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Abstract

This work deals with the problem of the optimum design of a sandwich panel. The
design process is based on a general two-level optimisation strategy involving di�erent
scales: the meso-scale for both the unit cell of the core and the constitutive layer of the
laminated skins and the macro scale for the whole panel. Concerning the meso-scale
of the honeycomb core, an appropriate model of the unit cell able to properly provide
its e�ective elastic properties (to be used at the macro-scale) must be conceived. To
this purpose, in this �rst paper, we present the numerical homogenisation technique
as well as the related �nite element model of the unit cell which makes use of solid
elements instead of the usual shell ones. A numerical study to determine the e�ective
properties of the honeycomb along with a comparison with existing models and a
sensitive analysis in terms of the geometric parameters of the unit cell have been
conducted. Numerical results show that shell-based models are no longer adapted to
evaluate the core properties, mostly in the context of an optimisation procedure where
the parameters of the unit cell can get values that go beyond the limits imposed by a
2D model.
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Notations

GA Genetic Algorithm

FE Finite Element

tc Thickness of the aluminium foil used to produce the honeycomb core

l1 Length of the oblique sides of the hexagonal repetitive unit cell

l2 Length of the horizontal sides of the hexagonal repetitive unit cell

ϑ Corrugation angle of the hexagonal unit cell

hc Height of the honeycomb core

RVE Representative Volume Element for the honeycomb core

VRV E Volume of the representative volume element (including the second phase, i.e. the

�elastic air�)

{O;x1, x2, x3} Global material frame of the representative volume element

a1 Side length, along x1-axis, of the representative volume element

a2 Side length, along x2-axis, of the representative volume element

a3 Side length, along x3-axis, of the representative volume element
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VEFF E�ective volume of the unit cell of the honeycomb core

DOFs Degrees Of Freedom

σα Volume averaged stress tensor components (Voigt's notation)

εβ Volume averaged strain tensor components (Voigt's notation)

Cαβ Sti�ness tensor components of the homogenised core (Voigt's notation)

σαβ Volume averaged stress tensor components (tensorial notation)

εαβ Volume averaged strain tensor components (tensorial notation)

BCs Boundary Conditions

u Arbitrarily imposed displacement

Ei Young's moduli in the material frame {O;x1, x2, x3}

Gij Shear moduli in the material frame {O;x1, x2, x3}

νij Poisson's ratios in the material frame {O;x1, x2, x3}

ρRV E E�ective (or relative) density of the honeycomb core

ρ Density of the aluminium

E Young's modulus of the aluminium

ν Poisson's ratio of the aluminium

Eair Young's modulus of the elastic air

νair Poisson's ratio of the elastic air

{O; ξ, η, z} Local frame de�ned on the oblique side of the hexagonal cell

σξξ, σηη, σηξ Local stress tensor components expressed within the local frame

LB Lower Bound

UB Upper Bound
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1 Introduction

Sandwich structures are widely used in several �elds: aviation, automotive, naval, con-

struction industry. Their application, in fact, ranges from the most performing structures

such as aircraft wings, helicopters rotor blades, racing yachts keels to home furnishings.

This is because sandwich structures o�er high capacity of sti�ness with a very low weight.

The di�erence between a monolithic or laminated plate and a sandwich one concerns the

presence of a low density cellular solid, i.e. the core, between two sti�er thin plates, that

increases the geometric moment of inertia of the plate with a few weight increment.

However, when the choice of the designer falls on the use of a sandwich structure, for

a given application, he must additionally de�ne the type of sandwich structure that has to

be employed. We can, in fact, identify several types of sandwich structures according to

the geometry and shape of the core: honeycomb, solid, foam, corrugated, truss, web cores.

The most important feature of the core is its relative density (ratio between the density

of the cellular material and that of the material from which the cells walls are made) that

can vary from 0.001 to, generally, 0.4, see [15]. Almost any material can be used to build

a cellular solid: polymers, metals, ceramics, composites, etc..

In aircraft and spacecraft applications sandwich panels are composed by glass or carbon-

�ber composite skins separated by aluminium or resin honeycombs, or by polymer foams.

In particular, the honeycomb cell size can be chosen to provide cores with di�erent sti�ness

and density properties. The result is a panel with very high bending sti�ness-to-weight

and strength-to-weight ratios. A review on sandwich structures and their applications can

be found in [15, 27, 29].

The optimal design of sandwich structures is much more cumbersome than that of a

classical monolithic structure. The di�culties increase when the sandwich structure is

made of composite skins and a honeycomb core. In this case we have to face, into the same

design process, both the di�culty of designing a laminated plate (concerning the skins)

and the di�culty of designing a complex 3D cellular core. Therefore, engineers always use

some simplifying assumptions or rules to obtain, in an easier and faster way, a solution,

e.g. the use of symmetric balanced stacks for the skins to ensure the membrane/bending

elastic uncoupling along with the membrane orthotropy or the use of regular hexagonal

geometry for the unit cell of the core. Such assumptions extremely shrink the solution

space of potential con�gurations for the problem at hand. An alternative approach could

consist in formulating the design problem of the sandwich panel as a constrained optimi-

sation problem without introducing any simplifying hypothesis nor on the nature of the

skins laminate neither on the geometry of the repetitive unit cell of the honeycomb core.

Obviously, this can be done on one hand by a rigorous mathematical formulation of the

problem and on the other hand by the use of numerical techniques that must be able to
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explore the whole design space in order to �nd the true global optimal con�guration of the

system. Moreover, unlike what is usually done in literature, our objective is twofold: on

one hand we want to formulate and solve such a problem on di�erent scales and on the

other hand we want to include within the design process all possible parameters de�ning

the structure (at each scale) as optimisation variables.

Therefore, in the framework of the design of a sandwich plate with honeycomb core

and composite skins, the optimisation variables will be the material and the geometrical

properties characterising both the skins and the core at each scale.

The design strategy proposed in this work is a numerical optimisation procedure that

does not make any simplifying assumption in order to obtain a true global optimum con-

�guration of the system. The design process is not submitted to restrictions, i.e. any

parameter characterising our structure is an optimisation variable: thickness of the core,

number of plies of skins, plies orientations and geometric parameters of the unit cell.

In order to face the design of the sandwich structure at both meso and macro scales,

we used an optimisation strategy developed on two di�erent levels: at the �rst level we

determine the optimal geometry of the unit cell together with the material and geometric

parameters of the laminated skins (at this level the laminate representing each skin is

modelled as an equivalent homogeneous anisotropic plate whose behaviour at the macro-

scale is described in terms of tensor invariants, i.e. the laminate polar parameters, see

[26]). At the second level of the strategy we determine the optimal skins lay-up (the skin

meso-scale) meeting the values of the material and geometrical parameters issued from the

�rst level of the strategy. The whole strategy is based on the use of the polar formalism

[26, 28] and on the Genetic Algorithm (GA) BIANCA [20, 21]. For more details on the

polar formalism and the related advantages the reader is addressed to Part II of the present

work.

Concerning the model of the core, the �rst level of the strategy involves two di�erent

scales:

• the meso-scale wherein the core is modelled via the repetitive unit cell characterised

by some geometric variables;

• the macro-scale where the core is modelled as an homogeneous orthotropic solid

whose mechanical response is described through the full set of elastic moduli whose

values depend on the geometric parameters of the unit cell.

Therefore, the link between these two scales is represented by the homogenisation phase

of the honeycomb core. To this purpose we decided to develop an accurate method to

determine the material properties of the orthotropic core that will be assigned to the

equivalent solid at the macro-scale.
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A considerable number of analytical, numerical and experimental methods for pre-

dicting the e�ective elastic properties of the orthotropic honeycomb core as function of

geometric and material characteristics of its unit cell can be found in the literature. The

work of Gibson and Ashby [15] represents the �rst research study where the full set of elastic

properties of a honeycomb core with constant wall thickness has been determined. Subse-

quently, this technique has been modi�ed by Zhang and Ashby [30] to include the double

thickness walls to determine the out-of-plane properties. Another analytical approach is

presented in [19] using the laminate theory. In 1997, Burton and Noor [11] present the full

set of nine material properties derived analytically considering the in�uence of the double

thickness walls. Despite this last work represents a great step forward in the evaluation of

the honeycomb structure properties it shows also a weakness: the out-of-plane shear prop-

erties of the honeycomb core are not univocally determined since the authors give only the

lower and upper bounds for these properties. Other analytical approaches have been devel-

oped during the following years, for example [14] where the authors take into account also

the skins e�ect or [23] where some experimental results are used to develop an analytical

method to determine the out-of-plane mechanical properties. Other researchers developed

di�erent numerical approaches based on the Finite Element (FE) technique to investigate

the material properties of honeycomb structures. Grediac [16] was one of the �rsts to deter-

mine the out-of-plane properties of the honeycomb through a FE approach. An analogous

work, were the transverse shear sti�ness properties of honeycombs are determined through

a FE method is presented in [24]. In [10] a displacement-based homogenisation technique

is presented to evaluate the mechanical properties of foam-�lled honeycomb cores. We can

also �nd other works where the e�ective properties of the sandwich plate are determined

via FE static analyses conducted on the overall geometry of the honeycomb core instead

of performing an homogenisation process on the unit cell, see for instance [22]. Further

interesting works on purely experimental or mixed numerical/experimental techniques for

the determination of the e�ective properties of the honeycomb core can be found in [13, 18].

A common weakness of the works about FE-based homogenisation techniques consists

in the use of shell-like models for the unit cell of the honeycomb core. These models do

not take into account the true geometry of the cell and, consequently, they are not able to

properly estimate the in�uence of the real 3D stress state on the e�ective core properties.

In particular, in this work, we need an adequate model of the honeycomb core, at the

meso-scale, able to provide with a good level of accuracy the material properties of the

core for any combination of design variables that (in the framework of the optimisation

procedure) could give rise to a geometry of the unit cell with thick walls rather than thin

ones. Therefore, before introducing the design problem of the sandwich structure and the

related two-level optimisation strategy, we decided to develop an accurate 3D model, for

the numerical homogenisation phase of the core, that has to be included within the �rst
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level of the procedure and that represents the link between the meso and the macro-scale

of the core.

In particular, concerning the evaluation of the e�ective material properties of the core,

the skins e�ect, or skins in�uence, is not taken into account during the homogenisation

phase. In this work we adopt a conventional approach where the sandwich plate is modelled,

at the macro-scale level, as a heterogeneous continuum composed by the union of three

parts:

• two laminated skins (that a priori can be di�erent) whose anisotropic mechanical

behaviour is described through a set of tensor invariants concerning both membrane,

bending and coupling sti�ness tensors (see Part II). Each skin is, hence, characterised

by design variables of di�erent nature (geometrical and material), i.e. its thickness (so

the number of plies of the laminate) and its homogenised sti�ness tensors invariants

(namely the laminate polar parameters, see Part II);

• the core whose mechanical response (at the macro-scale) is de�ned by the elastic

moduli of the equivalent continuum that uniquely depend upon the geometrical design

variables of the unit cell (de�ned at the meso-scale).

Neglecting the interaction between the skins and the core, at the meso-scale level of

the core, corresponds to adopt the so-called �free modulus model� in the framework of the

determination of the e�ective core properties, see [10, 14].

Being this work rather long and considering the fact that it involves two di�erent but

linked main topics (the core homogenisation and the optimum design of the sandwich

panel) we decided to divide its presentation into two parts. In this �rst part, we will

present the numerical homogenisation technique as well as the 3D FE model used to deal

with the core homogenisation problem. In part II, we will present the formulation of the

optimisation problem along with the two-level strategy and some numerical examples to

prove its e�ectiveness.

The paper is organised as follows: the description of the core homogenisation problem

is introduced in Section 2 and the FE model used for the numerical homogenisation is

presented in Section 3. In Section 4 we present a numerical study to determine the e�ective

in-plane and out-of-plane properties of the honeycomb along with a comparison with the

existing analytical and numerical models and a sensitive analysis in terms of the geometric

parameters of the unit cell. Finally, Section 5 ends the paper with some concluding remarks.

2 Homogenisation of core properties: problem description

In the last decades, several analytical, numerical and experimental techniques have been

developed in order to determine the e�ective properties of honeycomb sandwich cores as
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function of geometric and material properties of the repetitive unit cell. Each method

presents a certain level of sophistication. For example, analytical techniques, based on

energy methods or homogenisation methods, make use of some simplifying assumptions to

obtain the elasticity solution of the unit cell. To avoid the use of such assumptions, several

studies were conducted to develop new experimental-based and numerical-based techniques

for determining the e�ective core properties.

On one hand, experimental-based methods, see for instance [3�6], require a standardised

procedure for the measurements. However, the main drawbacks of these procedures consist

in the fact that they are very expensive in terms of both time and money and the obtained

results are valid only for the particular material and geometry of the sample employed in

the analysis.

On the other hand, numerical-based techniques, such as FE methods, do not make use

of the simplifying assumptions used in analytical approaches and are not expensive. In

addition, they can lead to realistic solutions of the elasticity problem in terms of stress and

strain �elds over the unit cell or within the whole structure of the honeycomb core.

As a consequence, in this work we have chosen a FE-based approach as a numerical ho-

mogenisation technique to determine the core properties. It should be noted that a special

feature of the honeycomb is its repetitiveness, i.e. the periodicity in its shape. Therefore,

at this stage, we will apply the homogenisation method at the meso-scale (the scale of the

unit cell) and then, we will replace the actual cellular structure, at the macro-scale level,

by an equivalent homogeneous anisotropic medium characterised by the elastic properties

determined during the homogenisation phase. The proposed FE-based homogenisation

technique leads us to include all the geometric parameters of the unit cell among the op-

timisation variables of the process without a great loss of computational time (about 11

seconds on a 2.50 GHz Dual Core processor for a single homogenisation analysis).

The basic assumptions made to evaluate the elastic response of our model and, hence,

to determine the e�ective core properties are:

• linear, elastic behaviour for the material of the cell walls;

• perfect bonding for the wall-to-wall contact;

• the buckling of the cell walls is disregarded.

We recall that, as previously stated, since the aim of this �rst paper does not consist

in developing an equivalent homogeneous plate/solid model for the whole sandwich panel,

we do not consider the skins in�uence on the evaluation of the e�ective properties of the

honeycomb core.

A scheme of the repetitive unit cell, used for the numerical homogenisation of the

honeycomb core, is showed in Fig. 1.
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3 A 3D �nite element model for numerical homogenisation

The e�ective properties of the core are determined using the strain energy homogenisation

technique of periodic media, see [7]. This technique makes use of the repetitive unit of

the periodic structure to approximate its e�ective properties at the macro-scale level. The

basic feature of the strain energy homogenisation technique consists in the assumption

that the repetitive unit of the periodic structure and the corresponding unit volume of the

homogeneous solid undergo the same deformation having, hence, the same strain energy.

In this case, the periodic structure is the honeycomb core whose repetitive unit cell

has three planes of symmetry, thus we decided to exploit these symmetries using, in the

homogenisation process, only an eighth of the repetitive unit cell as shown in Fig. 2.

The geometric characteristics of the repetitive unit used for the static analysis of the

homogenisation model are shown in Fig. 3: tc is the thickness of the foil used to produce

the honeycomb, l1 is the length of the oblique side of the cell, l2 represents the length of

the horizontal sides of the repetitive unit while ϑ is the cell corrugation angle and hc is

the height of the honeycomb core. We can now de�ne the related Representative Volume

Element (RVE) of the honeycomb core whose volume is (see Fig. 2 and 3):

VRVE = a1a2a3 , (1)

with:

a1 = 2l2 + tc tan

(
ϑ

2

)
+

[
l1 + tc tan

(
ϑ

2

)]
cos(ϑ) ,

a2 =

[
l1 + tc tan

(
ϑ

2

)]
sin (ϑ) + tc ,

a3 =
hc
2

,

(2)

whereas the e�ective volume of the unit cell is:

VEFF = tc
hc
2

[
l1 + 2l2 + 2tc tan

(
θ

2

)]
. (3)

The FE model for the homogenisation process has been created within the commercial

FE code ANSYSr. We used the 20-node solid element SOLID186 with three Degrees Of

Freedom (DOFs) per node. The model along its structured mesh is illustrated in Fig. 4.

In this model the elements that do not belong to the unit cell geometry represent the

�second phase� which has the properties of the so-called �elastic air� [2]. The second phase

is introduced as a �numerical arti�ce� to obtain the strain �eld provided by the theory

underlying the strain energy homogenisation technique, see [7] for more details. Unlike

what is usually done in the literature, where the cell geometry is modelled with shell

elements that show a geometric overlapping between the volumes built over the horizontal

and oblique wall sides, in this work a 3D solid model is used to correctly represent the
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real geometry of the repetitive unit of the honeycomb structure. Our choice is due to the

fact that, thanks to the 3D solid model, we can also take into account the e�ect of the

full three-dimensional stress �eld in the determination of the e�ective core properties. As

we will show in the numerical study of Section 4, this e�ect cannot be neglected in any

case, mostly when the geometrical con�guration of the unit cell is far away from a classical

con�guration of regular hexagon with thin walls.

A further assumption, as speci�ed in Section 2, concerns the elastic behaviour of the

orthotropic homogeneous medium. The generalised Hooke's law for the RVE can be written

as follows:

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





ε1
ε2
ε3
ε4
ε5
ε6


, (4)

where σ and ε are, respectively, the stress and strain tensors expressed in Voigt's notation.

The link between tensorial and Voigt's notation for both tensors is:

σ1

σ2

σ3

σ4

σ5

σ6


=



σ11

σ22

σ33

σ23

σ13

σ12


,



ε1
ε2
ε3
ε4
ε5
ε6


=



ε11
ε22
ε33
2ε23
2ε13
2ε12


. (5)

As σ and ε are referred to the equivalent homogeneous solid, each component of σ and ε

is volume averaged.

The main objective of our homogenisation process is to determine all non-zero compo-

nents of the sti�ness tensor C of Eq. (4). The expression of the components of C in terms

of those of the stress and strain tensors is:

Cαβ =
σα

εβ
with α, β = 1, 2, · · · , 6 and εγ = 0 with γ = 1, 2, · · · , 6, γ ̸= β . (6)

We have to determine, now, the nine independent components of C.

In [7] the strain energy homogenisation technique is applied to the calculation of the

elastic moduli of unidirectional laminae. In this work the author determines the �ve com-

ponents of the transversally isotropic ply sti�ness tensor by solving four di�erent static

analyses for the FE model of the RVE. In each one of these analyses the boundary con-

ditions (BCs) are imposed in order to obtain a strain tensor having only one component

di�erent from zero. According to [7] we have determined the nine independent components

of C for the honeycomb core through six static analyses on the FE model of Fig. 4. The

corresponding BCs for each static analysis are resumed in Tables 1 and 2.
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These BCs are imposed in order to satisfy the symmetries of the RVE and to generate

a strain �eld in such a way that only one component of the tensor ε is di�erent from zero

for each static analysis. The relations giving the volume average strain components are:

ε1 =
u

a1
, ε2 =

u

a2
, ε3 =

u

a3
, ε4 =

u

a3
, ε5 =

u

a3
, ε6 =

u

a2
, (7)

where u is the arbitrarily imposed displacement (see Tables 1 and 2). Once the linear

elastic problem, characterised by the boundary conditions of Tables 1 and 2, is solved we

can get the corresponding stress �eld whose volume average value for the RVE is computed

as follows:

σα =
1

VRVE

∫
VRVE

σα(x1, x2, x3)dV , α = 1, 2, · · · , 6 . (8)

Through the �rsts three static analyses we are able to determine the components of

the �rsts three columns of the sti�ness tensor C while through the last three load cases

we can determine the components belonging to the second half of its main diagonal, see

Eq. (6). After calculating all nine independent components of C we can evaluate the

e�ective elastic moduli of the honeycomb core in terms of the sti�ness tensor components

using the well-known relationships reported in [17].

As a �nal remark, the equivalent density of the core is evaluated through the following

relationship:

ρRVE =

ρtc

[
l1 + 2l2 + 2tc tan

(
θ

2

)]
{
2l2 + tc tan

(
ϑ

2

)
+

[
l1 + tc tan

(
ϑ

2

)]
cos(ϑ)

}{[
l1 + tc tan

(
ϑ

2

)]
sin (ϑ) + tc

} .

(9)

where ρ is the density of the material of the cell walls.

4 Numerical study

In order to prove the e�ectiveness of the proposed FE model we performed a numerical

study by comparing our results with those obtained using the models of Burton and Noor

[11] and Grediac [16].

The sandwich structure considered in this work is made of an aluminium honey-

comb core and carbon composite skins, this last being a typical combination of materi-

als employed in some real-world aerospace engineering applications, like those presented

in [8, 9, 12, 25]. The material properties of the aluminium alloy used for the honeycomb

core as well as those of the �elastic air� (these last taken from [2]) are listed in Table 3. We

�rstly conducted the numerical tests on a reference honeycomb core whose unit cell sizes

are given in Table 3 (taken from [1]) while, secondly, we carried out a sensitivity analysis
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(in terms of all the geometric parameters of the unit cell) on the full set of the e�ective

elastic properties.

4.1 Comparison with existing analytical and numerical models

The e�ective material properties for the reference unit cell (having the geometrical dimen-

sions listed in Table 3) obtained using our FE model as well as those evaluated using the

approaches of Burton and Noor [11] and Grediac [16] are listed in Table 4. In order to

calculate with a good accuracy level the e�ective material properties of the core a conver-

gence study in terms of mesh size has been carried out. In particular, in Fig. 5 we show

the results of the convergence analysis for the equivalent elastic moduli in terms of number

of divisions ndiv of the mesh along the cell wall thickness tc. As it can be seen the conver-

gence is reached when ndiv is equal to four: this corresponds to a FE model having a total

number of 52009 DOFs. However, when looking at the results of Fig. 5 one can notice that

a FE model with only one division along the thickness direction tc is su�cient to properly

capture the results, being the maximum relative error of about 4.7% for the in-plane shear

modulus G12 which reduces from 0.67 MPa (one division) to 0.64 MPa (four divisions).

The main reason underlying this fact is that the average value of the stress components

(involved into the evaluation of the equivalent elastic properties, see Eqs. (6)-(8)) is slightly

in�uenced when passing from one to four divisions along tc. On the other hand the use of a

FE model of the RVE with four elements within the thickness lead us to properly describe

the correct variation of the normal as well as the shear stress �elds through the thickness

(see Figs. 6-8). These considerations led us to use, in the present work, a FE model of the

RVE characterised by four divisions along the cell thickness. It is worth noting that the

results of Table 4 are compared by considering, in the framework of the models of Burton

and Noor and Grediac, a unit cell having the same middle-surface as that of our FE model.

As it can be easily seen, the behaviour of the core at the macro-scale is orthotropic with

the main orthotropy axes aligned with those of the Cartesian coordinate system of Fig. 2.

For this reference case, where we consider a regular hexagonal honeycomb cell with thin

walls, the results given by our 3D solid model globally agree with those found by Burton

and Noor and Grediac. In particular, concerning the evaluation of the three out-of-plane

moduli E3, G13 and G23, the relative di�erence between our model and [11, 16] is very low:

1% for G23 and about 2% for both G13 and E3.

On the other hand, if we consider the in-plane moduli E1, E2, G12 and the out-of-plane

Poisson ratios ν13 and ν23 the results obtained with our 3D FE-based model slightly di�er

from those provided by [11, 16]. The relative di�erence ranges from 8% for E1 to 23.5%

for G12. The main reason underlying the previous di�erences is in the use of shell-based

models and theories as done in [11, 16] which are not able to properly evaluate the previous

quantities. To understand this fact, let us consider the evaluation of the in-plane shear
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modulus G12 which is calculated through the following relationship:

G12 = C66 = σ6/ε6 . (10)

From Eq. (10) we can see that G12 depends only upon the average stress σ6 and upon

the imposed average strain ε6. This means that the value of the in-plane shear modulus

depends on the accuracy of the numerical evaluation of the in-plane shear stress �eld of

the RVE, which is in�uenced by the following aspects:

• σ6 depends upon the correct evaluation of the normal and shear stress components

in the oblique side (σηη, σξξ and σηξ); indeed, all of these stresses are involved in the

evaluation of σ6 in the global frame of the RVE {O;x1, x2, x3}, see Figs. 6 and 7;

• as shown in Figs. 6 and 7, the previous stress components vary through the thickness

of the oblique side and such variation is more pronounced at the intersection between

the oblique and the horizontal walls;

• in the oblique face of the unit cell the normal out-of-plane stress σηη as well as the

shear stress σηξ are non-negligible, being the order of magnitude of such components

the same as the normal in-plane stress σξξ, see Figs. 6 and 7;

• the shear stress σ6 in the top and bottom horizontal sides of the unit cell varies

through the thickness of the wall, as shown in Fig. 8.

The previous aspects cannot be correctly evaluated in the framework of a shell-based

model such as those used in [11, 16]. In particular the out-of-plane normal stress in the

oblique wall is null for a shell model and the through-the-thickness variation of the shear

stress can be properly evaluated only by higher order shell theories. Similar considerations

can be repeated for the calculation of the �rst three columns of the sti�ness tensor of the

core and hence for the evaluation of the rest of the elastic properties which depend upon

these quantities, see [17].

4.2 Sensitivity analysis

Together with the determination of the e�ective elastic properties of the basic con�guration

having the geometry of Table 3, we also conducted a sensitivity analysis in which we change,

one at a time, every geometric parameter of the unit cell by keeping constant the others.

When one of these parameters varies the rest get the values of the reference unit cell

as reported in Table 3. For this reason such an analysis can be seen as an analysis of

the mechanical response of the RVE, in terms of its e�ective material properties, in the

neighbourhood of the reference con�guration. Looking at the results shown in Figs. 9-13

we can deduce the following facts:
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• when varying the parameter l1 between 10tc and 100tc (Fig. 9) the trend of the

in-plane elastic properties are in agreement with those provided by the model of

Burton and Noor. Concerning the out-of-plane Young's modulus E3 it is slightly

underestimated by our 3D FE model when compared to that given by Burton and

Noor and this gap increases when l1 decreases. This phenomenon is due to the fact

that when l1 decreases it becomes of the same order of magnitude as the wall thickness

tc. Under this condition the mechanical behaviour of the oblique side of the cell is no

longer that of a thin plate, thus the model of Burton and Noor overestimates such

modulus. Similar considerations could be done both for the shear moduli and the

Poisson's ratios;

• when varying the parameter l2 between 0.05l1 and 0.5l1 (Fig. 10) the trend of the

results of our model globally agrees with that found using the model of Burton and

Noor; the relative di�erence on the values of the di�erent moduli found using the two

models can be explained through the considerations previously done for the reference

geometry of the unit cell. This relative di�erence remains constant for all the elastic

properties, with the exception of G12 whose relative di�erence strongly increases

when l2 decreases: this is due to the fact that when l2 becomes of the same order of

magnitude as tc, both the bottom and top horizontal sides of the unit cell cannot be

modelled as thin plates, thus a shell-based model is no longer adapted to correctly

capture such a phenomenon;

• when varying the parameter tc between 0.02l2 and 0.1l2 (Fig. 11) the di�erence

between the results of the present model and those issued from the model of Burton

and Noor increases with tc. This phenomenon can be easily explained: when the

wall thickness increases, the in�uence of the true 3D geometry of the unit cell on the

evaluation of the e�ective material properties becomes more and more important;

• when varying the parameter ϑ between 5 deg and 90 deg (Fig. 12) the trend of the

results found with our model is practically the same as that provided by the model of

Burton and Noor. The relative di�erence between the values of the e�ective elastic

properties found using the two models, increases when ϑ decreases, with the exception

of G13 and G23. This is due to the fact that when the corrugation angle of the cell

decreases the unit cell becomes more and more ��at�. In such a con�guration the

e�ect of the out-of-plane stresses σ2 and σ6 on the calculation of the e�ective core

properties plays a crucial role, thus a shell-like model is not su�cient to properly

capture these phenomena;

• when varying the parameter hc between l1 and 10l1 (Fig. 13) we show that, actually,

the assumption underlying the model of Burton and Noor that the core properties
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do not vary with the core height is correct for seven elastic properties (E1, E2,

E3, G12, ν12, ν23 and ν13). On the contrary, according to the model of Grediac

[16], this assumption cannot be accepted when evaluating G13 that varies with the

parameter hc. Nevertheless, unlike the results provided by Grediac our model is able

to capture also the weak variation of G23 with the core thickness. Moreover, the

relative di�erence calculated on G23 decreases when hc increases, ranging from 1%

to 0,1%.

To be remarked that when varying each geometrical parameter of the cell, the curve de-

scribing the variation of the out-of-plane shear modulus G13 always lies between the lower

(LB) and upper (UB) bounds given by the model of Burton and Noor which are calculated

using the strain energy associated �rstly with a stress distribution satisfying the equilib-

rium (for the LB) and secondly with a strain �eld allowing compatible deformation (for

the UB). The reader is addressed to [11] for a deeper insight in the matter. As a conclu-

sive remark of this section, we want to highlight the importance of using solid elements

to build the FE model of the repetitive unit cell which are able to properly capture the

in�uence of the true 3D stress �eld on the evaluation of the e�ective elastic properties of

the honeycomb core.

5 Conclusions

The main aim of the present work is to deal with the problem of the optimum design of a

sandwich panel composed of two laminated skins and a honeycomb core. In this �rst part

of the work we presented the numerical homogenisation technique as well as the related

3D FE model of the unit cell that will be used within the �rst level of the optimisation

procedure (see Part II). In particular, we need an adequate model of the honeycomb core,

at the meso-scale, able to properly predict its equivalent material properties (at the macro-

scale) for any combination of design variables that, in the framework of the optimisation

procedure, could give rise to a geometry of the unit cell which is far away from a classical

shell-like geometry (i.e. a cell with thin walls).

To these purposes, �rstly we demonstrated that shell-based models cannot correctly

represent the true geometry of the unit cell of the honeycomb core and, consequently, they

are not able to properly capture the in�uence of the real 3D stress �eld on the determination

of the e�ective core properties. For these reasons, in this paper, we used a 3D solid FE-

based model of the repetitive unit cell of the honeycomb core to predict its e�ective material

properties in the most general case, i.e. by taking into account any combination of the

geometric parameters of the unit cell.

The material properties determined using our model were, in addition, compared with

those obtained using the models of Burton and Noor [11] and Grediac [16]. Numerical
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results show that, for a hexagonal unit cell with thin walls, the out-of-plane elastic mod-

uli found by our model globally agree with those provided by shell-based analytical and

numerical models. On the contrary, the in-plane elastic moduli found using our model

show a relative di�erence ranging from 8% to 23.5% (depending on the considered quan-

tity) with respect to those provided by shell-based models. The main reason underlying

such di�erences is the in�uence of the �local� out-of plane normal stress over the cell walls

which is identically null in the framework of a shell-based model. Moreover, through an

analysis on the local stress �eld within the cell walls along with a sensitivity analysis, we

proved that such models are no longer appropriate in the framework of an optimisation

procedure that aims to take into account, among the design variables, the full set of the

geometric parameters characterising the unit cell. In fact, for those con�gurations in which

the thickness-to-side ratio of the cell walls goes beyond the limits imposed by a shell-like

model, a 3D solid model of the unit cell is therefore necessary to properly describe the

e�ect of the 3D stress �eld on the evaluation of the full set of material properties of the

equivalent solid that will be used at the macro-scale.

Part II of the present work will cover the formulation of the optimisation problem and

provide a detailed description of the two-level optimisation strategy; numerical examples

will be presented in order to demonstrate the e�ectiveness of the proposed approach.

References

[1] HexWeb honeycomb attributes and properties. Duxford, Cambridge, UK, 1999.

[2] ANSYS, Inc., 275 Technology Drive, Canonsburg, PA 15317. ANSYS Mechanical

APDL Modeling and Meshing Guide, 2012.

[3] ASTM, West Conshohocken, Pa. C273 standard method of shear test in �atwise plane

of �at sandwich constructions or sandwich cores, 1970.

[4] ASTM, West Conshohocken, Pa. C271 standard test method for density of core ma-

terials for structural sandwich contructions, 1988.

[5] ASTM, West Conshohocken, Pa. C365 standard test methods for �atwise compressive

strangth of sandwich cores, 1988.

[6] ASTM, West Conshohocken, Pa. D6790 standard test method for determining Pois-

son's ratio of honeycomb cores, 2002.

[7] E. J. Barbero. Finite element analysis of composite materials. Taylor and Francis

Group, 2008.

16



[8] T. Besant, G.A.O. Davies, and D. Hitchings. Finite element modelling of low veloc-

ity impact of composite sandwich panels. Composites Part A: Applied science and

manufacturing, 32:1189�1196, 2001.

[9] B. L. Buitrago, C. Santiuste, S. Sánchez-Sáez, E. Barbero, and C. Navarro. Modelling

of composite sandwich structures with honeycomb core subjected to high-velocity

impact. Composite Structures, 92:2090�2096, 2010.

[10] V. N. Burlayenko and T. Sadowski. E�ective elastic properties of foam-�lled honey-

comb cores of sandwich panels. Composite Structures, 92:2890�2900, 2010.

[11] W. S. Burton and A. K. Noor. Assessment of continuum models for sandwich panel

honeycomb cores. Computer Methods in Applied Mechanics and Engineering, 145:341�

360, 1997.

[12] K. Diamanti, C. Soutis, and J.M. Hodgkinson. Lamb waves for the non-destructive

inspection of monolithic and sandwich composite beams. Composites Part A: Applied

science and manufacturing, 36:189�195, 2005.

[13] C. C. Foo, G. B. Chai, and L. K. Seah. Mechanical properties of nomex material and

nomex honeycomb structure. Composite Structures, 80:588�594, 2007.

[14] X. Frank Xu and P. Qiao. Homogenized elastic properties of honeycomb sandwich

with skin e�ect. International Journal of Solids and Structures, 39:2153�2188, 2002.

[15] L. J. Gibson and M. F. Ashby. Cellular solids - Structure and properties. Cambridge

University Press, 1997.

[16] M. Grediac. A �nite element study of the transverse shear in honeycomb cores. In-

ternational Journal of Solids and Structures, 30(13):1777�1788, 1993.

[17] R. M. Jones. Mechanics of composite materials. McGraw-Hill, 1975.

[18] A. Karakoç and J. Freund. Experimental studies on mechanical properties of cellular

structures using nomex honeycomb cores. Composite Structures, 94:2017�2024, 2012.

[19] F. Meraghni, F. Desrumaux, and M. L. Benzeggagh. Mechanical behaviour of cellular

core for structural sandwich panels. Composites: Part A, 30:767�779, 1999.

[20] M. Montemurro, A. Vincenti, and P. Vannucci. A two-level procedure for the global

optimum design of composite modular structures - application to the design of an

aircraft wing. Part 1: theoretical formulation. Journal of Optimization Theory and

Applications, 155(1):1�23, 2012.

17



[21] M. Montemurro, A. Vincenti, and P. Vannucci. A two-level procedure for the global

optimum design of composite modular structures - application to the design of an

aircraft wing. Part 2: numerical aspects and examples. Journal of Optimization Theory

and Applications, 155(1):24�53, 2012.

[22] T. Sadowski and J. B�ec. E�ective properties for sandwich plates with aluminium foil

honeycomb core and polymer foam �lling - static and dynamic response. Computa-

tional Materials Science, 50:1269�1275, 2011.

[23] C. W. Schwingshackl, G. S. Aglietti, and P. R. Cunningham. Determination of hon-

eycomb material properties: existing theories and an alternative dynamic approach.

Journal of Aerospace Engineering, 19(3):177�183, 2006.

[24] G. Shi and P. Tong. Equivalent transverse shear sti�ness of honeycomb cores. Inter-

national Journal of Solids and Structures, 32(10):1383�1393, 1995.

[25] E. A. Taylor, M. K. Herbert, B. A. M. Vaughan, and J. A. M. McDonnell. Hyperve-

locity impact on carbon �bre reinforced plastic / aluminium honeycomb: comparison

with whipple bumper shields. International Journal of Impact Engineering, 23:883�

893, 1999.

[26] P. Vannucci. Plane anisotropy by the polar method. Meccanica, 40:437�454, 2005.

[27] A. Vautrin. Mechanics of sandwich structures. Springer, 2010.

[28] G. Verchery. Les invariants des tenseurs d'ordre 4 du type de l'élasticité. VIllard-de-

Lans, (France), 1979. Proc. of colloque Euromech 115.

[29] J. R. Vinson. The behavior of sandwich structures of isotropic and composite materials.

Technomic Publishing Company, 1999.

[30] J. Zhang and M. Ashby. The out-of-plane properties of honeycombs. International

Juornal of Mechanical Science, 145:341�360, 1997.

18



Tables

1st load case 2nd load case 3rd load case

Nodes U1 U2 U3 Nodes U1 U2 U3 Nodes U1 U2 U3

x1 = 0 0 free free x1 = 0 0 free free x1 = 0 0 free free
x1 = a1 u free free x1 = a1 0 free free x1 = a1 0 free free
x2 = 0 free 0 free x2 = 0 free 0 free x2 = 0 free 0 free
x2 = a2 free 0 free x2 = a2 free u free x2 = a2 free 0 free
x3 = 0 free free 0 x3 = 0 free free 0 x3 = 0 free free 0
x3 = a3 free free 0 x3 = a3 free free 0 x3 = a3 free free u

Table 1: Boundary conditions for the FE model of the RVE: 1st, 2nd and 3rd static analyses.

4th load case 5th load case 6th load case

Nodes U1 U2 U3 Nodes U1 U2 U3 Nodes U1 U2 U3

x1 = 0 0 free free x1 = 0 free 0 0 x1 = 0 free 0 0
x1 = a1 0 free free x1 = a1 free 0 0 x1 = a1 free 0 0
x2 = 0 0 free 0 x2 = 0 free 0 free x2 = 0 0 free 0
x2 = a2 0 free 0 x2 = a2 free 0 free x2 = a2 u 0 0
x3 = 0 0 0 free x3 = 0 0 0 free x3 = 0 free free 0
x3 = a3 0 u 0 x3 = a3 u 0 0 x3 = a3 free free 0

Table 2: Boundary conditions for the FE model of the RVE: 4th, 5th and 6th static analyses.

Material properties

Aluminium E [MPa] ν ρ [Kg/mm3]
70000 0.33 2.7× 10−6

Elastic air Eair [MPa] νair
1× 10−3 0.0

Geometrical parameters (reference values)

l1 [mm] l2 [mm] tc [mm] θ [deg] hc [mm]
3.666 1.833 0.0635 60 20

Table 3: Material and geometrical parameters of the unit cell.

19



Properties Present Burton & Nooor [11] Grediac [16]

E1 [MPa] 0.884 0.815 0.815
E2 [MPa] 0.918 0.815 0.815
E3 [MPa] 1812.299 1848.185 1848.185
G12 [MPa] 0.640 0.489 0.489
G23 [MPa] 262.981 260.552 260.552
G13 [MPa] 390.833 156.331 (LB) 397.088

434.254 (UB)
ν12 0.980 1.000 1.000
ν23 0.161 ×10−3 0.145 ×10−3 0.145 ×10−3

ν13 0.167 ×10−3 0.145 ×10−3 0.145 ×10−3

ρRVE [Kg/mm3] 6.990 ×10−8 7.117 ×10−8

Table 4: E�ective material properties of the core for the reference geometry of the RVE.
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Figures

Figure 1: Honeycomb core structure (a) and the repetitive unit cell (b).

Figure 2: The repetitive unit cell (a) and the overall sizes of the related RVE (b).
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Figure 3: Geometrical parameters of the unit cell.

Figure 4: FE model of the RVE.
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Figure 6: Variation of σηη(η) (a), σηξ(η) (b) and σξξ(η) (c) [MPa] within the oblique wall of the
cell at the intersection with the top horizontal side, 6th load case.
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Figure 7: Variation of σηη(η) (a), σηξ(η) (b) and σξξ(η) (c) [MPa] within the oblique wall of the
cell at the intersection with the bottom horizontal side, 6th load case.

25



Figure 8: Variation of σ6(η) [MPa] within the top horizontal wall (a) and the bottom horizontal
wall (b) of the cell at the intersection with the oblique side, 6th load case.
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