
HAL Id: hal-01063358
https://hal.science/hal-01063358

Submitted on 16 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An efficient algorithm for simulation of forced
deformable bodies interacting with incompressible flows;

Application to fish swimming
Patrick Bontoux, Stéphane Viazzo, Kai Schneider, Seyed Amin Ghaffari

To cite this version:
Patrick Bontoux, Stéphane Viazzo, Kai Schneider, Seyed Amin Ghaffari. An efficient algorithm
for simulation of forced deformable bodies interacting with incompressible flows; Application to fish
swimming. 11th World Congress on Computational Mechanics, ECCM V, Jul 2014, Barcelona, Spain.
pp.787-798. �hal-01063358�

https://hal.science/hal-01063358
https://hal.archives-ouvertes.fr


11th World Congress on Computational Mechanics (WCCM XI)
5th European Conference on Computational Mechanics (ECCM V)

6th European Conference on Computational Fluid Dynamics (ECFD VI)
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Abstract. We present an efficient algorithm for simulation of deformable bodies interact-
ing with two-dimensional incompressible flows. The temporal and spatial discretizations of
the Navier-Stokes equations in vorticity stream-function formulation are based on classical
fourth-order Runge-Kutta and compact finite differences. By using a uniform Cartesian
grid we benefit from the advantage of a new fourth-order direct solver for the solution
of the Poisson equation to ensure the incompressibility constraint down to machine zero.
For introducing a deformable body in fluid flow, an immersed boundary method is applied
to the solution of the Navier-Stokes equations as a forcing term. A Lagrangian structure
grid with prescribed motion cover the deformable body interacting with surrounding fluid
due to hydrodynamic forces and moment calculated on an Eulerian reference Cartesian
grid. An efficient law for curvature control of an anguilliform fish, swimming to a pre-
scribed goal, is proposed. Validation of the developed method shows the efficiency and
expected accuracy of the algorithm for fish-like swimming control and also for a variety
of fluid/solid interaction problems.

1 INTRODUCTION

The quantification and simulation of the flow around biological swimmers is one of the
challenges in fluid mechanics. At the same time bio-inspired design of swimming robots
are in growth [10]. The costs of experimental studies lead the researchers to develop for
efficient predictive numerical algorithms for the hydrodynamic analyses of fish swimming.
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Difficulties of numerical simulations of fish-like swimming are due to different reasons;
One problem is efficient quantification of the kinematics of different species which seems
to be far from the proposed simple laws in different studies. However the main swimming
mechanism in the majority of anguilliform fishes consists of a sinusoidal wave enveloped
by a profile, created by the backbone of the fish which movies from head to tail. The tail
beat creates a reverse Kármán street of vortices and will push the fish forward, leaving
a momentumless wake back. Efficient simulation of the incompressible flows is also an
important problem, because the propagation of the perturbations with the sound speed
in all directions in the incompressible media will lead to an elliptic equation. Thus the
efficiency of the elliptic solver is crucial in dealing with the incompressible flow solvers.
The third bottleneck in numerical simulations of fish-like swimming is the coupling of fluid
solver with deformable, moving and rotating bodies. To overcome this difficulty volume
penalization method which belongs to immersed boundary method family will be is used
for efficient simulation of the fluid/solid interaction. In the procedure of the solution
to the incompressible Navier-Stokes equations an elliptic Poisson equation which is the
most time consuming part of the algorithm will encountered frequently. Direct methods
like diagonalization or iterative methods (e.g. multi-grid and Krylov subspace methods)
can be used. With the use of high-order discretization iterative methods will be less
attractive because their rate of convergence is slow. On the other hand in direct methods
memory limitation is restrictive for simulations over fine grids. Therefore decoupling of
the directions by FFT based methods is very advantageous, however this method will
put some limitations in the boundary conditions. We are presenting a new fourth-order
solver for the Poisson equation which is a combination of a compact finite difference with
sine FFT. The main advantages of our method are fourth-order accuracy, efficiency, the
possibility to parallelization and convergence down to zero machine. Other advantages
and limitations of the proposed solver are discussed in the paper. In the present work we
will focus on some numerical aspects of efficient turning laws which is less studied by other
researchers. To this end the method of quaternions is adapted to backbone kinematics
description. We are applying compact finite differences to the vorticity stream-function
formulation of the Navier-Stokes equations including penalization term [11]. An efficient
direct method is presented to the solution of the Poisson equation. The code is developed
in FORTRAN and is accessible for all [18]. The paper is organized as follows. Fist our
methodology including governing equations and kinematics of a fish like-swimming will be
presented. Then validation of the algorithm will be done. Next the results for swimming
fish looking for a food will be reported. Finally the results will be discussed and some
guides for the future works will be addressed.

2 GOVERNING EQUATIONS

The governing equations of the incompressible flows are the Navier-Stokes equations.
In two-dimensional problems the vorticity ω and stream-function ψ formulation is more
efficient than primitive variables, see [1] and [2]. By taking the curl of the Navier-Stokes
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equations, one obtains the vorticity transport equation:

∂tω + (u · ∇)ω = ν∇2ω +∇× F , x ∈ Ω ∈ R
2 (1)

where ω(x, t) = ∇×u = vx−uy denotes the vorticity, Ω is the spatial domain of interest,
u(x, t) is the velocity field, ν = µ/ρf > 0 is the kinematic viscosity of the fluid, ρf
is the density and F(x, t) is a source term. For a complete description of a particular
problem, the above equations need to be complemented to describe an initial/boundary
value problem (IBVP). The equation is parabolic in time and the velocity components
are (u, v) = (∂yψ,−∂xψ) with ψ being the stream-function, satisfying a Poisson equation

−∇2ψ = ω (2)

which is an elliptic equation in space. The penalization term for unit mass of the fluid
reads,

F = −η−1χ(u− uP ) (3)

where uP (x, t) is the velocity field of the immersed body. The Navier-Stokes equations are
written for unit mass of the fluid, therefore the dimension of the terms like F is accelera-
tion, i.e., [LT−2]. Penalization parameter η is the porosity (permeability) coefficient of the
immersed body with dimension [T ]. The mask (characteristic) function χ is dimensionless
and describes the geometry of the immersed body.

χ(x, t) =

{

1 x ∈ Ωb

0 x ∈ Ωf
(4)

where Ωf represents the domain of the flow and Ωb represents the immersed body in the
domain of the solution. The solution domain Ω = Ωf ∪ Ωb is governed by the Navier-
Stokes equations in the fluid regions and by Darcy’s law in the penalized regions, when
η → 0. Classical fourth-order Runge-Kutta method [5] will be used for time integration
of Eq. (1). All spatial derivatives will discretized with central explicit second-order or
compact fourth-order finite difference methods [4]-[7]. For more details see [17].

2.1 Fourth-order fast Poisson solver

In the procedure of the solution to the incompressible Navier-Stokes equations an ellip-
tic Poisson equation which is the most time consuming part of the algorithm is frequently
encountered. The common case is the pressure Poisson equation frequently used with
homogeneous Neumann boundary conditions, for the pressure correction in projection
methods. Another example is in the vorticity stream-function formulation using equation
(2) with Dirichlet boundary condition for vorticity and stream-function. Free slip (ω = 0)
boundary condition in a close rectangular domain (ψ = 0, all around) can cover all the
test cases studied in present investigation. In the presence of periodic boundary condi-
tions, FFT based direct solvers can be used to efficiently solve the Poisson equation with
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high accuracy. Even if the flow is not periodic in all directions, like most of the practical
problems, in accordance with the boundary conditions for elliptic equation (homogeneous
Dirichlet/Neumann) sine or cosine FFT can be used. We are presenting a new direct
fourth-order solver for the Poisson equation (2) which is a combination of a compact fi-
nite difference with sine FFT. The advantages of our method are fourth-order accuracy,
compact tridiagonal stencil, possibility of extension to three dimension, less arithmetics,
less memory usage in comparison to iterative methods and straightforward parallelization
because of decoupling of the operations in different directions. Near linear strong scaling
(speedup) and efficiency is reported by Laizet et al. in [12] for a similar direct solver. They
introduced a dual domain decomposition (or pencil) method, in which information along
a line is accessible for a CPU by alternative decomposition of domain in three directions.
The limitations of our method (moreover the boundary conditions) is the use of uniform
grid in the direction in which FFT is necessary. Usually when the solver of parabolic part
is finite-difference, it is a custom to use a FDM discretization in one direction without lost
of accuracy and efficiency (via direct tridiagonal solver), the advantage of this approach
is the possibility of applying general boundary condition in that direction and using a
refined mesh. The second-order version of this solver can be find in [6]. For a compact
fourth-order collocated discretization of Poisson equation −∇2ψ = ω, over Nx ×Ny grid
points, by using Eq. (5)

∂2ψ

∂x2
= δ2xψ −

∆x2

12

∂4ψ

∂x4
+O(∆x4) (5)

where δ2x represents a central second-order estimation of the second derivative, for x
direction we obtain

(δ2x −
∆x2

12

∂4

∂x4
+ ∂yy)ψ = −ω (6)

because of the presence of ∆x2 factor behind fourth-order derivative, this term cannot
be dropped and must be evaluated by second-order accuracy, therefor, the hole approxi-
mation scheme yield the fourth-order accuracy. Fourth-order derivative can be evaluated
by using the original Poisson equation −∇2ψ = ω, and successive differentiating it with
respect to x (i.e., ∂xx∂xxψ = −∂xx∂yyψ − ∂xxω) replacing ∂xx by δ2x, we find

(δ2x +
∆x2

12
δ2x∂yy + ∂yy)ψ = −ω −

∆x2

12
δ2xω (7)

by applying Fourier transform in y direction over Eq. (7) and replacing second derivatives
by −k2yψ̂ in Fourier space, we have

(δ2x −
∆x2

12
δ2xk

′2
y − k′2y )ψ̂ = −ω̂ −

∆x2

12
δ2xω̂ (8)

Usually the exact wavenumber will replace by modified wavenumber k′2y which permits to
evaluate the difference between the finite-difference and the spectral approximation of the
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second derivative [6]. For a fourth-order explicit finite-difference discretization, analytical
relation for the scaled modified wavenumber of second derivative is given in [4] as follows

k′2y =
1

∆y2

[

8

3

(

1− cos(
kyπ

Ny

)
)

−
1

6

(

1− cos(
2kyπ

Ny

)
)

]

(9)

The final tridiagonal system to be solved for the solution in Fourier space for each
wavenumber of ψ in y direction is

βψ̂i+1,m − (2β + k′2y )ψ̂i,m + βψ̂i−1,m = −(ω̂i+1,m + 10ω̂i,m + ω̂i−1,m)/12 (10)

for i = 2, ..., Nx−1, where β = ∆x−2−k′2y /12. In summary, first a one-dimensional direct-
FFT of the forcing function is performed in y direction, then for each line in x direction
the tri-diagonal system (10) must be solved to find the solution ψ in wavenumber space,
next inverse-FFT of the solution must be performed. For the real data with zero value at
the boundaries (homogeneous Dirichlet boundary condition, i.e., ψ = ω = 0), the natural
Fourier transform to use is the sine transform, see [5]. The direction of FDM and FFT
can be changed to consider no-slip boundary condition in y direction. For taking into
account inflow/outflow boundary condition the mean flow must reduce from u = U∞−U

in vorticity transport equation (1) to force ψ = 0 at the boundary. This is equivalent
to move the grid with U∞ and writing the Navier-Stokes equations in moving reference
frame instead of Galilean inertial frame [13].

3 KINEMATICS OF THE FISH

The geometrically exact theory of nonlinear beams, is developed by Simo [3] and ex-
tended for fish vertebral by Boyer et al. [8]. In this theory, the beam is considered as
a continuous assembly of rigid sections of infinitesimal thickness, i.e., a one-dimensional
Cosserat medium. We are summarizing the exact kinematics of fish backbone in three
dimensions for interested readers and future developments, but all the cases in this paper
are limited to two-dimensions. Following Boyer et al. the kinematics of the backbone for
Eel-like fishes can be determined by integration along arc-length ξ starting with head’s
situation as boundary condition. The variation of the orientation is obtained by

∂Q

∂ξ
=

1

2
M(Ω)Q (11)

where Q = (cos φ
2
, ax sin

φ
2
, ay sin

φ
2
, az sin

φ
2
)T are unit normalized (q20 + q

2
1 + q

2
2 + q

2
3)

1/2 = 1
quaternions that represent the head frame’s orientation with respect to the inertial frame.
M(Ω) is an anti-symmetric tensor,

M(Ω) =









0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0









(12)
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where Ω = (ω1, ω2, ω3)
T denotes the mean angular velocity. The geometry R = (x, y, z)T

in Galilean reference frame is stated by

∂R

∂ξ
= Rot(Q)K (13)

where k2 and k3 in K = (k1, k2, k3)
T stand for the Eel’s backbone transversal curvature

and k1 represent the rate of rotation (twist) of section around backbone along ξ direction.
The rotation matrix in terms of the quaternions is given by

Rot = 2





q20 + q21 −
1
2

q1q2 − q0q3 q1q3 + q0q2
q1q2 + q0q3 q20 + q22 −

1
2

q2q3 − q0q1
q1q3 − q0q2 q2q3 + q0q1 q20 + q23 −

1
2



 (14)

The variation of linear V = (v1, v2, v3)
T and angular Ω = (ω1, ω2, ω3)

T velocities in local
frame, i.e., the frame attached to the body are given by

∂

∂ξ

[

V
Ω

]

= −

[

K∨ Γ∨

0 K∨

] [

V
Ω

]

+

[

Γ̇

K̇

]

(15)

where (.) represents time derivative, (∨) stands for anti-symmetric matrix constructed
from a given vector, e.g.,

Γ∨ =





0 −γ3 γ2
γ3 0 −γ1
−γ2 γ1 0



 (16)

where Γ = (γ1, γ2, γ3)
T represents local transversal shearing whose first component is the

rate of stretching. The accelerations can also deduced from time derivative of Eq. (15).
For more details see [8], [10] and [16]. For finding the velocities in the frame attached to
the head from velocities VG in Galilean reference frame and inverse, we have

(v1, v2, v3)
T = RotT (vx, vy, vz)

T (17)

By considering N (1, ..., Npoints) discrete points on Eel’s backbone, equations (11), (13)
and (15) altogether must be integrated in space by a proper numerical method (Neq = 13
in 3D). We are using fourth-order Runge-Kutta method for integration and comparison
with first-order Euler method shows that RK4 can do better especially when the number
of the points along the Eel’s backbone is less than Npoints = 30.

3.1 Fish in forward gait

Anguilliform swimming presented in Gazzola et al. [14] is considered for validation
of the proposed algorithm. A periodic swimming law is defined by fitting the backbone
of the fish to a given curve y(x, t) keeping the backbone length lfish fixed. Let ξ be the
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arclength over curvilinear coordinate of the deformed backbone (0 ≤ ξ ≤ lfish). For points
uniformly distributed ∆ξ = lfish/(N − 1) over the backbone, y is given by

y(x, t) = a(x) sin(2π(x/λ+ ft)) (18)

where λ is the wavelength, f is the frequency of the backbone and a(x) is the envelope
given by

a(x) = a0 + a1x+ a2x
2 (19)

x is defined by inverting the arclength integral, i.e., ∆x = ∆ξ/
√

1 + (∂y/∂x)2. Wave-
length of the fish is defined in accordance with the geometry of the backbone in Cartesian
system. We need the curvature of the backbone to be able to use geometrically exact
theory of nonlinear beams. One must switch from the Cartesian system to the curvature,
thus second derivative of Eq. (18) will lead to

k(ξ, t) = (2a2 − (2π/λ)2a(ξ)) sin(2π(
ξ

λ
+ ft)) + (4π(a1 + 2a2ξ)/λ) cos(2π(

ξ

λ
+ ft)) (20)

where a(ξ) = a0 + a1ξ + a2ξ
2. The parameters used by Kern and Koumoutsakos [9] and

Gazzola et al. [14] for the kinematics of the fish are as follows; λ = 1, f = 1, a2 = 0,
a1 = 0.125/(1 + c), a0 = 0.125c/(1 + c) and c = 0.03125. The buoyancy is equal to zero,
i.e., ρb = ρf . The viscosity of the fluid is set to ν = 1.4 × 10−4 resulting in a Reynolds
number approximately Re ≈ 3800, with an asymptotic mean velocity Uforward ≈ 0.52.
The simulations of Gazzola et al. [14] are carried out on a rectangular domain (x, y) ∈
[0, 8lfish]× [0, 4lfish] with resolution of 4096× 2048 and penalization parameter η = 10−4.
We are performing our simulations on a rectangular domain (x, y) ∈ [0, 10lfish]× [0, 5lfish]
by imposing penalization parameter inside the body equal to η = 10−3 with resolution of
2049×1025 and 1025×513 and ∆t = 10−3. The centroid of the fish is initially positioned
at xcg = 0.9Lx and ycg = 0.5Ly in our simulations. The forward velocities of the center
of the mass computed with different methods/parameters are compared in Fig. 1. We
impose two degree of liberty fixing the angular velocity equal to zero. The simulations
start with the body and fluid at rest. The motion of the fish is initialized by gradually
increasing the amplitude of the backbone through a sinusoidal function from zero to its
designated value during the first period T in the reference simulations, i.e., [9] and [14],
but we are not considering for this and starting by a sudden movement given by Eq.
(18), therefore a deviation from the reference solution can be seen in the the first period.
This deviation will continue systematically until the asymptotic velocity is reached at
t = 7. The details of our algorithm is given in [17]. In our simulations a grid independent
simulation is obtained with 2048 × 1025 grid points. The difference of two simulations
with 2049 × 1025 and 1025 × 513 grid points can be seen in Fig. 1. Filtering of the
hydrodynamics coefficients is necessary to prevent the simulation from divergence and
non-physical results. We are using second-order exponential filtering instead of first-order
filtering used in [9]. This process is like to adding a damper to the system therefore
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a correct value for δ must be chosen for obtaining physical results via numerical tests.
We propose values in the range of δ ∈ [0.01, 0.001] for fluid/solid interaction problems,
however this can also depend to the manner of non-dimensionalization of the forces. In
Fig. 1 the effect of filtering with two filter parameter, i.e., δ = 0.001 and δ = 0.05,
can be seen. Filtering with a small filter parameter δ = 0.001 will be more stable but
instead will lead to smaller values in the terminal velocity and also smaller amplitude in
its oscillations. See [17] for more details.
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Figure 1: Anguilliform 2D swimmer’s (λ = f = 1) forward velocity U. Solid lines indicate reference
simulations performed by Kern and Koumoutsakos (green) [9] and Gazzola et al. (pink and brown) [14].
Dashed lines represent the results with the proposed algorithm.

4 APPLICATIONS AND RESULTS

Fish maneuvering law for tracking a fixed goal starting from rest is done by adding a
constant curvature koffset(θdes, t) via Eq. (22) all along the fish’s backbone ξ ∈ [0, lfish],
to the primary propulsion mode, i.e., k3 = k(ξ, t) + koffset. However the change of the
curvature must be gradually, i.e., O(∆t). First a desired curvature kdes must be evaluated
by the following relation,

kdes(θdes) =

{

−sgn(θdes) kmax |θdes| ≥ θlimit

−sgn(θdes) kmax ( θdes
θlimit

)2 else
(21)

where sgn represents the sign function, i.e., sgn(θdes) = θdes/|θdes|. See Fig. (2) for a
schematic representation of θdes. In each time step according to the position and direction
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of the head by considering the target a desired angle θdes will be calculated. Then by
using Eq. (21) a desired curvature kdes must be found. After that koffset will be evaluated
with the following relation,

kn+1
offset(kdes) =

{

knoffset +∆k k < kdesired
knoffset −∆k else

(22)

koffset will be added to the backbone curvature for rotation control, where ∆k = ∆t π/T .
We are using kmax = π which is equivalent to turning with a curvature adapted to a
semicircle. As in Bergmann and Iollo [15] we are using θlimit = π/4 . Time derivative of
the curvature dk/dt is needed in Eq. (15) and can be calculated numerically. To show the
performance of the proposed method a test case of food finding with the above rotation
law is performed. The domain size is (x, y) ∈ [0, 5lfish]× [0, 5lfish], the resolution is set to
1025 × 1025, the penalization parameter η = 10−3, filter parameter δ = 0.005, tail beat
frequency f = 1, wavelength λ = 1, kinematic viscosity ν = 1.4× 10−4, initial position of
the head (x0, y0) = (0.1Lx, 0.5Ly) and initial angle of the head θ0 = 0. Fig. 3 shows the
snapshots of vorticity isolines obtained during a simulation of swimming fish for finding a
food which is located at (xf , yf ) = (0.9Lx, 0.5Ly). At t = 0 the fish and the surrounding
flow are in rest. After reaching the vicinity (rfood = 0.5lfish) of the food the curvature of
the backbone, given by Eq. (20), will tends to zero by multiplying it with the following
function,

C(t) =
tf − t

tf − ti
+

1

2π
sin(2π

t− ti
tf − ti

) , t ∈ [ti, tf ] (23)

with ti = treached, tf = treached + T for gradually decreasing the curvature of the backbone
during one period. See [17] for more details.

Figure 2: Schematic representation of desired angle for curvature control, θdes = θfood − θHead is the
difference of the angles between head’s direction and food’s angle (−π < θdes < π), picture from Bergmann
and Iollo [15] with a slight modification.

9



P. Bontoux, S. A. Ghaffari, S. Viazzo and K. Schneider

5 CONCLUSIONS

In this paper an efficient algorithm for simulation of deformable bodies interacting with
two-dimensional incompressible flows is proposed. By using a uniform Cartesian grid a
new fourth-order direct solver for the solution of the Poisson equation is presented. For
introducing a deformable body in fluid flow, volume penalization method is applied to the
solution of the Navier-Stokes equations as a forcing term. Even if penalization method
is first-order in space, an important advantage of this method is that the evaluation of
the hydrodynamic coefficients are straightforward. An efficient law for curvature control
of an anguilliform swimmer looking for a food is proposed which is based on geomet-
rically exact theory of nonlinear beam. Validation of the developed method shows the
efficiency and expected accuracy of the algorithm for fish-like swimming control and also
for a variety of fluid/solid interaction problems. Some guides for future developments
is to use a high-order immersed boundary method, adding a multi-resolution analyses to
the algorithm for grid adaptation, enhancement of rotation law, parallelization and exten-
sion to three dimensions. The code is developed in FORTRAN and is accessible for all [18].
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Figure 3: The snapshots of vorticity isolines obtained during a simulation of swimming fish for finding
a food which is located at (xf , yf ) = (0.9Lx, 0.5Ly). At t = 0 the fish and the surrounding flow are in
rest. After reaching the vicinity (r = 0.5lfish) of the food the curvature of the backbone will tends to
zero by Eq. (23). The domain of the solution is (x, y) ∈ [0, 5lfish] × [0, 5lfish], the resolution of the grid
1025× 1025 and kinematic viscosity equal to ν = 1.4× 10−4.
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