11)

where ϵj = ϵJ 2D(j−J) = ϵ0 2D(j), D = 1, 2, 3 is the dimension of the problem, and J
denotes the maximum level. After nonlinear filtering in wavelet space the given function
f(x), can be reconstructed f(x), just with the significant wavelet coefficients correspond-
ing to the points where the function is not regular. Those points must be kept to guaranty
the boundedness of the error introduced due to filtering and eliminating non necessary
points. Following Donoho [2], it can be shown that for a sufficiently smooth function f(x),
the error is bounded by threshold, i.e., |f(x)− f(x)| ≤ c1ϵ0. Consider a non-periodic one-
dimensional function f(x) over [0, 1]

f(x) =







8.1e1/4e−|x−1/2| 0.0 ≤ x < 0.25
9e−|x−1/2| 0.25 ≤ x < 0.75
e−|x−1/2|(16x2 − 24x+ 18) 0.75 ≤ x ≤ 1.0

(12)

with a jump at x = 0.25, a jump in the first derivative at x = 0.5 and a jump in the second
derivative at x = 0.75. Consider also a Gaussian function, f(x) = exp((x− 0.5)/δ)2 where
x ∈ [0, 1]. Their sparse point representations, with the use of cubic interpolating wavelet
(PWT = 4) transform, for J = 10, filtered with threshold ϵ = 1 × 10−3 are illustrated in
Fig. 1 (a) and (b). A good compression and error bounded by threshold can be seen, for
more details see [17].
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Figure 1: Sparse point representation of 1D functions, obtained by WT with cubic interpolation (J =
10), filtered with threshold ϵ = 1×10−3. The green dots (marked •) show the retained grid points. (Left)
Gaussian function, compression = 95%, L∞-Error ≤ 1 × 10−4. (Right) Function (12), Compression
= 94%, L∞-Error ≤ 5× 10−5.

4 VALIDATION

In the present investigation the problem of dipole-wall collision studied by Clercx et al.
[10] is chosen as a benchmark computation for validation of the proposed algorithm. The
simulation is performed in a square domain [0, 2]× [0, 2] with four rigid walls at (x, y = 0
& x, y = 2). The flow is initialized in the form of two shielded Gaussian mono-polar
vortices, where their centers placed at a distance 0.2 apart. The vorticity distribution in
each monopole is given by

ω(0,xn) = ωe(1− r2/r20) exp(−r2/r20) (13)

where r0 is the core radius, r = ||x− xn|| with xn being the position of the vortex center.
The two isolated monopoles are located at x1 = (1, 1.1) and x2 = (1, 0.9), demanding
that the root mean square (rms) velocity is initially equal to unity (E = 2) yields the
amplitude of each isolated monopole, ωe = ±299.528385375226 [14]. The core radius
of the shielded monopoles is set to r0 = 0.1. The integral-scale Reynolds number for
the initial field is given by Re = UrmsL/ν where the characteristic length scale is set to
the half-height of the domain, L = 1 and the characteristic velocity to the initial root
mean square velocity, Urms = 1. The time evolution of the dipole is calculated by the
developed multiresolution finite difference solver with threshold ϵ = 10−3 and maximum
grid level J = 11 for Reynolds 1000. The evolution of the vorticity isolines and the
corresponding adaptive grid starting from the initial condition at t = 0 up to t = 1, is
shown in Fig. 2. Comparisons of the total energy E(t) = 1

2

∫

Ω
|u(x, t)|2dx and the total

enstrophy Z(t) = 1
2

∫

Ω
|ω(x, t)|2dx between the uniform grid solver and the multiresolution

computation with thresholds, ϵ = 10−3 and ϵ = 10−4, with maximum grid level J = 9 are
plotted in Fig. 3 (a) and (b), respectively. The agreement between the uniform grid solver
and the multiresolution solver is perfect and the results for ϵ = 10−3 and ϵ = 10−4 are
almost identical. Therefore we will use ϵ = 10−3 for all multiresolution computations. A
convergence study for the total enstrophy Z(t) (with the uniform grid solver) for Reynolds
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Figure 2: The evolution and collision of the vortices (represented by the colored isolines) with walls (up)
and the corresponding adaptive grid (down), maximum grid level J = 11 in each direction, threshold
ϵ = 10−3, for Reynolds 1000.

1000, with different grid spacings, i.e., maximum level in each direction J = 8, 9, 10, 11, is
performed. The simulation with pseudo-spectral solver of Clercx is taken as the reference
solution [10]. The results of the present computation are illustrated in Fig. 3 (c). It can
be observed that by increasing the number of grid points the curves become closer and
closer, we hope the results of J = 12 will match with that of Clercx et al. [10].

5 APPLICATION

Anguilliform swimming presented in Gazzola et al. [16] is considered as application
for the proposed algorithm. The details of our fluid/solid interaction algorithm is given
in [18]. A periodic swimming law is defined by fitting the backbone of the fish to a given
curve y(x, t) keeping the backbone length lfish fixed. Let ξ be the arclength over curvilinear
coordinate of the deformed backbone (0 ≤ ξ ≤ lfish). For points uniformly distributed
∆ξ = lfish/(N − 1) over the backbone, y is given by

y(x, t) = a(x) sin(2π(x/λ+ ft)) (14)

where λ is the wavelength, f is the frequency of the backbone and a(x) is the envelope
a(x) = a0 + a1x + a2x

2 where x is defined by inverting the arclength integral, i.e., ∆x =
∆ξ/

√

1 + (∂y/∂x)2. The geometry of the fish is presented in [18]. The parameters used
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Figure 3: Comparisons of the total energy (a) and the total enstrophy (b) between the uniform grid
solver and the multiresolution computation with thresholds, ϵ = 10−3 and ϵ = 10−4, for Reynolds 1000
and maximum grid level J = 9 in each direction for all simulations. Convergence study (c) for the total
enstrophy Z(t) toward the data from Clercx et al. [10] with the present finite difference computations
(Uniform/MR solver) for Reynolds 1000 and maximum grid level J = 8, 9, 10, 11 in each direction.

by Gazzola et al. [16] for the kinematics of the fish are as follows; λ = 1, f = 1, a2 = 0,
a1 = 0.125/(1 + c), a0 = 0.125c/(1 + c) and c = 0.03125. The buoyancy is equal to
zero, i.e., ρb = ρf . The viscosity of the fluid is set to ν = 1.4 × 10−4 resulting in a
Reynolds number approximately Re ≈ 3800, with an asymptotic mean velocity Uforward ≈
0.52. The simulations of Gazzola et al. [16] are carried out on a rectangular domain
(x, y) ∈ [0, 8lfish] × [0, 4lfish] with resolution of 4096 × 2048 and penalization parameter
η = 10−4. We are performing our simulations on a rectangular domain (x, y) ∈ [0, 8lfish]×
[0, 8lfish] by imposing penalization parameter inside the body equal to η = 10−3 with
maximum resolution of 1025 × 1025 and ∆t = 5 × 10−4. The centroid of the fish is
initially positioned at xcg = 0.9Lx and ycg = 0.5Ly in our simulations. We impose two
degree of liberty fixing the angular velocity equal to zero. The simulations start with
the body and fluid at rest. The forward velocities of the center of the mass computed
with different methods/parameters are compared in Fig. 4 (left). The evolution of the
number of active, significant (corresponding to the retained points after filtering of wavelet
coefficients), safety zone, hung and interpolated points for the wavelet transform during
the computation with the multiresolution solver is demonstrated in Fig. 4 (right). The
number of the points used in multiresolution analysis over the uniform simulation resulting
in a compression more than 95%. Fig. 5 shows different views of the adaptive grids colored
by vorticity and the mask χ function at t = 6.

6 CONCLUSIONS

In the present investigation, a space adaptive multiresolution method is developed
to deal with two-dimensional unsteady incompressible flows. The new method is based
on a multiresolution analysis which allows to reduce the number of active grid points
significantly by refining the grid automatically via nonlinear thresholding of the wavelet
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Figure 4: (left) Anguilliform 2D swimmer’s (λ = f = 1) forward velocity U. Solid lines indicate reference
simulations performed by Kern and Koumoutsakos (green) [8], Gazzola et al. (pink and brown) [16] and
Ghaffari et al. (red and blue) [18]. Dashed lines represent the results with the proposed algorithm. (right)
The evolution of the number of active, significant (corresponding to the retained points after filtering
of wavelet coefficients), safety zone, hung and interpolated points for the wavelet transform during the
computation with the multiresolution solver, with maximum grid level J = 10 in each direction (10252

grid points).

coefficients in a one-to-one correspondence with the grid points. In the present work
the concept of adaptive multiresolution method is applied to the vorticity and stream-
function formulation. A second-order central finite difference method with symmetric
stencil over an adaptive Cartesian grid is used for spatial discretization of the equations.
After validation of the proposed algorithm an extension to deal with fluid interaction with
forced deformable bodies, i.e., swimming of a fish, is done using the volume penalization
method. A Lagrangian structure grid with prescribed motion cover the deformable body
interacting with surrounding fluid due to hydrodynamic forces and moment calculated
on an Eulerian reference Cartesian grid. The results of swimming fish are compared
with those of Gazzola et al. where a uniform grid is used. The obtained results show
that the CPU-time of the adaptive simulations can be significantly reduced with respect to
simulations on a regular grid. Nevertheless the accuracy order of the underlying numerical
scheme is preserved. Creation of a data-structure for memory deallocation is proposed
as a perspective for researchers, see [13]. The code is developed in FORTRAN and is
accessible for all [19].
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