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Abstract

This work deals with the problem of the optimum design of a sandwich panel. The
design process is based on a general two-level optimisation strategy involving different
scales: the meso-scale for both the unit cell of the core and the constitutive layer of the
laminated skins and the macro scale for the whole panel. Concerning the meso-scale
of the honeycomb core, an appropriate model of the unit cell able to properly provide
its effective elastic properties (to be used at the macro-scale) must be conceived. To
this purpose, in this first paper, we present the numerical homogenisation technique
as well as the related finite element model of the unit cell which makes use of solid
elements instead of the usual shell ones. A numerical study to determine the effective
properties of the honeycomb along with a comparison with existing models and a
sensitive analysis in terms of the geometric parameters of the unit cell have been
conducted. Numerical results show that shell-based models are no longer adapted to
evaluate the core properties, mostly in the context of an optimisation procedure where
the parameters of the unit cell can get values that go beyond the limits imposed by a
2D model.
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Notations

GA Genetic Algorithm

FE Finite Element

t. Thickness of the aluminium foil used to produce the honeycomb core
1 Length of the oblique sides of the hexagonal repetitive unit cell

lo Length of the horizontal sides of the hexagonal repetitive unit cell

¥ Corrugation angle of the hexagonal unit cell

he Height of the honeycomb core

RVE Representative Volume Element for the honeycomb core

VrvE Volume of the representative volume element (including the second phase, i.e. the

“elastic air”)
{O; 1, x2, 23} Global material frame of the representative volume element
a1 Side length, along x-axis, of the representative volume element
ag Side length, along xs-axis, of the representative volume element

ag Side length, along xs3-axis, of the representative volume element



VErr Effective volume of the unit cell of the honeycomb core

DOFs Degrees Of Freedom

o Volume averaged stress tensor components (Voigt’s notation)

g3 Volume averaged strain tensor components (Voigt’s notation)

Cqp Stiffness tensor components of the homogenised core (Voigt’s notation)
0op Volume averaged stress tensor components (tensorial notation)

Eqap Volume averaged strain tensor components (tensorial notation)

BCs Boundary Conditions

u Arbitrarily imposed displacement

E; Young’s moduli in the material frame {O;z1, z2, 23}

Gi; Shear moduli in the material frame {O; z1, z2, 23}

vi; Poisson’s ratios in the material frame {O;x1, 2, x3}

prv e Effective (or relative) density of the honeycomb core

p Density of the aluminium

FE Young’s modulus of the aluminium

v Poisson’s ratio of the aluminium

Eqir Young’s modulus of the elastic air

Vair Poisson’s ratio of the elastic air

{0;¢&,n, z} Local frame defined on the oblique side of the hexagonal cell
O¢e, Oy, One Local stress tensor components expressed within the local frame
LB Lower Bound

UB Upper Bound



1 Introduction

Sandwich structures are widely used in several fields: aviation, automotive, naval, con-
struction industry. Their application, in fact, ranges from the most performing structures
such as aircraft wings, helicopters rotor blades, racing yachts keels to home furnishings.
This is because sandwich structures offer high capacity of stiffness with a very low weight.
The difference between a monolithic or laminated plate and a sandwich one concerns the
presence of a low density cellular solid, i.e. the core, between two stiffer thin plates, that
increases the geometric moment of inertia of the plate with a few weight increment.

However, when the choice of the designer falls on the use of a sandwich structure, for
a given application, he must additionally define the type of sandwich structure that has to
be employed. We can, in fact, identify several types of sandwich structures according to
the geometry and shape of the core: honeycomb, solid, foam, corrugated, truss, web cores.

The most important feature of the core is its relative density (ratio between the density
of the cellular material and that of the material from which the cells walls are made) that
can vary from 0.001 to, generally, 0.4, see [15]. Almost any material can be used to build
a cellular solid: polymers, metals, ceramics, composites, etc..

In aircraft and spacecraft applications sandwich panels are composed by glass or carbon-
fiber composite skins separated by aluminium or resin honeycombs, or by polymer foams.
In particular, the honeycomb cell size can be chosen to provide cores with different stiffness
and density properties. The result is a panel with very high bending stiffness-to-weight
and strength-to-weight ratios. A review on sandwich structures and their applications can
be found in [15, 27, 29].

The optimal design of sandwich structures is much more cumbersome than that of a
classical monolithic structure. The difficulties increase when the sandwich structure is
made of composite skins and a honeycomb core. In this case we have to face, into the same
design process, both the difficulty of designing a laminated plate (concerning the skins)
and the difficulty of designing a complex 3D cellular core. Therefore, engineers always use
some simplifying assumptions or rules to obtain, in an easier and faster way, a solution,
e.g. the use of symmetric balanced stacks for the skins to ensure the membrane/bending
elastic uncoupling along with the membrane orthotropy or the use of regular hexagonal
geometry for the unit cell of the core. Such assumptions extremely shrink the solution
space of potential configurations for the problem at hand. An alternative approach could
consist in formulating the design problem of the sandwich panel as a constrained optimi-
sation problem without introducing any simplifying hypothesis nor on the nature of the
skins laminate neither on the geometry of the repetitive unit cell of the honeycomb core.
Obviously, this can be done on one hand by a rigorous mathematical formulation of the

problem and on the other hand by the use of numerical techniques that must be able to



explore the whole design space in order to find the true global optimal configuration of the
system. Moreover, unlike what is usually done in literature, our objective is twofold: on
one hand we want to formulate and solve such a problem on different scales and on the
other hand we want to include within the design process all possible parameters defining
the structure (at each scale) as optimisation variables.

Therefore, in the framework of the design of a sandwich plate with honeycomb core
and composite skins, the optimisation variables will be the material and the geometrical
properties characterising both the skins and the core at each scale.

The design strategy proposed in this work is a numerical optimisation procedure that
does not make any simplifying assumption in order to obtain a true global optimum con-
figuration of the system. The design process is not submitted to restrictions, i.e. any
parameter characterising our structure is an optimisation variable: thickness of the core,
number of plies of skins, plies orientations and geometric parameters of the unit cell.

In order to face the design of the sandwich structure at both meso and macro scales,
we used an optimisation strategy developed on two different levels: at the first level we
determine the optimal geometry of the unit cell together with the material and geometric
parameters of the laminated skins (at this level the laminate representing each skin is
modelled as an equivalent homogeneous anisotropic plate whose behaviour at the macro-
scale is described in terms of tensor invariants, i.e. the laminate polar parameters, see
[26]). At the second level of the strategy we determine the optimal skins lay-up (the skin
meso-scale) meeting the values of the material and geometrical parameters issued from the
first level of the strategy. The whole strategy is based on the use of the polar formalism
[26, 28] and on the Genetic Algorithm (GA) BIANCA |20, 21]. For more details on the
polar formalism and the related advantages the reader is addressed to Part IT of the present
work.

Concerning the model of the core, the first level of the strategy involves two different

scales:

e the meso-scale wherein the core is modelled via the repetitive unit cell characterised

by some geometric variables;

e the macro-scale where the core is modelled as an homogeneous orthotropic solid
whose mechanical response is described through the full set of elastic moduli whose

values depend on the geometric parameters of the unit cell.

Therefore, the link between these two scales is represented by the homogenisation phase
of the honeycomb core. To this purpose we decided to develop an accurate method to
determine the material properties of the orthotropic core that will be assigned to the

equivalent solid at the macro-scale.



A considerable number of analytical, numerical and experimental methods for pre-
dicting the effective elastic properties of the orthotropic honeycomb core as function of
geometric and material characteristics of its unit cell can be found in the literature. The
work of Gibson and Ashby [15] represents the first research study where the full set of elastic
properties of a honeycomb core with constant wall thickness has been determined. Subse-
quently, this technique has been modified by Zhang and Ashby [30] to include the double
thickness walls to determine the out-of-plane properties. Another analytical approach is
presented in [19] using the laminate theory. In 1997, Burton and Noor [11] present the full
set of nine material properties derived analytically considering the influence of the double
thickness walls. Despite this last work represents a great step forward in the evaluation of
the honeycomb structure properties it shows also a weakness: the out-of-plane shear prop-
erties of the honeycomb core are not univocally determined since the authors give only the
lower and upper bounds for these properties. Other analytical approaches have been devel-
oped during the following years, for example [14] where the authors take into account also
the skins effect or [23] where some experimental results are used to develop an analytical
method to determine the out-of-plane mechanical properties. Other researchers developed
different numerical approaches based on the Finite Element (FE) technique to investigate
the material properties of honeycomb structures. Grediac [16] was one of the firsts to deter-
mine the out-of-plane properties of the honeycomb through a FE approach. An analogous
work, were the transverse shear stiffness properties of honeycombs are determined through
a FE method is presented in [24]. In [10] a displacement-based homogenisation technique
is presented to evaluate the mechanical properties of foam-filled honeycomb cores. We can
also find other works where the effective properties of the sandwich plate are determined
via FE static analyses conducted on the overall geometry of the honeycomb core instead
of performing an homogenisation process on the unit cell, see for instance [22]. Further
interesting works on purely experimental or mixed numerical /experimental techniques for
the determination of the effective properties of the honeycomb core can be found in [13, 18].

A common weakness of the works about FE-based homogenisation techniques consists
in the use of shell-like models for the unit cell of the honeycomb core. These models do
not take into account the true geometry of the cell and, consequently, they are not able to
properly estimate the influence of the real 3D stress state on the effective core properties.
In particular, in this work, we need an adequate model of the honeycomb core, at the
meso-scale, able to provide with a good level of accuracy the material properties of the
core for any combination of design variables that (in the framework of the optimisation
procedure) could give rise to a geometry of the unit cell with thick walls rather than thin
ones. Therefore, before introducing the design problem of the sandwich structure and the
related two-level optimisation strategy, we decided to develop an accurate 3D model, for

the numerical homogenisation phase of the core, that has to be included within the first



level of the procedure and that represents the link between the meso and the macro-scale
of the core.

In particular, concerning the evaluation of the effective material properties of the core,
the skins effect, or skins influence, is not taken into account during the homogenisation
phase. In this work we adopt a conventional approach where the sandwich plate is modelled,
at the macro-scale level, as a heterogeneous continuum composed by the union of three

parts:

e two laminated skins (that a priori can be different) whose anisotropic mechanical
behaviour is described through a set of tensor invariants concerning both membrane,
bending and coupling stiffness tensors (see Part II). Each skin is, hence, characterised
by design variables of different nature (geometrical and material), i.e. its thickness (so
the number of plies of the laminate) and its homogenised stiffness tensors invariants

(namely the laminate polar parameters, see Part IT);

e the core whose mechanical response (at the macro-scale) is defined by the elastic
moduli of the equivalent continuum that uniquely depend upon the geometrical design

variables of the unit cell (defined at the meso-scale).

Neglecting the interaction between the skins and the core, at the meso-scale level of
the core, corresponds to adopt the so-called “free modulus model” in the framework of the
determination of the effective core properties, see [10, 14].

Being this work rather long and considering the fact that it involves two different but
linked main topics (the core homogenisation and the optimum design of the sandwich
panel) we decided to divide its presentation into two parts. In this first part, we will
present the numerical homogenisation technique as well as the 3D FE model used to deal
with the core homogenisation problem. In part II, we will present the formulation of the
optimisation problem along with the two-level strategy and some numerical examples to
prove its effectiveness.

The paper is organised as follows: the description of the core homogenisation problem
is introduced in Section 2 and the FE model used for the numerical homogenisation is
presented in Section 3. In Section 4 we present a numerical study to determine the effective
in-plane and out-of-plane properties of the honeycomb along with a comparison with the
existing analytical and numerical models and a sensitive analysis in terms of the geometric

parameters of the unit cell. Finally, Section 5 ends the paper with some concluding remarks.

2 Homogenisation of core properties: problem description

In the last decades, several analytical, numerical and experimental techniques have been

developed in order to determine the effective properties of honeycomb sandwich cores as



function of geometric and material properties of the repetitive unit cell. Each method
presents a certain level of sophistication. For example, analytical techniques, based on
energy methods or homogenisation methods, make use of some simplifying assumptions to
obtain the elasticity solution of the unit cell. To avoid the use of such assumptions, several
studies were conducted to develop new experimental-based and numerical-based techniques
for determining the effective core properties.

On one hand, experimental-based methods, see for instance |3-6], require a standardised
procedure for the measurements. However, the main drawbacks of these procedures consist
in the fact that they are very expensive in terms of both time and money and the obtained
results are valid only for the particular material and geometry of the sample employed in
the analysis.

On the other hand, numerical-based techniques, such as FE methods, do not make use
of the simplifying assumptions used in analytical approaches and are not expensive. In
addition, they can lead to realistic solutions of the elasticity problem in terms of stress and
strain fields over the unit cell or within the whole structure of the honeycomb core.

As a consequence, in this work we have chosen a FE-based approach as a numerical ho-
mogenisation technique to determine the core properties. It should be noted that a special
feature of the honeycomb is its repetitiveness, i.e. the periodicity in its shape. Therefore,
at this stage, we will apply the homogenisation method at the meso-scale (the scale of the
unit cell) and then, we will replace the actual cellular structure, at the macro-scale level,
by an equivalent homogeneous anisotropic medium characterised by the elastic properties
determined during the homogenisation phase. The proposed FE-based homogenisation
technique leads us to include all the geometric parameters of the unit cell among the op-
timisation variables of the process without a great loss of computational time (about 11
seconds on a 2.50 GHz Dual Core processor for a single homogenisation analysis).

The basic assumptions made to evaluate the elastic response of our model and, hence,

to determine the effective core properties are:
e linear, elastic behaviour for the material of the cell walls;
e perfect bonding for the wall-to-wall contact;
e the buckling of the cell walls is disregarded.

We recall that, as previously stated, since the aim of this first paper does not consist
in developing an equivalent homogeneous plate/solid model for the whole sandwich panel,
we do not consider the skins influence on the evaluation of the effective properties of the
honeycomb core.

A scheme of the repetitive unit cell, used for the numerical homogenisation of the

honeycomb core, is showed in Fig. 1.



3 A 3D finite element model for numerical homogenisation

The effective properties of the core are determined using the strain energy homogenisation
technique of periodic media, see [7|. This technique makes use of the repetitive unit of
the periodic structure to approximate its effective properties at the macro-scale level. The
basic feature of the strain energy homogenisation technique consists in the assumption
that the repetitive unit of the periodic structure and the corresponding unit volume of the
homogeneous solid undergo the same deformation having, hence, the same strain energy.
In this case, the periodic structure is the honeycomb core whose repetitive unit cell
has three planes of symmetry, thus we decided to exploit these symmetries using, in the
homogenisation process, only an eighth of the repetitive unit cell as shown in Fig. 2.
The geometric characteristics of the repetitive unit used for the static analysis of the
homogenisation model are shown in Fig. 3: %, is the thickness of the foil used to produce
the honeycomb, I; is the length of the oblique side of the cell, l2 represents the length of
the horizontal sides of the repetitive unit while ¥ is the cell corrugation angle and h. is
the height of the honeycomb core. We can now define the related Representative Volume

Element (RVE) of the honeycomb core whose volume is (see Fig. 2 and 3):

VRVE = a1a2a3 , (1)
with:

a1 = 2ls + t.tan <g> + [ll + t. tan (g)} cos(¥) ,

as = [ll + t.tan <§)] sin () + t. (2)

he

(13:?,

whereas the effective volume of the unit cell is:
he 0
VErF = tc? 1 + 2lp + 2t . tan 3| (3)

The FE model for the homogenisation process has been created within the commercial
FE code ANSYS®. We used the 20-node solid element SOLID186 with three Degrees Of
Freedom (DOFs) per node. The model along its structured mesh is illustrated in Fig. 4.
In this model the elements that do not belong to the unit cell geometry represent the
“second phase” which has the properties of the so-called “elastic air” [2]. The second phase
is introduced as a “numerical artifice” to obtain the strain field provided by the theory
underlying the strain energy homogenisation technique, see [7] for more details. Unlike
what is usually done in the literature, where the cell geometry is modelled with shell
elements that show a geometric overlapping between the volumes built over the horizontal

and oblique wall sides, in this work a 3D solid model is used to correctly represent the



real geometry of the repetitive unit of the honeycomb structure. Our choice is due to the
fact that, thanks to the 3D solid model, we can also take into account the effect of the
full three-dimensional stress field in the determination of the effective core properties. As
we will show in the numerical study of Section 4, this effect cannot be neglected in any
case, mostly when the geometrical configuration of the unit cell is far away from a classical
configuration of regular hexagon with thin walls.

A further assumption, as specified in Section 2, concerns the elastic behaviour of the

orthotropic homogeneous medium. The generalised Hooke’s law for the RVE can be written

as follows:
o1 [Ci1 Ci2 Ci3 0 0 0] g1
02 Coy1 Cy Coz3 0 0 0 B
o3 | _ |Cs1 Cs2 C33 0 0 0 g3 (4)
04 0 0 0 Cya 0 0 4 ’
o5 0 0 0 0 Css 0 €5
\ 06 | O 0 0 0 0 066_ L €6

where o and € are, respectively, the stress and strain tensors expressed in Voigt’s notation.
The link between tensorial and Voigt’s notation for both tensors is:

( ~ ( 3

o1 o011 €1 €11
02 022 €2 €22
AT S S I N I S S (5)
T4 723 €4 2893
[ 013 33 2213
06 012 [ Z6 2812

As 7 and € are referred to the equivalent homogeneous solid, each component of & and €
is volume averaged.

The main objective of our homogenisation process is to determine all non-zero compo-
nents of the stiffness tensor C of Eq. (4). The expression of the components of C in terms

of those of the stress and strain tensors is:

C’agzg—awitha,ﬁzl,&m,6and5y:Owithfy:1,2,~--,6, NA£B. (6)
B

We have to determine, now, the nine independent components of C.

In [7] the strain energy homogenisation technique is applied to the calculation of the
elastic moduli of unidirectional laminae. In this work the author determines the five com-
ponents of the transversally isotropic ply stiffness tensor by solving four different static
analyses for the FE model of the RVE. In each one of these analyses the boundary con-
ditions (BCs) are imposed in order to obtain a strain tensor having only one component
different from zero. According to |7] we have determined the nine independent components
of C for the honeycomb core through six static analyses on the FE model of Fig. 4. The

corresponding BCs for each static analysis are resumed in Tables 1 and 2.
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These BCs are imposed in order to satisfy the symmetries of the RVE and to generate
a strain field in such a way that only one component of the tensor € is different from zero

for each static analysis. The relations giving the volume average strain components are:

_ u u o _ _ _ u
€1 = —,62= —,83= —,84= — ,65= — ,66= — , (7)
ap az as as as az

where wu is the arbitrarily imposed displacement (see Tables 1 and 2). Once the linear
elastic problem, characterised by the boundary conditions of Tables 1 and 2, is solved we
can get the corresponding stress field whose volume average value for the RVE is computed

as follows:

B 1
VRVE

Oa

/ oa(x1, 2, 23)dV | a=1,2,---,6. (8)
Veve

Through the firsts three static analyses we are able to determine the components of
the firsts three columns of the stiffness tensor C while through the last three load cases
we can determine the components belonging to the second half of its main diagonal, see
Eq. (6). After calculating all nine independent components of C we can evaluate the
effective elastic moduli of the honeycomb core in terms of the stiffness tensor components
using the well-known relationships reported in [17].

As a final remark, the equivalent density of the core is evaluated through the following

pt. [zl + 2y 4 2t, tan <Z>}
prvE = {212 + t.tan (Z) + [ll + t. tan (g)] cos(ﬁ)} { [ll + tc tan (g)} sin (9) + tc}'

(9)

relationship:

where p is the density of the material of the cell walls.

4 Numerical study

In order to prove the effectiveness of the proposed FE model we performed a numerical
study by comparing our results with those obtained using the models of Burton and Noor
[11] and Grediac [16].

The sandwich structure considered in this work is made of an aluminium honey-
comb core and carbon composite skins, this last being a typical combination of materi-
als employed in some real-world aerospace engineering applications, like those presented
in [8, 9, 12, 25]. The material properties of the aluminium alloy used for the honeycomb
core as well as those of the “elastic air” (these last taken from [2]) are listed in Table 3. We
firstly conducted the numerical tests on a reference honeycomb core whose unit cell sizes

are given in Table 3 (taken from [1]) while, secondly, we carried out a sensitivity analysis

11



(in terms of all the geometric parameters of the unit cell) on the full set of the effective

elastic properties.

4.1 Comparison with existing analytical and numerical models

The effective material properties for the reference unit cell (having the geometrical dimen-
sions listed in Table 3) obtained using our FE model as well as those evaluated using the
approaches of Burton and Noor [11] and Grediac [16] are listed in Table 4. In order to
calculate with a good accuracy level the effective material properties of the core a conver-
gence study in terms of mesh size has been carried out. In particular, in Fig. 5 we show
the results of the convergence analysis for the equivalent elastic moduli in terms of number
of divisions ng;, of the mesh along the cell wall thickness t.. As it can be seen the conver-
gence is reached when ng;, is equal to four: this corresponds to a FE model having a total
number of 52009 DOFs. However, when looking at the results of Fig. 5 one can notice that
a FE model with only one division along the thickness direction t. is sufficient to properly
capture the results, being the maximum relative error of about 4.7% for the in-plane shear
modulus G2 which reduces from 0.67 MPa (one division) to 0.64 MPa (four divisions).
The main reason underlying this fact is that the average value of the stress components
(involved into the evaluation of the equivalent elastic properties, see Eqs. (6)-(8)) is slightly
influenced when passing from one to four divisions along ¢.. On the other hand the use of a
FE model of the RVE with four elements within the thickness lead us to properly describe
the correct variation of the normal as well as the shear stress fields through the thickness
(see Figs. 6-8). These considerations led us to use, in the present work, a FE model of the
RVE characterised by four divisions along the cell thickness. It is worth noting that the
results of Table 4 are compared by considering, in the framework of the models of Burton
and Noor and Grediac, a unit cell having the same middle-surface as that of our FE model.
As it can be easily seen, the behaviour of the core at the macro-scale is orthotropic with
the main orthotropy axes aligned with those of the Cartesian coordinate system of Fig. 2.

For this reference case, where we consider a regular hexagonal honeycomb cell with thin
walls, the results given by our 3D solid model globally agree with those found by Burton
and Noor and Grediac. In particular, concerning the evaluation of the three out-of-plane
moduli E3, G13 and Ga3, the relative difference between our model and [11, 16] is very low:
1% for Go3 and about 2% for both G113 and Ej.

On the other hand, if we consider the in-plane moduli E1, Es, G12 and the out-of-plane
Poisson ratios v13 and vo3 the results obtained with our 3D FE-based model slightly differ
from those provided by [11, 16]. The relative difference ranges from 8% for E; to 23.5%
for G12. The main reason underlying the previous differences is in the use of shell-based
models and theories as done in [11, 16] which are not able to properly evaluate the previous

quantities. To understand this fact, let us consider the evaluation of the in-plane shear

12



modulus G2 which is calculated through the following relationship:
G2 = Ces = 06/E6 - (10)

From Eq. (10) we can see that G2 depends only upon the average stress o and upon
the imposed average strain €. This means that the value of the in-plane shear modulus
depends on the accuracy of the numerical evaluation of the in-plane shear stress field of

the RVE, which is influenced by the following aspects:

e 74 depends upon the correct evaluation of the normal and shear stress components
in the oblique side (o, o¢¢ and oy¢); indeed, all of these stresses are involved in the

evaluation of ¢ in the global frame of the RVE {O; 1, 2, z3}, see Figs. 6 and T,

e as shown in Figs. 6 and 7, the previous stress components vary through the thickness
of the oblique side and such variation is more pronounced at the intersection between

the oblique and the horizontal walls;

e in the oblique face of the unit cell the normal out-of-plane stress oy, as well as the
shear stress o,¢ are non-negligible, being the order of magnitude of such components

the same as the normal in-plane stress o¢¢, see Figs. 6 and T7;

e the shear stress og in the top and bottom horizontal sides of the unit cell varies

through the thickness of the wall, as shown in Fig. 8.

The previous aspects cannot be correctly evaluated in the framework of a shell-based
model such as those used in [11, 16]. In particular the out-of-plane normal stress in the
oblique wall is null for a shell model and the through-the-thickness variation of the shear
stress can be properly evaluated only by higher order shell theories. Similar considerations
can be repeated for the calculation of the first three columns of the stiffness tensor of the
core and hence for the evaluation of the rest of the elastic properties which depend upon

these quantities, see [17].

4.2 Sensitivity analysis

Together with the determination of the effective elastic properties of the basic configuration
having the geometry of Table 3, we also conducted a sensitivity analysis in which we change,
one at a time, every geometric parameter of the unit cell by keeping constant the others.
When one of these parameters varies the rest get the values of the reference unit cell
as reported in Table 3. For this reason such an analysis can be seen as an analysis of
the mechanical response of the RVE, in terms of its effective material properties, in the
neighbourhood of the reference configuration. Looking at the results shown in Figs. 9-13

we can deduce the following facts:
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e when varying the parameter l; between 10t. and 100t. (Fig. 9) the trend of the
in-plane elastic properties are in agreement with those provided by the model of
Burton and Noor. Concerning the out-of-plane Young’s modulus E3 it is slightly
underestimated by our 3D FE model when compared to that given by Burton and
Noor and this gap increases when [; decreases. This phenomenon is due to the fact
that when [ decreases it becomes of the same order of magnitude as the wall thickness
t.. Under this condition the mechanical behaviour of the oblique side of the cell is no
longer that of a thin plate, thus the model of Burton and Noor overestimates such
modulus. Similar considerations could be done both for the shear moduli and the

Poisson’s ratios;

e when varying the parameter lo between 0.05/; and 0.5]; (Fig. 10) the trend of the
results of our model globally agrees with that found using the model of Burton and
Noor; the relative difference on the values of the different moduli found using the two
models can be explained through the considerations previously done for the reference
geometry of the unit cell. This relative difference remains constant for all the elastic
properties, with the exception of Gi2 whose relative difference strongly increases
when [y decreases: this is due to the fact that when I becomes of the same order of
magnitude as t., both the bottom and top horizontal sides of the unit cell cannot be
modelled as thin plates, thus a shell-based model is no longer adapted to correctly

capture such a phenomenon;

e when varying the parameter t. between 0.02l2 and 0.1ly (Fig. 11) the difference
between the results of the present model and those issued from the model of Burton
and Noor increases with t.. This phenomenon can be easily explained: when the
wall thickness increases, the influence of the true 3D geometry of the unit cell on the

evaluation of the effective material properties becomes more and more important;

e when varying the parameter ¥ between 5 deg and 90 deg (Fig. 12) the trend of the
results found with our model is practically the same as that provided by the model of
Burton and Noor. The relative difference between the values of the effective elastic
properties found using the two models, increases when ¥ decreases, with the exception
of G13 and Ga3. This is due to the fact that when the corrugation angle of the cell
decreases the unit cell becomes more and more “fat”. In such a configuration the
effect of the out-of-plane stresses oo and &g on the calculation of the effective core
properties plays a crucial role, thus a shell-like model is not sufficient to properly

capture these phenomena;

e when varying the parameter h. between [; and 10l; (Fig. 13) we show that, actually,

the assumption underlying the model of Burton and Noor that the core properties
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do not vary with the core height is correct for seven elastic properties (Ep, Eo,
Es, Gia, v12, 23 and vq3). On the contrary, according to the model of Grediac
[16], this assumption cannot be accepted when evaluating G13 that varies with the
parameter h.. Nevertheless, unlike the results provided by Grediac our model is able
to capture also the weak variation of Gos with the core thickness. Moreover, the
relative difference calculated on Ga3 decreases when h. increases, ranging from 1%
to 0,1%.

To be remarked that when varying each geometrical parameter of the cell, the curve de-
scribing the variation of the out-of-plane shear modulus G13 always lies between the lower
(LB) and upper (UB) bounds given by the model of Burton and Noor which are calculated
using the strain energy associated firstly with a stress distribution satisfying the equilib-
rium (for the LB) and secondly with a strain field allowing compatible deformation (for
the UB). The reader is addressed to [11]| for a deeper insight in the matter. As a conclu-
sive remark of this section, we want to highlight the importance of using solid elements
to build the FE model of the repetitive unit cell which are able to properly capture the
influence of the true 3D stress field on the evaluation of the effective elastic properties of

the honeycomb core.

5 Conclusions

The main aim of the present work is to deal with the problem of the optimum design of a
sandwich panel composed of two laminated skins and a honeycomb core. In this first part
of the work we presented the numerical homogenisation technique as well as the related
3D FE model of the unit cell that will be used within the first level of the optimisation
procedure (see Part IT). In particular, we need an adequate model of the honeycomb core,
at the meso-scale, able to properly predict its equivalent material properties (at the macro-
scale) for any combination of design variables that, in the framework of the optimisation
procedure, could give rise to a geometry of the unit cell which is far away from a classical
shell-like geometry (i.e. a cell with thin walls).

To these purposes, firstly we demonstrated that shell-based models cannot correctly
represent the true geometry of the unit cell of the honeycomb core and, consequently, they
are not able to properly capture the influence of the real 3D stress field on the determination
of the effective core properties. For these reasons, in this paper, we used a 3D solid FE-
based model of the repetitive unit cell of the honeycomb core to predict its effective material
properties in the most general case, i.e. by taking into account any combination of the
geometric parameters of the unit cell.

The material properties determined using our model were, in addition, compared with

those obtained using the models of Burton and Noor [11] and Grediac [16]. Numerical
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results show that, for a hexagonal unit cell with thin walls, the out-of-plane elastic mod-
uli found by our model globally agree with those provided by shell-based analytical and
numerical models. On the contrary, the in-plane elastic moduli found using our model
show a relative difference ranging from 8% to 23.5% (depending on the considered quan-
tity) with respect to those provided by shell-based models. The main reason underlying
such differences is the influence of the “local” out-of plane normal stress over the cell walls
which is identically null in the framework of a shell-based model. Moreover, through an
analysis on the local stress field within the cell walls along with a sensitivity analysis, we
proved that such models are no longer appropriate in the framework of an optimisation
procedure that aims to take into account, among the design variables, the full set of the
geometric parameters characterising the unit cell. In fact, for those configurations in which
the thickness-to-side ratio of the cell walls goes beyond the limits imposed by a shell-like
model, a 3D solid model of the unit cell is therefore necessary to properly describe the
effect of the 3D stress field on the evaluation of the full set of material properties of the
equivalent solid that will be used at the macro-scale.

Part II of the present work will cover the formulation of the optimisation problem and
provide a detailed description of the two-level optimisation strategy; numerical examples

will be presented in order to demonstrate the effectiveness of the proposed approach.
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Tables

‘ 1% load case

‘ 27 1oad case

‘ 374 Joad case

| Nodes Uy Uy Us |Nodes Uy Uy Us |Nodes Uy Uy Us |
z1 =0 0 free free | 1 =0 0 free free | 1 =0 0 free free
T = a1 u  free free | 1 = a1 0 free free | 1 = a1 0 free free
r9o=0 free 0 free|xz9=0 free 0 free|xz9=0 free 0 free
ro = ag free 0 free | ©9 = a9 free wu free | 9 = ag free 0 free
r3=0 free free 0 |xz3=0 free free 0 |z3=0 free free 0
xs=as free free 0 |xz3=a3z free free 0 |x3=a3 free free u

Table 1: Boundary conditions for the FE model of the RVE

- 1%, 274 and 377 static analyses.

‘ 4th oad case

‘ 5th load case

‘ 6t load case

| Nodes U; Uy Us |Nodes Uy Uy Us |Nodes Uy Uy Us|
1 =0 0 free free | z1=0 free 0 0 r1 =0 free 0 0
z1=a1 0 free free | x1=a1 free 0 0 |z1=a1 free 0 0
o =10 0 free 0 zo=0 free 0 free|xz9=0 0 free 0
To=ay 0 free 0 To =ag free 0 free | x9 = a9 Uu 0 0
r3=0 0 0 free| z3=0 0 0 free | z3=0 free free 0
z3=az 0 U 0 |x3=a3 u 0 0 | z3=as free free 0

Table 2: Boundary conditions for the FE model of the RVE: 4" 5t and 6" static analyses.

Material properties

Aluminium E [MPa] v p [Kg/mm?|
70000 033 | 2.7x10°°
Elastic air Eir [MPa| Vair
1 %1073 0.0
Geometrical parameters (reference values)
li [mm] | o [mm] | ¢ [mm| | 6 [deg] he [mm]
3.666 1.833 0.0635 60 20

Table 3: Material and geometrical parameters of the unit cell.
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Properties ‘ Present Burton & Nooor [11] ‘ Grediac [16]

E1 [MPa] 0.884 0.815 0.815

E5 [MPa] 0.918 0.815 0.815

FE3 [MPa] 1812.299 1848.185 1848.185

G12 [MPa] 0.640 0.489 0.489

Gas [MPa] 262.981 260.552 260.552

G13 [MPa] 390.833 156.331 (LB) 397.088
434.254 (UB)

V12 0.980 1.000 1.000

Vo3 0.161 x1073 | 0.145 x1073 0.145 x1073

Vi3 0.167 x1073 | 0.145 x1073 0.145 x1073

prvE [Kg/mm3] | 6.990 x1078 | 7.117 x1078

Table 4: Effective material properties of the core for the reference geometry of the RVE.
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Figures

a) b)

Figure 1: Honeycomb core structure (a) and the repetitive unit cell (b).

Xo aq

~ a
a; \
X1

7 s

RVE a) b)

Figure 2: The repetitive unit cell (a) and the overall sizes of the related RVE (b).

21



DS
9/2

Figure 3: Geometrical parameters of the unit cell.

Figure 4: FE model of the RVE.
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Figure 6: Variation of o,,(n) (a), one(n) (b) and oee(n) (c) [MPa] within the oblique wall of the
cell at the intersection with the top horizontal side, 6! load case.
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- 325:

Figure 7: Variation of o,,(n) (a), ope(n) (b) and o¢e(n) (c) [MPa| within the oblique wall of the
cell at the intersection with the bottom horizontal side, 6 load case.
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Figure 8: Variation of o6(n) [MPa] within the top horizontal wall (a) and the bottom horizontal
wall (b) of the cell at the intersection with the oblique side, 6/ load case.
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