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a b s t r a c t

This work deals with the problem of the optimum design of a sandwich panel. The design process is based

on a general two-level optimisation strategy involving different scales: the meso-scale for both the unit

cell of the core and the constitutive layer of the laminated skins and the macro-scale for the whole panel.

Concerning the meso-scale of the honeycomb core, an appropriate model of the unit cell able to properly

provide its effective elastic properties (to be used at the macro-scale) must be conceived. To this purpose,

in this first paper, we present the numerical homogenisation technique as well as the related finite

element model of the unit cell which makes use of solid elements instead of the usual shell ones.

A numerical study to determine the effective properties of the honeycomb along with a comparison with

existing models and a sensitive analysis in terms of the geometric parameters of the unit cell have been

conducted. Numerical results show that shell-based models are no longer adapted to evaluate the core

properties, mostly in the context of an optimisation procedure where the parameters of the unit cell

can get values that go beyond the limits imposed by a 2D model.

1. Introduction

Sandwich structures are widely used in several fields: aviation,
automotive, naval, construction industry. Their application, in fact,
ranges from structures with high performance standards such as
aircraft wings, helicopters rotor blades, racing yachts keels to home
furnishings. This is because sandwich structures offer high capacity
of stiffness with a very low weight. The difference between a
monolithic or laminated plate and a sandwich one concerns the
presence of a low density cellular solid, i.e. the core, between
two stiffer thin plates, that increases the geometric moment of
inertia of the plate with a few weight increment.

However, when the choice of the designer falls on the use of a
sandwich structure, for a given application, he must additionally
define the type of sandwich structure that has to be employed.
We can, in fact, identify several types of sandwich structures
according to the geometry and shape of the core: honeycomb,
solid, foam, corrugated, truss, web cores.

The most important feature of the core is its relative density
(ratio between the density of the cellular material and that of the

material from which the cells walls are made) that can vary from
0.001 to, generally, 0.4, see [1]. Almost any material can be used
to build a cellular solid: polymers, metals, ceramics, composites,
etc.

In aircraft and spacecraft applications sandwich panels are
composed by glass or carbon-fiber composite skins separated by
aluminium or resin honeycombs, or by polymer foams. In particu-
lar, the honeycomb cell size can be chosen to provide cores with
different stiffness and density properties. The result is a panel with
very high bending stiffness-to-weight and strength-to-weight
ratios. A review on sandwich structures and their applications
can be found in [1–3].

The optimal design of sandwich structures is much more cum-
bersome than that of a classical monolithic structure. The difficul-
ties increase when the sandwich structure is made of composite
skins and a honeycomb core. In this case we have to face, into
the same design process, both the difficulty of designing a lami-
nated plate (concerning the skins) and the difficulty of designing
a complex 3D cellular core. Therefore, engineers always use some
simplifying assumptions or rules to obtain, in an easier and faster
way, a solution, e.g. the use of symmetric balanced stacks for the
skins to ensure the membrane/bending elastic uncoupling along
with the membrane orthotropy or the use of regular hexagonal
geometry for the unit cell of the core. Such assumptions extremely
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shrink the solution space of potential configurations for the prob-
lem at hand. An alternative approach could consist in formulating
the design problem of the sandwich panel as a constrained optimi-
sation problem without introducing any simplifying hypothesis
nor on the nature of the skins laminates neither on the geometry
of the repetitive unit cell of the honeycomb core. Obviously, this
can be done on one hand by a rigorous mathematical formulation
of the problem and on the other hand by the use of numerical tech-
niques that must be able to explore the whole design space in
order to find the true global optimal configuration of the system.
Moreover, unlike what is usually done in literature, our objective
is twofold: on one hand we want to formulate and solve such a
problem on different scales and on the other hand we want to
include within the design process all of the possible parameters
defining the structure (at each scale) as optimisation variables.

Therefore, in the framework of the design of a sandwich plate
with honeycomb core and composite skins, the optimisation vari-
ables will be the material and the geometrical properties charac-
terising both the skins and the core at each scale.

The design strategy proposed in this work is a numerical opti-
misation procedure that does not make any simplifying assump-
tion in order to obtain a true global optimum configuration of
the system. The design process is not submitted to restrictions,
i.e. any parameter characterising our structure is an optimisation
variable: thickness of the core, number of plies of the skins, plies
orientations and geometric parameters of the unit cell.

In order to face the design of the sandwich structure at both
meso and macro scales, we used an optimisation strategy devel-
oped on two different levels: at the first level we determine the
optimal geometry of the unit cell together with the material and
geometric parameters of the laminated skins (at this level the lam-
inate representing each skin is modelled as an equivalent homoge-
neous anisotropic plate whose behaviour at the macro-scale is
described in terms of tensor invariants, i.e. the laminate
polar parameters, see [4]). At the second level of the strategy we

determine the optimal skins lay-up (the skin meso-scale) meeting
the values of the material and geometrical parameters issued from
the first level of the strategy. The whole strategy is based on the
use of the polar formalism [4,5] and on the Genetic Algorithm
(GA) BIANCA [6,7]. For more details on the polar formalism and
the related advantages the reader is addressed to Part II of the
present work.

Concerning the model of the core, the first level of the strategy
involves two different scales:

� the meso-scale wherein the core is modelled via the repetitive
unit cell characterised by some geometric variables;

� the macro-scale where the core is modelled as an homogeneous
orthotropic solid whose mechanical response is described
through the full set of elastic moduli whose values depend on
the geometric parameters of the unit cell.

Therefore, the link between these two scales is represented by the
homogenisation phase of the honeycomb core. To this purpose we
decided to develop an accurate method to determine the material
properties of the orthotropic core that will be assigned to the
equivalent solid at the macro-scale.

A considerable number of analytical, numerical and experimen-
tal methods to predict the effective elastic properties of the ortho-
tropic honeycomb core as function of geometric and material
characteristics of its unit cell can be found in the literature. The
work of Gibson and Ashby [1] represents the first research study
where the full set of elastic properties of a honeycomb core with
constant wall thickness has been determined. Subsequently, this
technique has been modified by Zhang and Ashby [8] to include
the double thickness walls to determine the out-of-plane proper-
ties. Another analytical approach is presented in [9] using the lam-
inate theory. In 1997, Burton and Noor [10] present the full set of
nine material properties derived analytically considering the
influence of the double thickness walls. Despite this last work

Notations

GA Genetic Algorithm
FE finite element
tc thickness of the aluminium foil used to produce the

honeycomb core
l1 length of the oblique sides of the hexagonal repetitive

unit cell
l2 length of the horizontal sides of the hexagonal repeti-

tive unit cell
# corrugation angle of the hexagonal unit cell
hc height of the honeycomb core
RVE representative volume element for the honeycomb core
VRVE volume of the representative volume element (includ-

ing the second phase, i.e. the ‘‘elastic air’’)
O; x1; x2; x3f g Global material frame of the representative volume

element
a1 side length, along x1-axis, of the representative volume

element
a2 side length, along x2-axis, of the representative volume

element
a3 side length, along x3-axis, of the representative volume

element
VEFF effective volume of the unit cell of the honeycomb core
DOFs degrees of freedom
�ra volume averaged stress tensor components (Voigt’s

notation)
�eb volume averaged strain tensor components (Voigt’s

notation)

Cab stiffness tensor components of the homogenised core
(Voigt’s notation)

�rab volume averaged stress tensor components (tensorial
notation)

�eab volume averaged strain tensor components (tensorial
notation)

BCs boundary conditions
u arbitrarily imposed displacement
Ei Young’s moduli in the material frame O; x1; x2; x3f g
Gij Shear moduli in the material frame O; x1; x2; x3f g
mij Poisson’s ratios in the material frame O; x1; x2; x3f g
qRVE effective (or relative) density of the honeycomb core
q density of the aluminium
E Young’s modulus of the aluminium
m Poisson’s ratio of the aluminium
Eair Young’s modulus of the elastic air
mair Poisson’s ratio of the elastic air
O; n;g; zf g

local frame defined on the oblique side of the
hexagonal cell

rnn;rgg;rgn local in-plane stress tensor components expressed
within the local frame

LB lower bound
UB upper bound
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represents a great step forward in the evaluation of the honeycomb
structure properties it shows also a weakness: the out-of-plane
shear properties of the honeycomb core are not univocally deter-
mined since the authors give only the lower and upper bounds
for these properties. Other analytical approaches have been devel-
oped during the following years, for example [11] where the
authors take into account also the skins effect or [12] where some
experimental results are used to develop an analytical method to
determine the out-of-plane mechanical properties. Other research-
ers developed different numerical approaches based on the finite
element (FE) technique to investigate the material properties of
honeycomb structures. Grediac [13] was one of the firsts to deter-
mine the out-of-plane properties of the honeycomb through a FE
approach. An analogous work, where the transverse shear stiffness
properties of honeycombs are determined through a FE method is
presented in [14]. In [15] a displacement-based homogenisation
technique is presented to evaluate the mechanical properties of
foam-filled honeycomb cores. We can also find other works where
the effective properties of the sandwich plate are determined via
FE static analyses conducted on the overall geometry of the honey-
comb core instead of performing an homogenisation process on the
unit cell, see for instance [16]. Further interesting works on purely
experimental or mixed numerical/experimental techniques for the
determination of the effective properties of the honeycomb core
can be found in [17,18].

A common weakness of the works about FE-based homogenisa-
tion techniques consists in the use of shell-like models for the unit
cell of the honeycomb core. These models do not take into account
the true geometry of the cell and, consequently, they are not able
to properly estimate the influence of the real 3D stress state on
the effective core properties. In particular, in this work, we need
an adequate model of the honeycomb core, at the meso-scale, able
to provide with a good level of accuracy the material properties of
the core for any combination of design variables that (in the frame-
work of the optimisation procedure) could give rise to a geometry
of the unit cell with thick walls rather than thin ones. Therefore,
before introducing the design problem of the sandwich structure
and the related two-level optimisation strategy, we decided to
develop an accurate 3D model, for the numerical homogenisation
phase of the core, that has to be included within the first level of
the procedure and that represents the link between the meso

and the macro-scale of the core. In particular, concerning the
evaluation of the effective material properties of the core, the skins
effect, or skins influence, is not taken into account during the
homogenisation phase. In this work we adopt a conventional
approach where the sandwich plate is modelled, at the macro-scale
level, as a heterogeneous continuum composed by the union of
three parts:

� two laminated skins (that a priori can be different) whose aniso-
tropic mechanical behaviour is described through a set of tensor
invariants concerning both membrane, bending and coupling
stiffness tensors (see Part II). Each skin is, hence, characterised
by design variables of different nature (geometrical and mate-
rial), i.e. its thickness (so the number of plies of the laminate)
and its homogenised stiffness tensors invariants (namely the
laminate polar parameters, see Part II);

Fig. 1. Honeycomb core structure (a) and the repetitive unit cell (b).

Fig. 2. The repetitive unit cell (a) and the overall sizes of the related RVE (b).

Fig. 3. Geometrical parameters of the unit cell.

Fig. 4. FE model of the RVE.
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� the core whose mechanical response (at the macro-scale) is
defined by the elastic moduli of the equivalent continuum that
uniquely depend upon the geometrical design variables of the
unit cell (defined at the meso-scale).

Neglecting the interaction between the skins and the core, at the
meso-scale level of the core, corresponds to adopt the so-called ‘‘free
modulusmodel’’ in the framework of the determination of the effec-
tive core properties, see [11,15]. Being this work rather long and
considering the fact that it involves two different but linked main
topics (the core homogenisation and the optimum design of the
sandwich panel) we decided to divide its presentation into two
parts. In this first part, we will present the numerical homogenisa-
tion technique as well as the 3D FEmodel used to deal with the core
homogenisation problem. In part II, we will present the formulation

of the optimisation problem along with the two-level strategy and
some numerical examples to prove its effectiveness.

The paper is organised as follows: the description of the core
homogenisation problem is introduced in Section 2 and the FE
model used for the numerical homogenisation is presented in
Section 3. In Section 4 we present a numerical study to determine
the effective in-plane and out-of-plane properties of the honey-
comb along with a comparison with the existing analytical and
numerical models and a sensitive analysis in terms of the geomet-
ric parameters of the unit cell. Finally, Section 5 ends the paper
with some concluding remarks.

2. Homogenisation of core properties: problem description

In the last decades, several analytical, numerical and experi-
mental techniques have been developed in order to determine
the effective properties of honeycomb sandwich cores as function
of geometric and material properties of the repetitive unit cell.
Each method presents a certain level of sophistication. For exam-
ple, analytical techniques, based on energy methods or homogeni-
sation methods, make use of some simplifying assumptions to
obtain the elasticity solution of the unit cell. To avoid the use of
such assumptions, several studies were conducted to develop
new experimental-based and numerical-based techniques for
determining the effective core properties.

On one hand, experimental-based methods, see for instance
[19–22], require a standardised procedure for the measurements.
However, the main drawbacks of these procedures consist in the
fact that they are very expensive in terms of both time and money
and the obtained results are valid only for the particular material
and geometry of the sample employed in the analysis.

On the other hand, numerical-based techniques, such as FE
methods, do not make use of the simplifying assumptions used
in analytical approaches and are not expensive. In addition, they
can lead to realistic solutions of the elasticity problem in terms
of stress and strain fields over the unit cell or within the whole
structure of the honeycomb core.

As a consequence, in this work we have chosen a FE-based
approach as a numerical homogenisation technique to determine
the core properties. It should be noted that a special feature of
the honeycomb is its repetitiveness, i.e. the periodicity in its shape.

Table 1

Boundary conditions for the FE model of the RVE: 1st, 2nd and 3rd static analyses.

1st load case 2nd load case 3rd load case

Nodes U1 U2 U3 Nodes U1 U2 U3 Nodes U1 U2 U3

x1 ¼ 0 0 Free Free x1 ¼ 0 0 Free Free x1 ¼ 0 0 Free Free

x1 ¼ a1 u Free Free x1 ¼ a1 0 Free Free x1 ¼ a1 0 Free Free

x2 ¼ 0 Free 0 Free x2 ¼ 0 Free 0 Free x2 ¼ 0 Free 0 Free

x2 ¼ a2 Free 0 Free x2 ¼ a2 Free u Free x2 ¼ a2 Free 0 Free

x3 ¼ 0 Free Free 0 x3 ¼ 0 Free Free 0 x3 ¼ 0 Free Free 0

x3 ¼ a3 Free Free 0 x3 ¼ a3 Free Free 0 x3 ¼ a3 Free Free u

Table 2

Boundary conditions for the FE model of the RVE: 4th, 5th and 6th static analyses.

4th load case 5th load case 6th load case

Nodes U1 U2 U3 Nodes U1 U2 U3 Nodes U1 U2 U3

x1 ¼ 0 0 Free Free x1 ¼ 0 Free 0 0 x1 ¼ 0 Free 0 0

x1 ¼ a1 0 Free Free x1 ¼ a1 Free 0 0 x1 ¼ a1 Free 0 0

x2 ¼ 0 0 Free 0 x2 ¼ 0 Free 0 Free x2 ¼ 0 0 Free 0

x2 ¼ a2 0 Free 0 x2 ¼ a2 Free 0 Free x2 ¼ a2 u 0 0

x3 ¼ 0 0 0 Free x3 ¼ 0 0 0 Free x3 ¼ 0 Free Free 0

x3 ¼ a3 0 u 0 x3 ¼ a3 u 0 0 x3 ¼ a3 Free Free 0

Table 3

Material and geometrical parameters of the unit cell.

Material properties

Aluminium E [MPa] m q [kg/mm3]

70,000 0.33 2:7� 10�6

Elastic air Eair [MPa] mair
1� 10�3 0.0

Geometrical parameters (reference values)

l1 [mm] l2 [mm] tc [mm] h [deg] hc [mm]

3.666 1.833 0.0635 60 20

Table 4

Effective material properties of the core for the reference geometry of the RVE.

Properties Present Burton & Nooor [10] Grediac [13]

E1 [MPa] 0.884 0.815 0.815

E2 [MPa] 0.918 0.815 0.815

E3 [MPa] 1812.299 1848.185 1848.185

G12 [MPa] 0.640 0.489 0.489

G23 [MPa] 262.981 260.552 260.552

G13 [MPa] 390.833 156.331 (LB) 397.088

434.254 (UB)

m12 0.980 1.000 1.000

m23 0:161� 10�3 0:145� 10�3 0:145� 10�3

m13 0:167� 10�3 0:145� 10�3 0:145� 10�3

qRVE [kg/mm3] 6:990� 10�8 7:117� 10�8
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Therefore, at this stage, we will apply the homogenisation method
at the meso-scale (the scale of the unit cell) and then, we will
replace the actual cellular structure, at the macro-scale level, by
an equivalent homogeneous anisotropic medium characterised
by the elastic properties determined during the homogenisation
phase. The proposed FE-based homogenisation technique leads
us to include all of the geometric parameters of the unit cell among
the optimisation variables of the process without a great loss of
computational time (about 11 s on a 2.50 GHz Dual Core processor
for a single homogenisation analysis).

The basic assumptions that we made to evaluate the elastic
response of our model and, hence, to determine the effective core
properties are:

� linear, elastic behaviour for the material of the cell walls;
� perfect bonding for the wall-to-wall contact;
� the buckling of the cell walls is disregarded.

We recall that, as previously stated, since the aim of this first
paper does not consist in developing an equivalent homogeneous
plate/solid model for the whole sandwich panel, we do not con-
sider the skins influence on the evaluation of the effective proper-
ties of the honeycomb core.

A scheme of the repetitive unit cell, used for the numerical
homogenisation of the honeycomb core, is showed in Fig. 1.

3. A 3D finite element model for numerical homogenisation

The effective properties of the core are determined using the
strain energy homogenisation technique of periodic media, see
[23]. This technique makes use of the repetitive unit of the periodic
structure to approximate its effective properties at the macro-scale
level. The basic feature of the strain energy homogenisation tech-
nique consists in the assumption that both the repetitive unit of
the periodic structure and the corresponding unit volume of the
homogeneous solid undergo the same deformation having, hence,
the same strain energy.

In this case, the periodic structure is the honeycomb core whose
repetitive unit cell has three planes of symmetry, thus we decided
to exploit these symmetries using, in the homogenisation process,
only an eighth of the repetitive unit cell as shown in Fig. 2. The geo-
metric characteristics of the repetitive unit used for the static anal-
yses of the homogenisation model are shown in Fig. 3: tc is the
thickness of the foil used to produce the honeycomb, l1 is the
length of the oblique side of the cell, l2 represents the length of
the horizontal sides of the repetitive unit while # is the cell
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Fig. 5. Convergence analysis for the effective properties of the homogeneous orthotropic core in terms of number of divisions ndiv along the wall thickness tc .
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corrugation angle and hc is the height of the honeycomb core. We
can now define the related representative volume element (RVE) of
the honeycomb core whose volume is (see Figs. 2 and 3):

VRVE ¼ a1a2a3; ð1Þ

with:

a1 ¼ 2l2 þ tc tan
#

2

� �

þ l1 þ tc tan
#

2

� �� �

cosð#Þ;

a2 ¼ l1 þ tc tan
#

2

� �� �

sin #ð Þ þ tc;

a3 ¼
hc

2
;

ð2Þ

whereas the effective volume of the unit cell is:

VEFF ¼ tc
hc

2
l1 þ 2l2 þ 2tc tan

h

2

� �� �

: ð3Þ

The FE model for the homogenisation process has been created
within the commercial FE code ANSYS�. We used the 20-node
solid element SOLID186 with three degrees of freedom (DOFs)
per node. The model along its structured mesh is illustrated in
Fig. 4. In this model the elements that do not belong to the unit
cell geometry represent the ‘‘second phase’’ which has the proper-
ties of the so-called ‘‘elastic air’’ [24]. The second phase is intro-
duced as a ‘‘numerical artifice’’ to obtain the strain field
provided by the theory underlying the strain energy homogenisa-
tion technique, see [23] for more details. Unlike what it is usually
done in the literature, where the cell geometry is modelled with

Fig. 6. Variation of rggðgÞ (a), rgnðgÞ (b) and rnnðgÞ (c) [MPa] within the oblique wall of the cell at the intersection with the top horizontal side, 6th load case.

Fig. 7. Variation of rggðgÞ (a), rgnðgÞ (b) and rnnðgÞ (c) [MPa] within the oblique wall of the cell at the intersection with the bottom horizontal side, 6th load case.
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shell elements that show a geometric overlapping between the
volumes built over the horizontal and oblique wall sides, in this
work a 3D solid model is used to correctly represent the real
geometry of the repetitive unit of the honeycomb structure. Our
choice is due to the fact that, thanks to the 3D solid model, we
can also take into account the effect of the full three-dimensional
stress field in the determination of the effective core properties. As
we will show in the numerical study of Section 4, this effect
cannot be neglected in any case, mostly when the geometrical con-
figuration of the unit cell is far away from a classical configuration
of regular hexagon with thin walls.

A further assumption, as specified in Section 2, concerns
the elastic behaviour of the orthotropic homogeneous medium.
The generalised Hooke’s law for the RVE can be written as
follows:
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where �r and �e are, respectively, the stress and strain tensors
expressed in Voigt’s notation. The link between tensorial and
Voigt’s notation for both tensors is:
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As �r and �e are referred to the equivalent homogeneous solid, each
component of �r and �e is volume averaged.

The main objective of our homogenisation process is to deter-
mine all non-zero components of the stiffness tensor C of Eq. (4).

The expression of the components of C in terms of those of the
stress and strain tensors is:

Cab ¼
�ra

�eb
with a;b¼1;2; . . . ;6 and ec ¼0with c¼1;2; . . . ;6; c–b: ð6Þ

We have to determine, now, the nine independent components of C.
In [23] the strain energy homogenisation technique is applied

to the calculation of the elastic moduli of unidirectional laminae.
In that work the author determines the five components of the
transversally isotropic ply stiffness tensor by solving four different
static analyses for the FE model of the RVE. In each one of these
analyses the boundary conditions (BCs) are imposed in order to
obtain a strain tensor having only one component different from
zero. According to [23] we have determined the nine independent
components of C for the honeycomb core through six static analy-
ses on the FE model of Fig. 4. The corresponding BCs for each static
analysis are resumed in Tables 1 and 2.

These BCs are imposed in order to satisfy the symmetries of
the RVE and to generate a strain field in such a way that only
one component of the tensor �e is different from zero for each sta-
tic analysis. The relations giving the volume average strain com-
ponents are:

�e1 ¼
u

a1
; �e2 ¼

u

a2
; �e3 ¼

u

a3
; �e4 ¼

u

a3
; �e5 ¼

u

a3
; �e6 ¼

u

a2
; ð7Þ

where u is the arbitrarily imposed displacement (see Tables 1
and 2). Once the linear elastic problem, characterised by the
BCs of Tables 1 and 2, is solved we can get the corresponding stress
field whose volume average value for the RVE is computed as
follows:

�ra ¼
1

VRVE

Z

VRVE

raðx1; x2; x3ÞdV ; a ¼ 1;2; . . . ;6: ð8Þ

Through the firsts three static analyses we are able to determine
the components of the firsts three columns of the stiffness tensor C
while through the last three load cases we can determine the com-
ponents belonging to the second half of its main diagonal, see Eq.
(6). After calculating the nine independent components of C we

Fig. 8. Variation of r6ðgÞ [MPa] within the top horizontal wall (a) and the bottom horizontal wall (b) of the cell at the intersection with the oblique side, 6th load case.
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can evaluate the effective elastic moduli of the honeycomb core in
terms of the stiffness tensor components using the well-known
relationships reported in [25].

As a final remark, the equivalent density of the core is evaluated
through the following relationship:

qRVE ¼
qtc l1 þ2l2 þ2tc tan h

2

� �� 	

2l2 þ tc tan #
2

� �

þ l1 þ tc tan #
2

� �� 	

cosð#Þ

 �

l1 þ tc tan #
2

� �� 	

sin #ð Þþ tc

 � : ð9Þ

where q is the density of the material of the cell walls.

4. Numerical study

In order to prove the effectiveness of the proposed FE model we
performed a numerical study by comparing our results with those
obtained using the models of Burton and Noor [10] and Grediac
[13].

The sandwich structure considered in this work is made of an
aluminium honeycomb core and carbon composite skins, this last
being a typical combination of materials employed in some real-
world aerospace engineering applications, like those presented in
[26–29]. The material properties of the aluminium alloy used for

the honeycomb core as well as those of the ‘‘elastic air’’ (these last
taken from [24]) are listed in Table 3. We firstly conducted the
numerical tests on a reference honeycomb core whose unit cell
sizes are given in Table 3 (taken from [30]) while, secondly, we car-
ried out a sensitivity analysis (in terms of all the geometric param-
eters of the unit cell) on the full set of the effective elastic
properties.

4.1. Comparison with existing analytical and numerical models

The effective material properties for the reference unit cell
(having the geometrical dimensions listed in Table 3) obtained
using our FE model as well as those evaluated using the approaches
of Burton and Noor [10] and Grediac [13] are listed in Table 4. In
order to calculate with a good accuracy level the effective material
properties of the core a convergence study in terms of mesh size
has been carried out. In particular, in Fig. 5 we show the results
of the convergence analysis for the equivalent elastic moduli in
terms of number of divisions ndiv of the mesh along the cell wall
thickness tc . As it can be seen the convergence is reached when
ndiv is equal to four: this corresponds to a FE model having a total
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Fig. 9. Effective properties of the homogeneous orthotropic core vs. l1 .
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number of 52,009 DOFs. However, when looking at the results of
Fig. 5 one can notice that a FE model with only one division along
the thickness direction tc is sufficient to properly capture the
results, being the maximum relative error of about 4.7% for the
in-plane shear modulus G12 which reduces from 0.67 MPa (one
division) to 0.64 MPa (four divisions). The main reason underlying
this fact is that the average value of the stress components
(involved into the evaluation of the equivalent elastic properties,
see Eqs. (6)–(8)) is slightly influenced when passing from one to
four divisions along tc . On the other hand the use of a FE model
of the RVE with four elements within the thickness lead us to prop-
erly describe the correct variation of the normal as well as the
shear stress fields through the thickness (see Figs. 6–8). These con-
siderations led us to use, in the present work, a FE model of the RVE
characterised by four divisions along the cell thickness. It is worth
noting that the results of Table 4 are compared by considering, in
the framework of the models of Burton and Noor and Grediac, a
unit cell having the same middle-surface as that of our FE model.
As it can be easily seen, the behaviour of the core at the macro-
scale is orthotropic with the main orthotropy axes aligned with
those of the Cartesian coordinate system of Fig. 2.

For this reference case, where we consider a regular hexagonal
honeycomb cell with thin walls, the results given by our 3D solid
model globally agree with those found by Burton and Noor and
Grediac. In particular, concerning the evaluation of the three out-
of-plane moduli E3;G13 and G23, the relative difference between
our model and [10,13] is very low: 1% for G23 and about 2% for both
G13 and E3.

On the other hand, if we consider the in-plane moduli E1; E2;G12

and the out-of-plane Poisson ratios m13 and m23 the results obtained
with our 3D FE-based model slightly differ from those provided by
[10,13]. The relative difference ranges from 8% for E1 to 23.5% for
G12. The main reason underlying the previous differences is in the
use of shell-based models and theories as done in [10,13] which
are not able to properly evaluate the previous quantities. To under-
stand this fact, let us consider the evaluation of the in-plane shear
modulusG12 which is calculated through the following relationship:

G12 ¼ C66 ¼ �r6=�e6: ð10Þ

From Eq. (10) we can see that G12 depends only upon the average
stress �r6 and upon the imposed average strain �e6. This means that
the value of the in-plane shear modulus depends on the accuracy
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Fig. 10. Effective properties of the homogeneous orthotropic core vs. l2.
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of the numerical evaluation of the in-plane shear stress field of the
RVE, which is influenced by the following aspects:

� �r6 depends upon the correct evaluation of the normal and shear
stress components in the oblique side (rgg;rnn and rgn); indeed,
all of these stresses are involved in the evaluation of �r6 in the
global frame of the RVE O; x1; x2; x3f g, see Figs. 6 and 7;

� as shown in Figs. 6 and 7, the previous stress components vary
through the thickness of the oblique side and such variation is
more pronounced at the intersection between the oblique and
the horizontal walls;

� in the oblique face of the unit cell the normal out-of-plane
stress rgg as well as the shear stress rgn are non-negligible,
being the order of magnitude of such components the same as
the normal in-plane stress rnn, see Figs. 6 and 7;

� the shear stress r6 in the top and bottom horizontal sides of the
unit cell varies through the thickness of the wall, as shown in
Fig. 8.

The previous aspects cannot be correctly evaluated in the
framework of a shell-based model such as those used in [10,13].

In particular the out-of-plane normal stress in the oblique wall is
null for a shell model and the through-the-thickness variation of
the shear stress can be properly evaluated only by higher-order
shell theories. Similar considerations can be repeated for the calcu-
lation of the first three columns of the stiffness tensor of the core
and hence for the evaluation of the rest of the elastic properties
which depend upon these quantities, see [25].

4.2. Sensitivity analysis

Together with the determination of the effective elastic proper-
ties of the basic configuration having the geometry of Table 3, we
also conducted a sensitivity analysis in which we change, one at
a time, every geometric parameter of the unit cell by keeping con-
stant the others. When one of these parameters varies the rest get
the values of the reference unit cell as reported in Table 3. For this
reason such an analysis can be seen as an analysis of the mechan-
ical response of the RVE, in terms of its effective material proper-
ties, in the neighbourhood of the reference configuration. Looking
at the results shown in Figs. 9–13 we can deduce the following
facts:
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Fig. 11. Effective properties of the homogeneous orthotropic core vs. tc .
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� when varying the parameter l1 between 10tc and 100tc (Fig. 9)
the trend of the in-plane elastic properties are in agreement
with those provided by the model of Burton and Noor. Concern-
ing the out-of-plane Young’s modulus E3 it is slightly underesti-
mated by our 3D FE model when compared to that given by
Burton and Noor and this gap increases when l1 decreases. This
phenomenon is due to the fact that when l1 decreases it
becomes of the same order of magnitude as the wall thickness
tc. Under this condition the mechanical behaviour of the oblique
side of the cell is no longer that of a thin plate, thus the model of
Burton and Noor overestimates such modulus. Similar consider-
ations could be done both for the shear moduli and the Pois-
son’s ratios;

� when varying the parameter l2 between 0:05l1 and 0:5l1
(Fig. 10) the trend of the results of our model globally agrees
with that found using the model of Burton and Noor; the rela-
tive difference on the values of the different moduli found using
the two models can be explained through the considerations
previously done for the reference geometry of the unit cell. This
relative difference remains constant for all the elastic proper-
ties, with the exception of G12 whose relative difference

strongly increases when l2 decreases: this is due to the fact that
when l2 becomes of the same order of magnitude as tc , both the
bottom and top horizontal sides of the unit cell cannot be mod-
elled as thin plates, thus a shell-based model is no longer
adapted to correctly capture such a phenomenon;

� when varying the parameter tc between 0:02l2 and 0:1l2
(Fig. 11) the difference between the results of the present model
and those provided by the model of Burton and Noor increases
with tc . This phenomenon can be easily explained: when the
wall thickness increases, the influence of the true 3D geometry
of the unit cell on the evaluation of the effective material prop-
erties becomes more and more important;

� when varying the parameter # between 5 deg and 90 deg
(Fig. 12) the trend of the results found with our model is prac-
tically the same as that provided by the model of Burton and
Noor. The relative difference between the values of the effective
elastic properties found using the two models, increases when #

decreases, with the exception of G13 and G23. This is due to the
fact that when the corrugation angle of the cell decreases the
unit cell becomes more and more ‘‘flat’’. In such a configuration
the effect of the out-of-plane stresses �r2 and �r6 on the
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Fig. 12. Effective properties of the homogeneous orthotropic core vs. #.
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calculation of the effective core properties plays a crucial role,
thus a shell-like model is not sufficient to properly capture
these phenomena;

� when varying the parameter hc between l1 and 10l1 (Fig. 13) we
show that, actually, the assumption underlying the model of
Burton and Noor that the core properties do not vary with
the core height is correct for seven elastic properties
(E1; E2; E3;G12; m12; m23 and m13). On the contrary, according to
the model of Grediac [13], this assumption cannot be accepted
when evaluating G13 that varies with the parameter hc . Never-
theless, unlike the results provided by Grediac our model is able
to capture also the weak variation of G23 with the core thick-
ness. Moreover, the relative difference calculated on G23

decreases when hc increases, ranging from 1% to 0.1%.

To be remarked that when varying each geometrical parameter
of the cell, the curve describing the variation of the out-of-plane
shear modulus G13 always lies between the lower (LB) and upper
(UB) bounds given by the model of Burton and Noor which are
calculated using the strain energy associated firstly with a stress

distribution satisfying the equilibrium (for the LB) and secondly
with a strain field allowing compatible deformation (for the UB).
The reader is addressed to [10] for a deeper insight in the matter.
As a conclusive remark of this section, we want to highlight the
importance of using solid elements to build the FE model of the
repetitive unit cell which are able to properly capture the influence
of the true 3D stress field on the evaluation of the effective elastic
properties of the honeycomb core.

5. Conclusions

The main aim of the present work is to deal with the problem of
the optimum design of a sandwich panel composed of two lami-
nated skins and a honeycomb core. In this first part of the work
we presented the numerical homogenisation technique as well as
the related 3D FE model of the unit cell that will be used within
the first level of the optimisation procedure (see Part II). In partic-
ular, we need an adequate model of the honeycomb core, at the
meso-scale, able to properly predict its equivalent material proper-
ties (at the macro-scale) for any combination of design variables
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Fig. 13. Effective properties of the homogeneous orthotropic core vs. hc .
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that, in the framework of the optimisation procedure, could give
rise to a geometry of the unit cell which is far away from a classical
shell-like geometry (i.e. a cell with thin walls).

To these purposes, firstly we demonstrated that shell-based
models cannot correctly represent the true geometry of the unit
cell of the honeycomb core and, consequently, they are not able
to properly capture the influence of the real 3D stress field on
the determination of the effective core properties. For these rea-
sons, in this paper, we used a 3D solid FE-based model of the repet-
itive unit cell of the honeycomb core to predict its effective
material properties in the most general case, i.e. by taking into
account any combination of the geometric parameters of the unit
cell.

The material properties determined using our model were, in
addition, compared with those obtained using the models of Bur-
ton and Noor [10] and Grediac [13]. Numerical results show that,
for a hexagonal unit cell with thin walls, the out-of-plane elastic
moduli found by our model globally agree with those provided
by shell-based analytical and numerical models. On the contrary,
the in-plane elastic moduli found using our model show a relative
difference ranging from 8% to 23.5% (depending on the considered
quantity) when compared to those provided by shell-based mod-
els. The main reason underlying such differences is the influence
of the ‘‘local’’ out-of plane normal stress over the cell walls which
is identically null in the framework of a shell-based model. More-
over, through an analysis on the local stress field within the cell
walls along with a sensitivity analysis, we proved that such models
are no longer appropriate in the framework of an optimisation pro-
cedure that aims to take into account, among the design variables,
the full set of the geometric parameters characterising the unit cell.
In fact, for those configurations in which the thickness-to-side ratio
of the cell walls goes beyond the limits imposed by a shell-like
model, a 3D solid model of the unit cell is therefore necessary to
properly describe the effect of the 3D stress field on the evaluation
of the full set of material properties of the equivalent solid that will
be used at the macro-scale.

Part II of the present work will cover the formulation of the
optimisation problem and provide a detailed description of the
two-level optimisation strategy; numerical examples will be pre-
sented in order to demonstrate the effectiveness of the proposed
approach.
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