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Abstract

Let f be an orientation and area preserving diffeomorphism of an oriented surface M
with an isolated degenerate fixed point z0 with Lefschetz index one. Le Roux conjectured
that z0 is accumulated by periodic orbits. In this article, we will approach Le Roux’s
conjecture by proving that if f is isotopic to the identity by an isotopy fixing z0 and if
the area of M is finite, then z0 is accumulated not only by periodic points, but also by
periodic orbits in the measure sense. More precisely, the Dirac measure at z0 is the limit in
weak-star topology of a sequence of invariant probability measures supported on periodic
orbits. Our proof is purely topological and will works for homeomorphisms and is related
to the notion of local rotation set.
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1 Introduction

The goal of this article is to give a result of existence of periodic orbits for area preserving
homeomorphisms of surfaces. We will begin this introduction by explaining our result in the
more general case of homeomorphisms, then will explain what does it mean in the case of
diffeomorphisms and will conclude by giving its significance in the symplectic formalism.

Let f be a homeomorphism of an oriented surface M that is isotopic to the identity. We
say that f is area preserving if it preserves a Borel measure without atom such that the
measure of each open set is positive and that the measure of each compact set is finite. We
call I = (ft)t∈[0,1] an identity isotopy of f if it is an isotopy from the identity to f , and call
a fixed point of f a contractible fixed point associated to I if its trajectory along I is a loop
homotopic to zero in M . We say that a fixed point of f is a fixed point of I if it is fixed along
the isotopy, and denote by Fix(I) the set of fixed points of I.

Suppose that f is an area preserving homeomorphism ofM , that I is an identity isotopy of
f , and that z is a fixed point of I. We say that f can be blown-up at z if we can replace z with
a circle and extend f continuously to this circle. In particular, when f is a diffeomorphism
near z, the blow-up can be induced by Df(z). We can define the blow-up rotation number
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ρ(I, z) to be a representative of the Poincaré rotation number of the homeomorphism on the
added circle. (The precise definitions can be found in Section 2.10.)

Suppose that f can be blown-up at z ∈ Fix(I), and that M (resp. M \ (Fix(I) \ {z})) is
neither a sphere nor a plane. When the blow-up rotation number ρ(I, z) is different from 0,
we lift I (resp. I|M\(Fix(I)\{z})) to the universal covering space and get an identity isotopy of
a lift of f (resp. f |M\(Fix(I)\{z})). If we fix a pre-image of z, we can blow up this point and

get an area preserving homeomorphism f̃ of the half-open annulus. Every other pre-image of
z in the annulus is a fixed point of f̃ with rotation number 0, and the rotation number of f̃ on
the boundary is different from 0. (A formal definition of the rotation number can be found in
Section 2.11.) By a generalization of Poincaré-Birkhoff Theorem, we can deduce that f̃ has
infinitely many periodic points that correspond to different contractible periodic points of f .
So, we can prove the existence of infinitely many contractible periodic points.

When the blow-up rotation number ρ(I, z) is 0, the problem is much more difficult. We
will be interested in this article in the case where ρ(I, z) = 0 and where the Lefschetz index is
equal to 1. It must be noticed that this situation does not occur in the case of a diffeomorphism
with no degenerate1 fixed point. It is a critical case, but an interesting one for the following
reason: there are many situations where existence of a fixed point of index one can be proven.
For example, every orientation and area preserving homeomorphism of the sphere with finitely
many fixed point has at least two fixed points of Lefschetz index 1. It is a consequence of
Lefschetz formula and of the fact that the Lefschetz index of an orientation and area preserving
homeomorphism at an isolated fixed point is always not bigger that 1 (see [PS87] and [LC99]).
Existence of at least one fixed point of Lefschetz index 1 can be proven for an area preserving
homeomorphism f of a closed surface of positive genus in the case where f is isotopic to the
identity, f has finitely many fixed points, and the mean rotation vector vanishes. (See [Fra96]
in the case of a diffeomorphism and [Mat01] in the more general case.)

More precisely, suppose that f : M → M is an area preserving homeomorphism of an
oriented surface M , that z0 is an isolated fixed point of f with a Lefschetz index i(f, z0) = 1,
and that I is an identity isotopy of f fixing z0. The homeomorphism f can not always be
blown-up at z0, nevertheless, Frédéric Le Roux [LR13] generalized the rotation number and
defined a local rotation set ρs(I, z0) (see Section 2.10). In particular, when f can be blown-up
at z0, the local rotation set is just reduced to the rotation number. We will prove that if the
total area ofM is finite and if ρs(I, z0) is reduced to 0, then z0 is accumulated by contractible
periodic points of f . More generally, the result is still valid if we relax the condition that
ρs(I, z0) is reduced to 0 to the condition that ρs(I, z0) is reduced to an integer k. We will
prove a stronger result: the Dirac measure δz0 at the fixed point z0 is a limit, in the weak-star
topology, of a sequence of invariant probability measures supported on periodic orbits. We
can be more precise. Let us say that a contractible periodic orbit of period q has type (p, q)
if its trajectory along the isotopy is homotopic to pΓ in M \ Fix(I), where Γ is the boundary
of a sufficiently small Jordan domain containing z0. Then, there exists an open interval L
containing an integer k in its boundary such that for all irreducible p/q ∈ L there exists a
contractible periodic orbit Op/q of type (p, q) and such that δz0 is the limit, in the weak-star
topology, of any sequence (µOpn/qn

)n≥1 such that limn→∞
pn
qn

= k, where µOp/q
is the invariant

probability measure supported on Op/q.
Formally, we have the following theorem, which is the main result of this article:

1Here, degenerate means that 1 is an eigenvalue of the Jacobian matrix of f at z0.
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Theorem 1.1. Let f :M →M be an area preserving homeomorphism of an oriented surface
M , z0 be an isolated fixed point of f with a Lefschetz index i(f, z0) = 1, and I be an iden-
tity isotopy of f fixing z0 and satisfying ρs(I, z0) = {k}. Suppose that one of the following
situations occurs,

i) M is a plane, f has only one fixed point z0 and has a periodic orbit besides z0;

ii) the total area of M is finite.

Then, z0 is accumulated by periodic points. More precisely, the following property holds:
P): There exists ε > 0, such that either for all irreducible p/q ∈ (k, k + ε), or for all

irreducible p/q ∈ (k − ε, k), there exists a contractible periodic orbit Op/q of type (p, q), such
that µOp/q

→ δz0 as p/q → k, in the weak-star topology, where µOp/q
is the invariant probability

measure supported on Op/q,

Remark 1.2. Le Roux [LR13] gave the following conjecture: if f : (W, z0) → (W ′, z0) is an
orientation and area preserving homeomorphism between two neighborhoods of z0 ∈M , and
if z0 is an isolated fixed point of f such that i(f, z0) is equal to 1 and that ρs(I, z0) is reduced
to 0 for a local isotopy I of f , then z0 is accumulated by periodic orbits of f . Although we can
not give a complete answer to this conjecture in this article, we approach it by the previous
theorem.

When f is a diffeomorphism, we will give several versions of the theorem whose conditions
are more easy to understand.

The rotation set of a local isotopy (see Section 2.10) at a degenerate fixed point of an
orientation preserving diffeomorphism is reduced to an integer. So, given an area-preserving
diffeomorphism f of a surface M with finite area that is isotopic to the identity, if z0 is a
degenerate fixed point whose Lefschetz index is equal to 1, the assumptions of the previous
theorem are satisfied, and hence z0 is accumulated by contractible periodic points. Formally,
we have the following corollary:

Corollary 1.3. Let f be an orientation and area preserving diffeomorphism of an oriented
surface M with finite total area, and z0 be a degenerate isolated fixed point such that i(f, z0) =
1. If f is isotopic to the identity by an isotopy I that fixes z0

2, then z0 is accumulated by
contractible periodic points. Moreover, the property P) holds.

Let f be a C1 diffeomorphism of R2. A function g : R2 → R of class C2 is called a generating
function of f if ∂212g < 1, and

f(x, y) = (X,Y ) ⇔

{
X − x = ∂2g(X, y),

Y − y = −∂1g(X, y).

We know that the previous diffeomorphism f is orientation and area preserving by a direct
computation.

Generating functions are usual objects in symplectic geometry. We will give the following
version of our result whose conditions are described by generating functions.

2If there exists an identity isotopy of f such that the trajectory of z0 along the isotopy is homotopic to zero,
there always exists an identity isotopy of f fixing z0.
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Corollary 1.4. Let f be an orientation and area preserving diffeomorphism of an oriented
surface M with finite area. We suppose that f is isotopic to the identity by an isotopy that
fixes z0. Suppose that in a neighborhood of z0, f is conjugate to a local diffeomorphism at
0 that is generated by a generating function g, that 0 is a local extremum of g, and that the
Hessian matrix of g at 0 is degenerate. Then z0 is accumulated by periodic points, and the
property P) holds.

Let us explain now what is our result in the symplectic formalism.
A time-dependent vector field (Xt)t∈R is called a Hamiltonian vector field if it is defined

by the equation:
dHt = ω(Xt, ·),

where (M,ω) is a symplectic manifold, and H : R × M → R is a smooth function. The
Hamiltonian vector field induces a flow (ϕt)t∈R on M , which is the solution of the following
equation

∂

∂t
ϕt(z) = Xt(ϕt(z)).

We say that a diffeomorphism f ofM is a Hamiltonian diffeomorphism if it is the time-1 map
of a Hamiltonian flow.

In particular, a Hamiltonian diffeomorphism f of the torus T2 that is close to the identity
in C1 topology can be lifted to the plane R2, and the lifted diffeomorphism can be defined
by a generating function g. If z0 is a local maximum of g, and if the Hessian of g at z0 is
degenerate, we are in the case of the previous corollary, and the image of z0 in T2 is a fixed
point of f that is accumulated by contractible periodic points.

In 1984, Conley conjectured that a Hamiltonian diffeomorphism f of the standard sym-
plectic torus (T 2d, ω) has infinitely many contractible periodic points. The result was proved
later in the case where f has no degenerate fixed point, by Conley and Zehnder[CZ86], in the
weakly non-degenerate case by Salamon and Zehnder [SZ92], and finally in the general case by
Hinston[Hin09]. Recently, Mazzucchelli[Maz13] gave a simpler argument based on generating
functions for the second part of the proof of Hinston, and noticed that the existence of a sym-
plectical degenerate extremum, that will be defined in the section 4.2, implies the existence
of infinitely many other periodic points. In the same paper, he asked whether a symplectical
degenerate extremum actually corresponds to a fixed point accumulated by periodic points.
In this article, we will give a positive answer in the case where d = 1. More precisely, we have
the following result.

Theorem 1.5. Let f : T2 → T2 be a Hamiltonian diffeomorphism, and z0 be a symplectical
degenerate extremum. Then z0 is accumulated by periodic points, and the property P) holds.

Now, we will give a plan of this article. In Section 2, we will recall some definitions and
results that we will use in the proofs of our results. In Section 3, we will prove Theorem 1.1,
which is the main result of this paper. In Section 4, we will study a particular case where f is
a diffeomorphism, and will give several versions of our results whose conditions are described
in different ways: Corollary 1.4 and Theorem 1.5.
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2 Preliminaries

2.1 A classification of isolated fixed points

In this section, we will give a classification of isolated fixed points. More details can be found
in [LC03].

Let f : (W, z0) → (W ′, z0) be a local homeomorphism with an isolated fixed point z0.
We say that z0 is an accumulated point if every neighborhood of z0 contains a periodic orbit
besides z0. Otherwise, we say that z0 is a non-accumulated point.

We define a Jordan domain to be a bounded domain whose boundary is a simple closed
curve. We say that z0 is indifferent if there exists a neighborhood V ⊂ V ⊂ W of z0 such
that for every Jordan domain U ⊂ V containing z0, the connected component of ∩k∈Zf

−k(U)
containing z0 intersects the boundary of U .

We say that z0 is dissipative if there exists a fundamental system {Uα}α∈J of the neigh-
borhood of z0 such that each Uα is a Jordan domain and that f(∂Uα) ∩ ∂Uα = ∅.

We say that z0 is a saddle point if it is neither indifferent nor dissipative.
Note that if f is area preserving, an isolated fixed point of f is either an indifferent point

or a saddle point.

2.2 Lefschetz index

Let f : (W, 0) → (W ′, 0) be an orientation preserving local homeomorphism at an isolated
fixed point 0 ∈ R2. Denote by S1 the unit circle. If C ⊂ W is a simple closed curve which
contains no fixed point of f , then we can define the index i(f, C) of f along the curve C to
be the Brouwer degree of the map

ϕ : S1 → S1

t 7→
f(γ(t))− γ(t)

||f(γ(t))− γ(t)||
,

where γ : S1 → C is a parametrization compatible with the orientation, and ‖ · ‖ is the
usual Euclidean norm. Let U be a Jordan domain containing 0 and contained in a sufficiently
small neighborhood of 0. We define the Lefschetz index of f at 0 to be i(f, ∂U), which is
independent of the choice of U . We denote it by i(f, 0).

More generally, if f : (W, z0) → (W ′, z0) is an orientation preserving local homeomor-
phism at a fixed point z0 on a surface M , we can conjugate it topologically to an orientation
preserving local homeomorphism g at 0 and define the Lefschetz index of f at z0 to be i(g, 0),
which is independent of the choice of the conjugation. We denote it by i(f, z0).

2.3 Local isotopies and the index of local isotopies

Let f : (W, z0) → (W ′, z0) be an orientation preserving local homeomorphism at z0 ∈ M . A
local isotopy I of f at z0 is a family of homeomorphisms (ft)t∈[0,1] such that

- every ft is a homeomorphism between the neighborhoods Vt ⊂ W and V ′
t ⊂ W ′ of z0,

and f0 = IdV0 , f1 = f |V1 ;

- for all t, one has ft(z0) = z0;

- the sets {(z, t) ∈M × [0, 1] : z ∈ Vt} and {(z, t) ∈M × [0, 1] : z ∈ V ′
t } are both open in

M × [0, 1];
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- the maps (z, t) 7→ ft(z) and (z, t) 7→ f−1
t (z) are both continuous.

We say that two local isotopies of f are equivalent if they are locally homotopic.
Let us introduce the index of a local isotopy which was defined by Le Roux [LR13] and

Le Calvez [LC08].
Let f : (W, 0) → (W ′, 0) be an orientation preserving local homeomorphism at 0 ∈ R2, and

I = (ft)i∈[0,1] be a local isotopy of f . We denote by Dr the disk with radius r and centered
at 0. Then the isotopy ft is well defined in the disk Dr if r is sufficiently small. Let

π : R× (−∞, 0) → C \ {0} ≃ R2 \ {0}

(θ, y) 7→ −yei2πθ,

be the universal covering projection, and Ĩ = (f̃t)t∈[0,1] be the lift of I|Dr\{0} to R × (−r, 0)

such that f0 is the identity. Let γ̃ : [0, 1] → R × (−r, 0) be a path from z̃′ ∈ R × (−r, 0) to
z̃′ + (1, 0). The map

t 7→
f̃1(γ̃(t))− γ̃(t)

||f̃1(γ̃(t))− γ̃(t)||

takes the same value at both 0 and 1, and hence descends to a continuous map ϕ : [0, 1]/0∼1 →
S1. We define the index of the isotopy I at 0 to be the Brouwer degree of ϕ, which does not
depend on the choice of γ̃ when r is sufficiently small. We denote it by i(I, 0).

More generally, we consider an orientation preserving local homeomorphism on an oriented
surface. Let f : (W, z0) → (W ′, z0) be an orientation preserving local homeomorphism at a
fixed point z0 in a surface M . Let h : (U, z0) → (U ′, 0) be a local homeomorphism. Then
h ◦ I ◦ h−1 = (h ◦ ft ◦ h

−1)t∈[0,1] is a local isotopy at 0, and we define the index of I at z0 to
be i(h ◦ I ◦ h−1, 0), which is independent of the choice of h. We denote it by i(I, z0).

Let I = (ft)t∈[0,1] and I
′ = (gt)t∈[0,1] be two identity isotopies (resp. local isotopies). We

denote by I−1 the isotopy (resp. local isotopy) (f−1
t )t∈[0,1], by I

′I the isotopy (resp. local
isotopy) (ϕt)t∈[0,1] such that

ϕt =

{
f2t for t ∈ [0, 12 ],
g2t−1 ◦ f for t ∈ [12 , 0],

and by In the isotopy (resp. local isotopy) I · · · I︸ ︷︷ ︸
n times

for every n ≥ 1.

The Lefschetz index at an isolated fixed point and the indices of the local isotopies are
related. We have the following result:

Proposition 2.1. ([LC08][LR13]) Let f :W →W ′ be an orientation preserving homeomor-
phism with an isolated fixed point z. Then, we have the following results:

- if i(f, z) 6= 1, there exists a unique homotopy class of local isotopies such that i(I, z) =
i(f, z)−1 for every local isotopy I in this class, and the indices of the other local isotopies
are equal to 0;

- if i(f, z) = 1, the indices of all the local isotopies are equal to 0.
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2.4 Brouwer plane translation theorem

In this section, we will recall the Brouwer plane translation theorem. More details can be
found in [Bro12], [Gui94] and [Fra92].

Let f be an orientation preserving homeomorphism of R2. If f does not have any fixed
point, the Brouwer plane translation theorem asserts that every z ∈ R2 is contained in a
translation domain for f , i.e. an open connected set of R2 whose boundary is L∪f(L), where
L is the image of a proper embedding of R in R2 such that L separates f(L) and f−1(L).

As an immediate corollary, one knows that if f is an orientation and area preserving
homeomorphism of a plane3 with finite area, it has at least one fixed point.

2.5 Transverse foliations and its index at an isolated end

In this section, we will introduce the index of a foliation at an isolated end. More details can
be found in [LC08].

Let M be an oriented surface and F be an oriented topological foliation on M . For every
point z, there is a neighborhood V of z and a homeomorphism h : V → (0, 1)2 preserving the
orientation such that the images of the leaves of F|V are the vertical lines oriented upward.
We call V a trivialization neighborhood of z, and h a trivialization chart.

Let z0 be an isolated end of M . We choose a small annulus U ⊂ M such that z0 is an
end of U . Let h : U → D \ {0} be a homeomorphism which sends z0 to 0 and preserves the
orientation. Let γ : T1 → D \ {0} be a simple closed curve homotopic to ∂D. We can cover
the curve by finite trivialization neighborhoods {Vi}1≤i≤n of the foliation Fh, where Fh is the
image of F|U . For every z ∈ Vi, we denote by φ+Vi,z

the positive half leaf of the the leaf in Vi
containing z. Then we can construct a continuous map ψ from the curve γ to D \ {0}, such
that ψ(z) ∈ φ+Vi,z

for all 0 ≤ i ≤ n and for all z ∈ Vi. We define the index i(F , z0) of F at z0
to be the Brouwer degree of the application

θ 7→
ψ(γ(θ))− γ(θ)

‖ψ(γ(θ))− γ(θ)‖
,

which depends neither on the choice of ψ, nor on the choice of Vi, nor on the choice of γ, nor
on the choice of h.

We say that a path γ : [0, 1] →M is positively transverse to F , if for every t0 ∈ [0, 1], there
exists a trivialization neighborhood V of γ(t0) and ε > 0 such that γ([t0−ε, t0+ε]∩[0, 1]) ⊂ V
and h ◦ γ|[t0−ε,t0+ε]∩[0,1] intersects the vertical lines from left to right, where h : V → (0, 1)2 is
the trivialization chart.

Let f be a homeomorphism onM isotopic to the identity, and I = (ft)t∈[0,1] be an identity
isotopy of f . We say that an oriented foliation F on M is a transverse foliation of I if for
every z ∈ M , there is a path that is homotopic to the trajectory t → ft(z) of z along I and
is positively transverse to F .

Suppose that I = (ft)t∈[0,1] is a local isotopy at z0. We say that F is locally transverse to
I if for every sufficiently small neighborhood U of z0, there exists a neighborhood V ⊂ U such
that for all z ∈ V \ {z0}, there exists a path in U \ {z0} that is homotopic to the trajectory
t 7→ ft(z) of z along I and is positively transverse to F .

Proposition 2.2. [LC08] Suppose that I is an identity isotopy on a surface M with an
isolated end z and F is a transverse foliation of I. If M is not a plane, F is also locally
transverse to the local isotopy I at z.

3Here, a plane is an open set homeomorphic to R2.
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Proposition 2.3. [LC08] Let f : (W, z0) → (W ′, z0) be an orientation preserving local home-
omorphism at an isolated fixed point z0, I be a local isotopy of f at z0, and F be a foliation
that is locally transverse to I, then

- i(F , z0) = i(I, z0) + 1;

- i(f, z0) = i(F , z0) if i(F , z0) 6= 1.

2.6 Existence of a transverse foliation and Jaulent’s preorder

Let f be a homeomorphism of M isotopic to the identity, and I = (ft)t∈[0,1] be an identity
isotopy of f . A contractible fixed point z of f associated to I is a fixed point of f such that
the trajectory of z along I, that is the path t 7→ ft(z), is a loop homotopic to zero in M . One
has the following generalization of Brouwer’s translation theorem.

Theorem 2.4. [LC05] Let M be an oriented surface. If I = (ft)t∈[0,1] is an identity isotopy
of a homeomorphism f of M such that there exists no contractible fixed point of f associated
to I, then there exists a transverse foliation F of I.

One can extend this result to the case where there exist contractible fixed points by
defining the following preorder of Jaulent [Jau14].

Let us denote by Fix(f) the set of fixed points of f , and for every identity isotopy I =
(ft)t∈[0,1] of f , by Fix(I) = ∩t∈[0,1]Fix(ft) the set of fixed points of I. Let X be a closed subset
of Fix(f). We denote by (X, IX) the couple that consists of a closed subset X ⊂ Fix(f) such
that f |M\X is isotopic to the identity and an identity isotopy IX of f |M\X .

Let πX : M̃X →M \X be the universal cover, and ĨX = (f̃t)t∈[0,1] be the identity isotopy

that lifts IX . We say that f̃X = f̃1 is the lift of f associated to IX . We say that a path
γ : [0, 1] → M \X from z to f(z) is associated to IX if there exists a path γ̃ : [0, 1] → M̃X

that is the lift of γ and satisfies f̃X(γ̃(0)) = γ̃(1). We write (X, IX) - (Y, IY ), if

- X ⊂ Y ⊂ (X ∪ πX(Fix(f̃X)));

- all the paths in M \ Y associated to IY are also associated to IX .

The preorder - is well defined. Moreover, if one has (X, IX) - (Y, IY ) and (Y, IY ) - (X, IX),
then one knows that X = Y and that IX is homotopic to IY . In this case, we will write
(X, IX) ∼ (Y, IY ). Jaulent proved the following result:

Theorem 2.5. [Jau14] Let M be an oriented surface and I be an identity isotopy of a homeo-
morphism f on M . Then, there exists a maximal (X, IX) ∈ I such that (Fix(I), I) - (X, IX).
Moreover, f |M\X has no contractible fixed point associated to IX , and there exists a transverse
foliation F of IX on M \X.

Remark 2.6. Here, we can also consider the previous foliation F to be a singular foliation on
M whose singularities are the points in X. In particular, if IX is the restriction to M \X of
an identity isotopy I ′ on M , we will say that F a transverse (singular) foliation of I ′.

We call (Y, IY ) ∈ I a maximal extension of (X, IX) if (X, IX) - (Y, IY ) and if (Y, IY )
is maximal in Jaulent’s preorder; we call (Y, IY ) a maximal extension of I if (Y, IY ) is a
maximal extension of (Fix(I), I).
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2.7 Dynamics of an oriented foliation in a neighborhood of an isolated

singularity

In this section, we consider singular foliations. A sink (resp. a source) of F is an isolated
singular point of F such that there is a homeomorphism h : U → D which sends z0 to 0 and
sends the restricted foliation F|U\{z0} to the radial foliation of D \ {0} with the leaves toward
(resp. backward) 0, where U is a neighborhood of z0 and D is the unit disk. A petal of F is
a closed topological disk whose boundary is the union of a leaf and a singularity. Let F0 be
the foliation on R2 \ {0} whose leaves are the horizontal lines except the x−axis which is cut
into two leaves. Let S0 = {y ≥ 0 : x2 + y2 ≤ 1} be the half-disk. We call a closed topological
disk S a hyperbolic sector if there exist

- a closed set K ⊂ S such that K ∩ ∂S is reduced to a singularity z0 and K \ {z0} is the
union of the leaves of F that are contained in S,

- a continuous map φ : S → S0 that maps K to 0 and the leaves of F|S\K to the leaves
of F0|S0 .

(a) the hyperbolic sector
model S0

(b) a pure hyperbolic sector (c) a strange hyperbolic sec-
tor

Figure 1: The hyperbolic sectors

Le Roux gives a description of the dynamics of an oriented foliation F at an isolated
singularity z0.

Proposition 2.7. [LR13] We have one of the following cases:

i) (sink or source) there exists a neighborhood of z0 that contains neither a closed leaf, nor
a petal, nor a hyperbolic sector;

ii) (cycle) every neighborhood of z0 contains a closed leaf;

iii) (petal) every neighborhood of z0 contains a petal, and does not contain any hyperbolic
sector;

iv) (saddle) every neighborhood of z0 contains a hyperbolic sector, and does not contain any
petal;

v) (mixed) every neighborhood of z0 contains both a petal and a hyperbolic sector.

Moreover, i(F , z0) is equal to 1 in the first two cases, is strictly bigger than 1 in the petal
case, and is strictly smaller than 1 in the saddle case.

Remark 2.8. In particular, let f : (W, z0) → (W ′, z0) be an orientation preserving local
homeomorphism at z0, I be a local isotopy of f , F be an oriented foliation that is locally
transverse to I, and z0 be an isolated singularity of F . If P is a petal in a small neighborhood
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of z0 and Φ is the leaf in ∂P , then Φ ∪ {z0} divides M into two parts. We denote by L(Φ)
the one to the left and R(Φ) the one to the right. By definition, P contains the positive
orbit of R(Φ) ∩ L(f(Φ)) or the negative orbit of L(Φ) ∩R(f−1(Φ)). Then, a petal in a small
neighborhood of z0 contains the positive or the negative orbit of a wandering open set. So does
the topological disk whose boundary is a closed leaf in a small neighborhood of z0. Therefore,
if f is area preserving, then z0 is either a sink, a source, or a saddle of F .

2.8 The local rotation type of a local isotopy

In this section, suppose that f : (W, z0) → (W ′, z0) is an orientation and area preserving local
homeomorphism at an isolated fixed point z0, and that I is a local isotopy of f . We say that
I has a positive rotation type (resp. negative rotation type) if there exists a locally transverse
foliation F of I such that z0 is a sink (resp. source) of F . Shigenori Matsumoto [Mat01]
proved the following result:

Proposition 2.9. [Mat01] If i(f, z0) is equal to 1, I has unique one of the two kinds of
rotation types.

Remark 2.10. By considering the index of foliation, one deduces the following corollary: if F
and F ′ are two locally transverse foliations of I, and if 0 is a sink (resp. source) of F , then
0 is a sink (resp. a source) of F ′.

2.9 Prime-ends compactification and rotation number

In this section, we first recall some facts and definitions from Carathéodory’s prime-ends
theory, and then give the definition of the prime-ends rotation number. More details can be
found in [Mil06] and [KLCN14].

Let U  R2 be a simply connected domain, then there exists a natural compactification of
U by adding a circle, that can be defined in different ways. One explanation is the following:
we can identify R2 with C and consider a conformal diffeomorphism

h : U → D,

where D is the unit disk. We endow U ⊔S1 with the topology of the pre-image of the natural
topology of D by the application

h : U ⊔ S1 → D,

whose restriction is h on U and the identity on S1 .
Any arc in U which lands at a point z of ∂U corresponds, under h, to an arc in D which

lands at a point of S1, and arcs which land at distinct points of ∂U necessarily correspond to
arcs which land at distinct points of S1. We define an end-cut to be the image of a simple
arc γ : [0, 1) → U with a limit point in ∂U . Its image by h has a limit point in S1. We say
that two end-cuts are equivalent if their images have the same limit point in S1. We say that
a point z ∈ ∂U is accessible if there is an end-cut that lands at z. Then the set of points of
S1 that are limit points of an end-cut is dense in S1, and accessible points of ∂U are dense
in ∂U . We define a cross-cut by the image of a simple arc γ : (0, 1) → U which extends to
an arc γ : [0, 1] → U joining two points of ∂U and such that each of the two components of
U \ γ has a boundary point in ∂U \ γ.

Let f be an orientation preserving homeomorphism of U . We can extend f to a homeo-
morphism of the prime-ends compactification U ⊔ S1, and denote it by f . In fact, for a point
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z ∈ S1 which is a limit point of an end-cut γ, we can naturally define f(z) to be the limit
point of f ◦ γ. Then we can define the prime-ends rotation number ρ(f, U) ∈ T1 = R/Z to be
the Poincaré’s rotation number of f |S1 . In particular, if f fixes every point in ∂U , ρ(f, U) = 0.

Let K ⊂ R2 be a continuum, and UK be the unbounded component of R2 \K. Then, UK

is an annulus and becomes a simply connected domain of the Riemann sphere if we identify
R2 with C and add a point at infinity. The prime-ends compactification also gives us a
compactification of the end of UK corresponding to K by adding the circle of prime-ends. We
can define end-cuts and cross-cuts similarly.

Let f : (W, 0) → (W ′, 0) be an orientation preserving local homeomorphism at 0 ∈ R2, and
K ⊂ W be an invariant continuum containing 0. Similarly, we can naturally extend f |UK∩W

to a homeomorphism fK : UK ∩W ∪ S1 → UK ∩W ′ ∪ S1 , and define the rotation number
ρ(f,K) ∈ R/Z to be the Poincaré’s rotation number of fK |S1 .

Furthermore, if I = (ft)t∈[0,1] is a local isotopy of f at 0, we consider the universal covering
projections

π : R× (−∞, 0) → C \ {0} ≃ R2 \ {0}

(θ, y) 7→ −yei2πθ

and

π′ : R → S1

θ 7→ ei2πθ.

Let ŨK = π−1(UK), W̃ = π−1(W ), and W̃ ′ = π−1(W ′). Let

πK : ŨK ⊔ R→ UK ⊔ T1

be the map such that πK = π in ŨK and πK = π′ on R. We endow the topology on
ŨK ⊔ R such that πK is a universal cover. Let Ĩ = (f̃t)t∈[0,1] be the lift of (ft|V \{0})t∈[0,1]

such that f̃0 is the identity, where V is a small neighborhood of z. Let f̃ : W̃ → W̃ ′ be
the lift of f |W\{0} such that f̃ = f̃1 in π−1(V ), we call it the lift of f associated to I. Let

f̃K : (W̃ ∩ ŨK) ⊔ R → (W̃ ′ ∩ ŨK) ⊔ R be the lift of fK such that f̃K = f̃ in W̃ ∩ ŨK , we

call it the lift of fK associated to I. We define the rotation number ρ(I,K) = lim
n→∞

f̃nK(θ)− θ

n
which is a real number that does not depend on the choice of θ. We know that ρ(I,K) is a
representative of ρ(f,K) in R.

We have the following property:

Proposition 2.11. [LC03] Let f : (W, 0) → (W ′, 0) be an orientation preserving local home-
omorphism at a non-accumulated indifferent point 0. Let U ⊂ U ⊂ W be a Jordan domain
such that U does not contain any periodic orbit except 0, and that for all V ⊂ U , the connected
component of ∩n∈Zf

−n(V ) containing 0 intersects the boundary of V . Let K0 be the connected
component of ∩n∈Zf

−n(U) containing 0. Then for every local isotopy I of f , and for every
invariant continuum K ⊂ U containing 0, one has ρ(I,K) = ρ(I,K0).

This proposition implies that if f : (W, 0) → (W ′, 0) is an orientation preserving local
homeomorphism at a non-accumulated indifferent point 0, we can define the rotation number
ρ(I, 0) for every local isotopy I of f at 0, by writing ρ(I, 0) = ρ(I,K) where K is a non-trivial
invariant continuum sufficiently close to 0.

More generally, if f : (W, z0) → (W ′, z0) is an orientation preserving local homeomorphism
at a non-accumulated indifferent point z0 ∈M , we can conjugate it to a local homeomorphism
at 0, and get the previous definitions and results similarly.
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2.10 The local rotation set

In this section, we will give a definition of the local rotation set and will describe the relations
between the rotation set and the rotation number. More details can be found in [LR13].

Let f : (W, 0) → (W ′, 0) be an orientation preserving local homeomorphism at 0 ∈ R2,
and I = (ft)t∈[0,1] be a local isotopy of f . Given two neighborhoods V ⊂ U of 0 and an integer
n ≥ 1, we define

E(U, V, n) = {z ∈ U : z /∈ V, fn(z) /∈ V, f i(z) ∈ U for all 1 ≤ i ≤ n}.

We define the rotation set of I relative to U and V by

ρU,V (I) = ∩m≥1∪n≥m{ρn(z), z ∈ E(U, V, n)} ⊂ [−∞,∞],

where ρn(z) is the average change of angular coordinate along the trajectory of z. More
precisely, let

π : R× (−∞, 0) → C \ {0} ≃ R2 \ {0}

(θ, y) 7→ −yei2πθ

be the universal covering projection, f̃ : π−1(W ) → π−1(W ′) be the lift of f associated to I,
and p1 : R× (−∞, 0) → R be the projection onto the first factor. We define

ρn(z) =
p1(f̃

n(z̃)− z̃)

n
,

where z̃ is any point in π−1{z}.
We define the local rotation set of I to be

ρs(I, 0) = ∩U∪V ρU,V (I) ⊂ [−∞,∞],

where V ⊂ U ⊂W are neighborhoods of 0.
We say that f can be blown-up at 0 if there exists an orientation preserving homeomor-

phism Φ : R2 \ {0} → T1 × (−∞, 0), such that ΦfΦ−1 can be extended continuously to
T1 × {0}. We denote this extension by h. Suppose that f is not conjugate a contraction or
an expansion. We define the blow-up rotation number ρ(f, 0) of f at 0 to be the Poincaré
rotation number of h|T1 . Let I = (ft)t∈[0,1] be a local isotopy of f , (h̃t) be the natural lift of
Φ|T1×(0,r) ◦ft|Dr\{0} ◦Φ

−1|T1×(0,r), where Dr is a sufficiently small disk with radius r and cen-

tered at 0, and h̃ be the lift of h such that h̃ = h̃1 in a neighborhood of R×{0}. We define the
blow-up rotation number ρ(I, 0) of I at 0 to be the rotation number of h|T1 associated to the
lift h̃|R×{0}, which is a representative of ρ(f, 0) on R. Jean-Marc Gambaudo, Le Calvez, and
Elisabeth Pécou [GLCP96] proved that neither ρ(f, 0) nor ρ(I, 0) depend on the choice of Φ,
which generalizes a previous result of Năıshul′ [Năı82]. In particular, if f is a diffeomorphism,
f can be blown-up at 0 and the extension of f on T1 is induced by the map

v 7→
Df(0)v

‖Df(0)v‖

on the space of unit tangent vectors.
More generally, if f : (W, z0) → (W ′, z0) is an orientation preserving local homeomorphism

at z0 that is not conjugate to the contraction or the expansion, we can give the previous
definitions for f by conjugate it to an orientation preserving local homeomorphism at 0 ∈ R2.
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The local rotation set can be empty. However, due to Le Roux [LR08], we know that the
rotation set is not empty if f is area preserving.

We say that z is a contractible fixed point of f associated to a local isotopy I = (ft)t∈[0,1]
if the trajectory t 7→ ft(z) of z along I is a loop homotopic to zero in W \ {z0}.

The local rotation set satisfies the following properties:

Proposition 2.12. [LR13] Let f : (W, z0) → (W ′, z0) be an orientation preserving local
homeomorphism at z0, and I be a local isotopy of f at z0. One has the following results:

i) For all integer p, q, ρs(J
pIq, z0) = qρs(I, z0)+p, where J is a local isotopy of the identity

such that ρ(J, z0) = 1.

ii) If z0 is accumulated by contractible fixed points of f associated to I, then 0 ∈ ρs(I, z0).

iii) If ρs(I, z0) is a non-empty set that is contained in (0,+∞] (resp. [−∞, 0)), then I has
a positive (resp.negative) rotation type.

iv) If f can be blown-up at z0, and if ρs(I, z0) is not empty, then ρs(I, z0) is reduced to the
single real number ρ(I, z0).

v) If z0 is a non-accumulated indifferent point, ρs(I, z0) is reduced to ρ(I, z0) (the rotation
number defined in Section 2.9).

Remark 2.13. Le Roux also gives several criteria implying that f can be blown-up at z0. The
one we need in this article is due to Béguin, Crovisier and Le Roux [LR13]

If there exists an arc γ at z0 whose germ is disjoint with the germs of fn(γ) for all n 6= 0,
then f can be blown-up at z0.

In particular, if there exists a leaf γ+ from z0 and a leaf γ− toward z0 (we are in this case
if z0 is a petal, a saddle, or a mixed singularity of F), we can choose a sector U as in the
picture. Let V be a small neighborhood of z0. There exists a neighborhood W ⊂ V of z0 such

γ−

γ+

z0

f(γ−)

f(γ+)

U

VW

that
f(U ∩W ) ⊂ (Int(U) ∩ V ) ∪ {z0}.

So, the germs at z0 of fn(γ+) are pairwise disjoint, and hence f can be blown-up at z0.
Moreover, ρ(I, z0) is equal to 0 in this case.

Le Roux also studied the dynamics near a non-accumulated saddle point, and proved the
following result:

Proposition 2.14. [LR13] If z0 is a non-accumulated saddle point, then f can be blown-up
at z0 and ρs(I, z0) is reduced to a rational number. Moreover, if i(f, z0) is equal to 1, this
rational number is not an integer.
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2.11 Some generalizations of Poincaré-Birkhoff theorem

In this section, we will introduce several generalizations of Poincaré-Birkhoff theorem. An
essential loop in the annulus is a loop that is not homotopic to zero.

We first consider the homeomorphisms of closed annuli. Let f be a homeomorphism of
T1×[0, 1] isotopic to the identity, I = (ft)t∈[0,1] be an identity isotopy of f . Let π : R×[0, 1] →

T1×R be the universal cover, Ĩ = (f̃t)t∈[0,1] be the identity isotopy that lifts I, f̃ = f̃1 be the
lift of f associated to I, and p1 : R

2 → R be the projection on the first factor. The limits

lim
n→∞

p1 ◦ f̃
n(x, 0)− x

n
and lim

n→∞

p1 ◦ f̃
n(x, 1)− x

n

exists for all x ∈ R, and do not depend on the choice of x. We define the rotation number
of f on each boundary to be the corresponding limits. We define the rotation number of
z ∈ T1 × R associated to I to be the limit

lim
n→+∞

p1(f̃
n(z̃)− z̃)

n
∈ [−∞,∞],

if this limit exists. We say that f satisfies the intersection property if f ◦ γ intersects γ,
for every simple essential loop γ ⊂ T1 × (0, 1). We have the following generalizations of
Poincaré-Birkhoff theorem:

Proposition 2.15. [Bir26] Let f be a homeomorphism of T1 × [0, 1] isotopic to the identity
and satisfying the intersection property. If the rotation number of f on the two boundaries are
different, then there exists a q-periodic orbit of rotation number p/q for all irreducible rational
p/q ∈ (ρ1, ρ2), where ρ1 and ρ2 are the rotation numbers of f on the boundaries.

We also consider homeomorphisms of open annuli. Let f : T1 × R → T1 × R be a
homeomorphism isotopic to the identity, and I = (ft)t∈[0,1] be an identity isotopy of f . Let

π : R× R→ T2 × R be the universal cover, Ĩ = (f̃t)t∈[0,1] be the identity isotopy that lifts I,

f̃ = f̃1 be the lift of f associated to I, and p1 : R2 → R be the projection on the first factor.
Similarly, we define the rotation number of a recurrent point z ∈ T1×R associated to I to be
the limit

lim
n→+∞

p1(f̃
n(z̃)− z̃)

n
∈ [−∞,∞],

if this limit exists. We say that f satisfies the intersection property if f ◦ γ intersects γ,
for every simple essential loop γ ⊂ T1 × R. Then, we have the following generalization of
Poincaré-Birkhoff theorem:

Proposition 2.16 ([Fra88], [LC05]). Let f : T1 ×R→ T1 ×R be a homeomorphism isotopic
to the identity and satisfying the intersection property. If there exist two recurrent points
of rotation numbers ρ1, ρ2 ∈ [−∞,+∞] respectively such that ρ1 < ρ2, then there exists a
q-periodic orbit of rotation number p/q for all irreducible rational p/q ∈ (ρ1, ρ2).

Remark 2.17. The result is also true for area preserving homeomorphisms of the closed or
half closed annulus by considering a symmetry.
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2.12 Topologically monotone periodic orbits for annulus homeomorphisms

In this section, we will recall the braid type of a periodic orbit and the existence of the
topologically monotone periodic orbits for annulus homeomorphisms under some conditions.
More details can be found in [Boy92].

Denote by A the closed annulus T1× [0, 1]. Let f be a homeomorphism of A that preserves
the orientation and each boundary circle, and f̃ be a lift of f to the universal cover Ã =
R× [0, 1]. Given z̃ ∈ Ã, we define its rotation number under f̃ as

ρ(z̃, f̃) = lim
n→∞

p1(f̃
n(z̃))− p1(z̃)

n
,

if this limit exists, where p1 is the projection onto the first factor. We define the rotation set
of f̃ to be

ρ(f̃) = {ρ(z̃, f̃), z̃ ∈ Ã}.

In particular, if I is an identity isotopy of f and f̃ is the lift of f associated to I, this definition
of the rotation number coincides with the definition of the rotation number in Section 2.11.

Fix a copy of the closed annulus minus n interior points, and denote it by An. Let Gn be
the group of isotopy classes of orientation preserving homeomorphism of An. If O is an n-
periodic orbit of f in the interior of A, then there is an orientation preserving homeomorphism
h : A \ O → An. Philip Boyland defined the braid type bt(O, f) to be the isotopy class of
h◦f |A\O ◦h−1 in Gn, this isotopy class is independent of the choice of h. If O is an n-periodic
orbit of f contained in a boundary circle of A, he extends f near this boundary and gets a
homeomorphism f also on a closed annulus. Then O is in the interior of this new annulus.
The braid type bt(O, f) is independent of the choice of the extension, and Boyland defined
bt(O, f) = bt(O, f).

Let p/q be an irreducible positive rational, and T̃p/q be the homeomorphism of Ã defined
by (x, y) 7→ (x + p/q, y). It descends to a homeomorphism Tp/q of A. We denote by αp/q

the braid type bt(O, Tp/q), where O is any periodic orbit of Tp/q. We say that a q-periodic

orbit O of f is a (p, q)-periodic orbit if ρ(z̃, f̃) = p/q for any z̃ in the lift of O. We say that
a (p, q)-periodic orbit O is topologically monotone if bt(O, f) = αp/q. We define the Farey
interval I(p/q) of p/q to be the closed interval

[max{r/s : r/s < p/q, 0 < s < q, and (r, s) = 1},min{r/s : r/s > p/q, 0 < s < q, and (r, s) = 1}].

In particular, the Farey interval of 1/q is equal to [0, 1/(q − 1)].
Boyland proved the following result:

Proposition 2.18 ([Boy92]). If f is an orientation and boundary preserving homeomorphism
of the closed annulus, and p/q ∈ ρ(f̃) is an irreducible positive rational, then f has a (p, q)-
topologically monotone periodic orbit. If f has a (p, q)-orbit that is not topologically monotone,
then I(p/q) ⊂ ρ(f̃).

2.13 Annulus covering projection

Let M be an oriented surface, X0 ⊂M be a closed set, and z0 ∈M \X0. Denote by M0 the
connected component ofM \X0 containing z0. Let V ⊂ U ⊂M0 be two small Jordan domains
containing z0. Write U̇ = U \{z0} and V̇ = V \{z0}. Fix z1 ∈ V̇ . Let γ ⊂ V̇ be a simple loop
at z1 such that the homotopic class [γ] of γ in V̇ generates π1(V̇ , z1). Let i : U̇ →M0 \{z0} be
the inclusion, then i∗π1(U̇ , z1) is a subgroup of π1(M0\{z0}, z1). Then, there exists a covering
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projection π : (M̃, z̃1) → (M0 \{z0}, z1) such that π∗π1(M̃, z̃1) = i∗π1(U̇ , z1) by Theorem 2.13

in [Spa66]. Moreover, the fundamental group of M̃ is isomorphic to Z, so M̃ is an annulus.

Let ˜̇U be the component of π−1(U̇) containing z̃1. Then π∗π1(
˜̇U, z̃1) = π1(U̇ , z1) and

the restriction of π to ˜̇U is a homeomorphism between ˜̇U and U̇ by Theorem 2.9 in [Spa66].

Consider the ideal-ends compactification of M̃ , and denote by ⋆ the end in ˜̇U . Then π| ˜̇U
can

be extended continuously to a homeomorphism between ˜̇U ∪ {⋆} and U . We denote it by h.

If f is an orientation preserving homeomorphism of M0, and z0 is a fixed point of f .
By choosing sufficiently small V , we can suppose that f(V ) ⊂ U . We know that (f ◦

π)∗π1(M̃, z̃1) = i∗π1(U̇ , f(z1)) = π∗π1(M̃, h−1(f(z1))), then we deduce by Theorem 2.5 of

[Spa66] that there is a lift f̃ of f to M̃ that sends z̃1 to h−1(f(z1)). This map f̃ is an homeo-

morphism because f̃∗π1(M̃, z̃1) = π1(M̃, h−1(f(z1)) (see Corollary 2.7 in [Spa66]). Moreover,

f̃ can be extend continuously to a homeomorphism of M̃ ∪ {⋆} that fixes ⋆.
In particular, if f is isotopic to the identity, and if I = (ft)t∈[0,1] is an identity isotopy

of f fixing z0, then there exists a lift f̃·(·) : I × M̃ → M̃ of the continuous map (t, z̃) 7→
ft(π(z̃)) such that f̃0 is equal to the identity, because π is a covering projection. Moreover,

by choosing V small enough, we know that f̃t| ˜̇V
is conjugate to ft|V̇ for t ∈ [0, 1], where ˜̇V is

the component of π−1(V̇ ) containing z̃1. Then (f̃t)∗π1(M̃, z̃1) = π1(M̃, h−1(ft(z1)), therefore
f̃t is a homeomorphism by Corollary 2.7 in [Spa66]. We have indeed lifted I to an identity
isotopy Ĩ = (f̃t)t∈[0,1]. Moreover, f̃t can be extended continuously to a homeomorphism of

M̃ ∪ {⋆} that fixes ⋆, and we get an isotopy on M̃ ∪ {⋆} that fixes ⋆. We still denote by f̃t
the homeomorphism of M̃ ∪ {⋆} and by Ĩ the identity isotopy on M̃ ∪ {⋆} when there is no

ambiguity. We call Ĩ the natural lift of I to M̃ ∪ {⋆}, and f̃ = f̃1 the lift of f to M̃ ∪ {⋆}
associated to I.

Moreover, if I is a maximal isotopy, f̃ has no contractible fixed point associated to Ĩ on M̃
and Ĩ is also a maximal isotopy. Recall that π∗π1(M̃, z̃1) = i∗π1(U̇ , z1). So, π(O) is a periodic
orbit of type (p, q) associated to I at z0 for all periodic orbit O of type (p, q) associated to Ĩ
at ⋆, where p

q ∈ Q is irreducible.

Let F be an oriented foliation on M0 such that z0 is a sink (resp. source). Then there

exists a lift F̃ of F|M0\{z0} to M̃ , and ⋆ is a sink (resp. source) of F̃ . Denote by W the

attracting (resp. repelling) basin of z0 for F , and by W̃ the attracting (resp. repelling) basin

of ⋆ for F̃ . Write Ẇ = W \ {z0},
˙̃
W = W̃ \ {⋆}. Let z̃1 ∈

˙̃
W be a point sufficient close to

⋆. Then (π| ˙̃
W
)∗π1(

˙̃
W, z̃1) = π1(Ẇ , π(z1)), and hence π| ˙̃

W
is a homeomorphism between

˙̃
W

and Ẇ by Corollary 2.7 in [Spa66], and can be extended continuously to a homeomorphism

between W̃ and W .

2.14 Extend lifts of a homeomorphism to the boundary

In this section, let M be a plane, f be an orientation preserving homeomorphism of M , and
X be a invariant, discrete, closed subset of M with at least 2 points.

We consider the Poincaré’s disk model for the hyperbolic plane H, in which model, H is
identified with the interior of the unit disk and the geodesics are segments of Euclidean circles
and straight lines that meet the boundary perpendicularly. A choice of hyperbolic structure
on M \ X provides an identification of the universal cover of M \ X with H. A detailed
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description of the hyperbolic structures can be found in [CB88]. The compactification of the
interior of the unit disk by the unit circle induces a compactification of H by the circle S∞.
Let π : H → M \X be the universal cover. Then, f |M\X can be lifted to homeomorphisms
of H. Moreover, we have the following result:

Proposition 2.19. [Han99] Each lift f̂ of f |M\X extends uniquely to a homeomorphism of
H ∪ S∞.

Remark 2.20. When X has infinitely many points, Michael Handel gave a proof in Section 3
of [Han99]; when X has finitely many points, the situation is easier and Handel’s proof still
works.

In particular, suppose that z0 is an isolated point in X and is a fixed point of f . Let γ be
a sufficiently small circle near z0 whose lifts to H are horocycles. Fix one lift γ̂ of γ. Denote
by P the end point of γ̂ in S∞. Fix z1 ∈ γ and a lift ẑ1 of z1 in γ̂. Let Γ be the group
of parabolic covering translations that fix γ̂, and T be the parabolic covering translations
that generates Γ. Then, π descends to a annulus cover π′ : (H/Γ, z̃1) → (M \X, z1), where
z̃1 = {Tn(ẑ1) : n ∈ Z}. Also, ẑ 7→ {Tn(ẑ) : n ∈ Z} defines a universal cover π′′ : H → H/Γ.

M

z0 γ
V

H

γ̂

P

V̂

u
T (u)

Let V be the disk containing z0 and bounded by γ, V̂ be the disk bounded by γ̂ which
is a component of π−1(V \ {z0}). We know that π′′(V̂ ) is an annulus with π′′(γ̂) as one of
its boundary. We add a point ⋆ at the other end, and get a disk Ṽ = π′′(V̂ ) ∪ {⋆}. As in
the previous section, π′|

π′′(V̂ )
extends continuously to a homeomorphism between Ṽ and V ,

and f can be lifted to a homeomorphism f̃ of H/Γ ∪ {⋆} fixing ⋆. Let f̂ be a lift of f̃ |H/Γ

to H, it is also a lift of f |M\X and satisfies f̂ ◦ T = T ◦ f̂ . Moreover, both f̂ and T extend

continuously to homeomorphisms of H ∪ S∞ fixing P . We denote still by f̂ and T the two
extensions respectively. The formula f̂ ◦ T = T ◦ f̂ is still satisfied. So, f̂ |H∪S∞\{P} descends
to a homeomorphism of (H ∪ S∞ \ {P})/Γ. Because (H ∪ S∞ \ {P})/Γ is homeomorphic to
a compactification of H/Γ ∪ {⋆} by adding a circle at infinity S∞, one knows that f̃ extends
continuously to a homeomorphism of H/Γ ∪ {⋆} ∪ S∞.

3 Proof of the main theorem

Let M be an oriented surface, f : M → M be an area preserving homeomorphism of M
isotopic to the identity, and z0 be an isolated fixed point of f such that i(f, z0) = 1. Let I be
an identity isotopy of f fixing z0 such that its rotation set, which was defined in section 2.10,
is reduced to an integer k.

We say that the property P) holds for (f, I, z0) if there exists ε > 0, such that either for
all irreducible p/q ∈ (k, k+ε), or for all irreducible p/q ∈ (k−ε, k), there exists a contractible
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periodic orbit Op/q of type (p, q) associated to I at z0, such that µOp/q
→ δz0 as p/q → k, in

the weak-star topology, where µOp/q
is the invariant probability measure supported on Op/q,

Our aim of this section is to prove the following result:

Theorem 3.1 (Theorem 1.1). Under the previous assumptions, if one of the following situ-
ations occurs,

a) M is a plane, f has only one fixed point z0, and has another periodic orbit besides z0;

b) the total area of M is finite,

then the property P) holds for (f, I, z0).

Remark 3.2. Let I ′ be a local isotopy of f at z0 such that ρs(I
′, z0) is reduced to 0. Since f

is area preserving and i(f, z0) = 1, by Proposition 2.9, I ′ has either a positive or a negative
rotation type. Let F ′ be a locally transverse foliation of I ′. If I ′ has a positive rotation type,
then z0 is a sink of F ′ and the interval in Property P) is (k, k+ε); if I ′ has a negative rotation
type, then z0 is a source and the interval in Property P) is (k − ε, k).

We suppose that I ′ has a positive rotation type in this section, the other case can be
treated similarly.

Remark 3.3. If z0 is not accumulated by periodic orbits, since the rotation set is reduced to
an integer and i(f, z0) = 1, z0 is an indifferent fixed point by Proposition 2.14. Then, by the
assertion v) of Proposition 2.12, one deduces that ρ(I, z0) is equal to this integer.

We will prove the theorem in several cases.

3.1 The case where M is a plane

In this section, we suppose that M is a plane, and that I is a maximal identity isotopy of f
such that Fix(I) is reduced to z0. We will prove the following result in this section and get
the proof of the first part of Theorem 1.1 as a corollary.

Theorem 3.4. Under the previous assumption, if ρs(I, z0) is reduced to 0, and if f has
another periodic orbit besides z0, then the property P) holds for (f, I, z0).

This result is an important one in the proof of Theorem 1.1. In the latter cases, we will
always reduce the problem to this case and get the result as a corollary. Before proving this
result, we first prove the first case of Theorem 1.1 as a corollary.

Proof of the first case of Theorem 1.1. We only need to deal with the case where ρs(I, z0) is
reduced to a non-zero integer k. Let J be an identity isotopy of the identity fixing z0 such
that the blow-up rotation number ρ(J, z0) is equal to 1. Write I ′ = J−kI. By the first
assertion of Proposition 2.12, ρs(I

′, z0) is reduced to 0. Since f has exactly one fixed point, I ′

is maximal and the property P) holds for (f, I ′, z0). A periodic orbit in the annulus M \ {z0}
with rotation number p/q associated to I ′ is a periodic orbit with rotation number k + p/q
associated to I. Therefore, the property P) holds for (f, I, z0).

Now we begin the proof of Theorem 3.4 by some lemmas.

Lemma 3.5. Let g be a homeomorphism of R2, I ′ be a maximal identity isotopy of g that
fixes z0, and F ′ be a transverse foliation of I ′. Suppose that z0 is an isolated fixed point of g
and a sink of F ′. Let W ′ be the attacting basin of z0 for F ′. Suppose that either W ′ is equal
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to R2 or W ′ is a proper subset of R2 whose boundary is the union of some proper leaves of
F ′. Let U be a Jordan domain containing z0 that satisfies U ⊂W ′ and g(U) ⊂W ′.

If there exist a compact subset K ⊂ U and ε > 0 such that K contains a q-periodic orbit
Op/q with rotation number p/q in the annulus R2 \ {z0} for all irreducible p/q ∈ (0, ε), then
µOp/q

converges, in the weak-star topology, to the Dirac measure δz0 as p/q → 0, where µOp/q

is the invariant probability measure supported on Op/q.

Proof. We only need to prove that for every continuous function ϕ :W ′ → R, for every η > 0,
there exists δ > 0, such that for every q−periodic orbit O ⊂ K with irreducible rotation
number p/q < δ, we have

|

∫
ϕdµO − ϕ(z0)| < η,

where µO is the invariant probability measure supported on O.
Let V be a neighborhood of z0 such that |ϕ(z) − ϕ(z0)| < η/2 for all z ∈ V . Let π :

R × (−∞, 0) → W ′ \ {z0} be the universal cover which sends the vertical lines upward to
the leaves of F ′, and p1 : R × (−∞, 0) → R be the projection onto the first coordinate. Let
Ũ = π−1(U \ {z0}), K̃ = π−1(K \ {z0}) and g̃ be the lift of g to Ũ associated to I ′. By the
assumptions about W ′, we know that any arc that is positively transverse to F ′ cannot come
back into W ′ once it leaves W ′. So

p1(g̃(z))− p1(z) > 0, for all z ∈ K̃.

Therefore there exists η1 > 0 such that for all z ∈ π−1(K \ V ), one has

p1(g̃(z))− p1(z) > η1.

One deduces that for all q−periodic orbit O ⊂ K with irreducible rotation number p/q < δ =
ηη1

4| supK ϕ| ,

#(O \ V )η1
q

<
p

q
,

hence,

|

∫
ϕdµO − ϕ(z0)| < η/2 + 2 sup

K
|ϕ|

#(O \ V )

q
< η.

Remark 3.6. In this lemma, the homeomorphism g do not need to be area preserving. The
assumptions about W ′ prohibit the following bad situation:

z0

W ′

z

f(z)

Lemma 3.7. If ρs(I, z0) is reduced to 0, and if f can be blown-up at ∞ such that the blow-up
rotation number at ∞, that is defined in Section 2.10, is different from 0, then the property
P) holds for (f, I, z0).
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In order to to prove this lemma, we need the following sublemma:

Sublemma 3.8. Under the conditions of the previous Lemma, ρ(I,∞) is negative, and there
exists ε > 0 such that for all irreducible p/q ∈ (0, ε), there exists a q-periodic orbit with
rotation number p/q in the annulus M \ {z0}.

Proof. We consider a transverse foliation F of I. It has exactly two singularities z0 and ∞.
Since f is area preserving, f |M\{z0} satisfies the intersection property, and using the remark
that follows Proposition 2.7, one can deduce that F does not have any closed leaf. Because
f can be blown-up at ∞ and the blow-up rotation number ρ(I,∞) is different from 0, we
deduce that ∞ is either a sink or a source. By the assumption in Remark 3.2, z0 is a sink
of F , so ∞ is a source of F , and hence ρ(I,∞) is smaller than 0. Write ρ = −ρ(I,∞). We
denote by S∞ the circle added at ∞ when blowing-up f at ∞, and still by f the extension of
f to M ⊔ S∞. One has to consider the following two cases:

- Suppose that z0 is accumulated by periodic orbits. Let z1 be a periodic point of f in the
annulus M \ {z0}. Its rotation number is strictly positive. We denote by ε this number.
Because the rotation set ρs(I, z0) is equal to 0, the rotation number of a periodic orbit
tends to 0 as the periodic orbit tend to z0. Hence for all irreducible p/q ∈ (0, ε), there
exists a periodic orbit near z0 with rotation number r/s ∈ (0, p/q). The restriction of
the homeomorphism f to the annulus M \ {z0} satisfies the intersection property, then
by Proposition 2.16, there exists a q-periodic orbit with rotation number p/q in the
annulus for all irreducible p/q ∈ (0, ε).

- Suppose that z0 is not accumulated by periodic orbits. Then, z0 is an indifferent fixed
point by Proposition 2.14, and ρ(I, z0), which was defined in Section 2.9, is equal to
0. Let K0 be a small enough invariant continuum at z0 such that ρ(I,K0) = 0 ( see
Section 2.9). We denote by (M \K0)⊔T

1 ⊔ S∞ the prime-ends compactification at the
ends K0 and the compactification at ∞, which is an annulus. We can extend f to both
boundaries and get a homeomorphism of the closed annulus satisfying the intersection
condition. Moreover, the rotation number of f on the upper boundary T1 is equal to 0,
and on the lower boundary S∞ is equal to ρ. So, by Proposition 2.15, for all irreducible
p/q between 0 and ρ, there exists a periodic orbit in the annulus with rotation number
p/q.

Remark 3.9. In the first case of the proof, it is natural to think that we can prove by a
generalization of Poincaré-Birkhoff theorem that there exists a periodic orbit in the annulus
with rotation number p/q for all irreducible p/q between 0 and ρ. But in fact, the annulus
in this case is half-open, and we do not know whether there exists such a generalization
of Poincaré-Birkhoff theorem. So, we choose another periodic orbit to avoid treating the
half-open annulus.

Proof of Lemma 3.7. Paste two copies of the closed disk by S∞. We get a sphere S and a
homeomorphism f ′ that equals to f on each copy and has two fixed points z0 and σ(z0),
where σ is the natural involution. Let I ′ be an identity isotopy that fixes z0 and σ(z0) and
satisfies ρs(I

′, z0) = {0}. Because I is a maximal isotopy, f |M\{z0} has no contractible fixed
point associated to I. Because the blow-up rotation number ρ(I,∞) is different from 0, the
extension of f to S∞ does not have any fixed point with rotation number 0 (associated to I).
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So, f ′|S\{z0,σ(z0)} has no contractible fixed point associated to I ′|S\{z0,σ(z0)}. Therefore, I ′ is
a maximal isotopy, and one knows Fix(I ′) = {z0, σ(z0)}. Let F ′ be a transverse foliation of
I ′. Then F ′ has exactly two singularities z0 and σ(z0). By the assumption, z0 is a sink of F ′.
Since the involution σ is orientation reversing, ρ(I ′, σ(z0)) = 0 and I ′ has a negative rotation
type at σ(z0). So σ(z0) is a source of F ′, and hence F ′ does not have any petal. One has to
consider the following two cases:

- Suppose that all the leaves of F ′ are curves from σ(z0) to z0. The compact set M ⊔S∞
satisfies the conditions of Lemma 3.5, and we can deduce the result.

S∞

z0

φ

f(φ)

- Suppose that there exists a closed leaf in F ′. Since f is area preserving, similarly to
the remark that follows Proposition 2.7, one can deduce that there does not exist any
closed leaf in M or in σ(M). So, each closed leaf intersects S∞. Let W ′ be the basin
of z0 for F ′. Then ∂W ′ is a closed leaf, and hence intersects S∞. Denote this leaf by
φ. We suppose that z0 is to the right of φ, the other case can be treated similarly.
Denote by R(φ) (resp. L(φ)) the component of S \φ to the right (resp. left) of φ. Since
f ′(φ) is included in R(φ), we know that both R(φ) ∩M and R(φ) \ (M ∪ S∞) are not
empty. Choose a suitable essential curve Γ ⊂ (R(φ) ∩ L(f(φ))) ⊂W ′ that transversely
intersects S∞ at only finitely many points (see the gray curve between φ and f(φ) in
the picture). Then, (L(Γ) ∩M) has finitely many connected components, and so does
(L(Γ)∩(M ∪S∞)). Moreover, each component of (L(Γ)∩(M ∪S∞)) contains a segment
of S∞.

Since both M and S∞ are invariant by f ′, one knows that f ′−1(L(Γ) ∩ (M ∪ S∞)) is
included in L(Γ)∩ (M ∪S∞). So, if V is a component of (L(Γ)∩ (M ∪S∞)), there exists
n > 0 such that f ′−n(V ) ⊂ V . Moreover, one knows that f ′−n(V ∩ S∞) ⊂ V ∩ S∞ and
that the rotation number of each point in S∞ is equal to ρ, so there exists m > 0 such
that ρ = m/n and the rotation number of every periodic point of f ′ in V is equal to
ρ. Therefore, the rotation number of every periodic point z ∈ (L(Γ)∩M) of f ′ is equal
to the rotation number of S∞. So, all the periodic orbits in the annulus M \ {z0} with
rotation number in (0, ρ) is contained in R(Γ) ∩M . We find a compact set R(Γ) ∩M
that satisfies the conditions of Lemma 3.5, and can deduce the result.

Lemma 3.10. If ρs(I, z0) is reduced to 0, and if O ⊂M \ {z0} is a periodic orbit of f , then
the rotation number of O (associated to I) is positive.

Proof. Let F be a transverse foliation of I. Then F has only one singularity z0, and z0 is
a sink of F by the assumption in Remark 3.2. Since f is area preserving, by the remark
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that follows 2.7 one knows that F does not have any closed leaf. Let W be the attracting
basin of z0 for F . It is either M or a proper subset of M whose boundary is the union of
some proper leaves. In the first case, any periodic orbit of f |M\{z0} has a positive rotation
number associated to I, and the proof is finished. In the second case, note that each connected
component of M \W is a disk foliated by proper leaves, and hence does not contain any loop
that is transverse to F . Moreover, any loop transverse to F can not meet a boundary leaf of
W , and hence is contained in W . One deduces that every periodic orbit of f distinct from
{z0} is contained in W , and its trajectory along the isotopy is homotopic to a transverse loop
in W . So, its rotation number is positive.

Lemma 3.11. If ρs(I, z0) is reduced to 0, and if f has another periodic orbit besides z0, then
there exist an interger q ≥ 1 and a q-periodic orbit O with rotation number 1/q (associated to
I) such that f |M\O is isotopic to a homeomorphism R1/q satisfying Rq

1/q = Id.

Proof. Let O0 be a periodic orbit of f distinct from {z0}. By the previous lemma, the rotation
number ρ of O0 in the annulus M \ {z0} associated to I is positive. Similarly to the proof
of Sublemma 3.8, there exists a q-periodic orbit with rotation number p/q in the annulus
M \ {z0} for all irreducible p/q ∈ (0, ρ). Let F be a transverse foliation of I. One knows by
the assumption in Remark 3.2 that z0 is a sink of F . Let W be the attracting basin of z0 for
F . One has to consider the following three cases:

i) Suppose that W is equal to M .

Let T : (x, y) 7→ (x+1, y) be the translation of R2. It induces a universal covering map
π : R2 → R2/T ≃ T1 ×R. Let h :M \ {z0} → T1 ×R be an orientation preserving map
that maps the leaves of F to the vertical lines {π({x} × R) : x ∈ R} upward. Write
I ′ = (h ◦ ft ◦ h

−1)t∈[0,1], and f
′ = h ◦ f ◦ h−1. We will prove that there exists a positive

integer q, and a q-periodic orbit O of f ′ with rotation number 1/q (associated to I ′)
such that f ′|(T1×R)\O is isotopic to a homeomorphism R1/q satisfying that Rq

1/q = Id,

and hence h−1(O) is a q-periodic orbit of f with rotation number 1/q (associated to I)
such that f |M\h−1(O) is isotopic to h−1 ◦R1/q ◦ h.

Fix a q-periodic orbit O of f ′ with rotation number 1/q in the annulus M \ {z0} for
1/q ∈ (0, ρ). Choose 0 < M1 < M2 such that

O ⊂ T1 × (−M1,M1), and (
⋃

t∈[0,1]

f ′t(T
1 × [−M1,M1])) ⊂ T

1 × (−M2,M2).

Let f̃ be the lift of f ′ associated to I ′. One knows that

p1(f̃(z̃))− p1(z̃) > 0 for all z̃ ∈ R2,

where p1 is the projection to the first factor. Let ϕ1 be the homeomorphism of T1 × R
whose lift to R2 is defined by

ϕ̃1(x, y) =

{
(x, y), for |y| ≤M2,
(x+ |y| −M2, y), for |y| > M2.

We know that η(y) = supx∈R |p2(f̃
′(x, y))− y| is a continuous function, where p2 is the

projection onto the second factor. So, there exist M3 > M2 and a homeomorphism ϕ2

of T1 × R whose lift ϕ̃2 to R2 satisfies p1 ◦ ϕ̃2 = Id and

ϕ̃2(x, y) =

{
(x, y), for |y| ≤M2,
(x, y + sign(y)(η(y) + 1)), for |y| ≥M3.
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Let f ′′ = ϕ2 ◦ ϕ1 ◦ f
′. It is a contraction near each end and hence can be blown-up

at each end by adding a circle. Moreover, by choosing suitable blow-up, the rotation
numbers at the boundary can be any real number, and we get a homeomorphism f ′′ of
closed annulus and a lift f̃ ′′ of f ′′ such that O is a (1, q)-periodic orbit and ρ(f̃ ′′) (see
Section 2.12 for the definition) is a closed interval in (0,∞). One deduces by Proposition

2.18 that O is topologically monotone (Otherwise I(1/q) = [0, 1/(q − 1)] ⊂ ρ(f̃ ′′)).
Therefore, f ′′|(T1×R)\O is isotopic to a homeomorphism R1/q satisfying Rq

1/q = Id, and

so is f ′|(T1×R)\O. The lemma is proved.

ii) Suppose that W is a proper subset of M whose boundary is the union of some proper
leaves, and that z0 is not accumulated by periodic orbits.

In this case, one knows by Remark 2.13 that f can be blown-up at ∞, and that the
blow-up rotation number ρ(I,∞) is equal to 0. One knows by Remark 3.3 that z0 is an
non-accumulated indifferent point, and that ρ(I, z0) is equal to 0.

Recall that there exists a q-periodic orbit with rotation number p/q in the annulus
M \ {z0} for all irreducible p/q ∈ (0, ρ). We fix a q-periodic orbit O of f with rotation
number 1/q in the annulusM \{z0} for 1/q ∈ (0, ρ). Let γ1 be a simple closed curve that
separates O and z0. Denote by U− the component ofM \γ1 containing O. We deduce by
the assertions i) and ii) of Proposition 2.12 that there exists a neighborhood of z0 that
does not contain any q-periodic point of f with rotation number 1/q. So, by choosing γ1
sufficiently close to z0, we can suppose that all the q-periodic points of f with rotation
number 1/q are contained in U−. Let γ2 be a simple closed curve that separate γ1 and
z0 such that ∪t∈[0,1]ft(U−) is in the component of M \ γ2 containing γ1. Denote by U
the component ofM \γ2 containing z0. Let V ⊂ U be a small Jordan domain containing
z0 such that ∪t∈[0,1]ft(V ) ⊂ U , and K ⊂ V be a sufficiently small invariant continuum
at z0 such that ρ(I,K) = 0. Let M \ K ∪ S∞ ∪ S1 be a compactification of M \ K,
where S∞ is the circle added when blowing f at ∞ and S1 is the circle added when
blowing f |M\K at the end K. It is a closed annulus, and f |M\K extends continuously to

a homeomorphism f of M \K ∪ S∞ ∪ S1. The homeomorphism f has a (1, q) periodic
orbit O and hence by Proposition 2.18 has a (1, q) topologically monotone periodic orbit
O′ (It could be equal to O or different from O). Since the rotation number of f at both
boundary is equal to 0, O′ is included in M \K and hence in U−. So, f |M\K is isotopic
to a homeomorphism R1/q satisfying that Rq

1/q = Id.

Let h : M \K → M \ {z0} be a homeomorphism whose restriction to M \ U is equal
to the identity. Then, f ′ = h ◦ f |M\K ◦ h−1 is a homeomorphism of M \ {z0} which
coincides f in M \U . The restriction of f ′ ◦ f−1 to M \U is equal to the identity, using
Alexander’s trick one deduces that f ′ ◦ f−1|M\O′ is isotopic to the identity. So, f ′|M\O′

and f |M\O′ are isotopic. Therefore, f |M\O′ is isotopic to R′
1/q = h|M\O′ ◦R1/q ◦h

−1|M\O′

which satisfies of course R′q
1/q = Id.

iii) Suppose that W is a proper subset of M whose boundary is the union of some proper
leaves, and that z0 is accumulated by periodic orbits.

As in case ii), f can be blown-up at ∞ and the blow-up rotation number ρ(I,∞) is
equal to 0. Recall that there exists a q-periodic orbit with rotation number p/q in the
annulus M \ {z0} for all irreducible p/q ∈ (0, ρ). Fix two prime integers q1 and q2 such
that 1/q2 < 1/q1 < ρ. Choose a q1-periodic orbit O1 and a q2-periodic orbit O2 in
M \{z0} with rotation number (associated to I) 1/q1 and 1/q2 respectively. Recall that
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the rotation number of every periodic orbit in M \ {z0} is positive and that ρs(I, z0) is
reduced to 0. One deduces by the assertion i) and ii) that for any given integer q > 1,
there is a neighborhood of z0 that does not contain any q-periodic point of f . So, there
exists a Jordan domain U containing z0 that does not contain any periodic point of f
with period not bigger that q2 except z0. Let γ1 ⊂ U be a simple closed curve that
separates z0 and O1 ∪O2. Denote by U−

1 the component of M \ γ1 containing O1 ∪O2.
Let γ2 be a simple closed curve that separates γ1 and z0 such that the trajectory of each

z ∈ U−
1 along Iq2 is in the component U−

2 of M \ γ2 containing γ1. Let γ3 be a simple

closed curve that separates γ2 and z0 such that the trajectory of each z ∈ U−
2 along Iq2

is in the component U−
3 of M \ γ3 containing γ2. Since γ3 ⊂ U , there does not exist

any periodic points of f with periodic not bigger that q2 in γ3. We can perturb f in

M \ (U−
3 ∪ {z0}) and get a homeomorphism f ′ such that f ′ has finitely many periodic

points with periods not bigger than q2 in M \ U−
3 .

LetX be the union of periodic orbits of f ′ with periodic not bigger than q2 that intersects

M \ U−
3 . It is a finite set containing z0. We consider the annulus covering π : M̃ →

M \ X such that the restriction of π to a sufficiently small annulus near one end is a
homeomorphism between this annulus and a small annulus near ∞ in M \ X. As in

Section 2.13, we add a point ⋆ at this end of M̃ . Let Ũ−
i be the component of π−1(U−

i )

that has an end ⋆ and Õ′
i be the lift of O

′
i in Ũ

−
2 for i = 1, 2. Let f̃ ′ be the lift of f ′|M\X .

It extends continuously to a homeomorphism of M̃ ∪{⋆}, and the dynamics of f̃ ′ near ⋆
is conjugate to the dynamics of f ′ near ∞. So, f̃ ′ can be blown-up at ⋆, and by choosing
a suitable isotopy Ĩ ′ of f̃ ′, the blow-up rotation number ρ(Ĩ ′, ⋆) is equal to 0. Moreover,
Õ′

i is a qi-periodic orbit of f̃ ′ with rotation number 1/qi (associated to Ĩ ′), for i = 1, 2.

Referring to Section 2.14, one knows that f̃ ′ can be blown-up at the other end.

We blow-up f̃ at both ends and get a homeomorphism f̃ ′ of a closed annulus. For i = 1, 2,

the homeomorphism f̃ ′ has a (1, qi) periodic orbit, so one can deduce by Proposition

2.18 that f̃ ′ has a (1, qi) topologically monotone periodic orbit Õ′′
i . The circle we added

at ⋆ does not contain any periodic points with rotation number different from 0, so it

does not contain Õ′′
1 or Õ′′

2 . The rotation number of f̃ ′ at the circle we added at the
other end is different from 1/q1 or 1/q2. Suppose that it is different from 1/q1, the other

case can be treated similarly. Then, Õ′′
1 is included in M̃ , and π(Õ′′

1) is a periodic orbit

of f ′ of period not bigger than q1. So, π(Õ
′′
1) is included in U−

3 , and hence is a periodic
orbit of f in U−

1 .

Ũ−

1
Ũ−

2

Ũ−

1

′

Ũ−

2

′

We will prove by contradiction that Õ′′
1 is included in Ũ−

1 . Otherwise, suppose that
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there exists z̃ ∈ Õ′′
1 in another component Ũ−

1

′
of π−1(U−

1 ). Then, z̃ is a fixed point of

f̃ q1 . Let Ũ−
2

′
be the component of π−1(U−

2 ) containing Ũ−
1

′
. Since f ′q1(U−

1 ) ⊂ U−
2 , one

deduces that f̃ ′q1(Ũ−
1

′
) ⊂ Ũ−

2

′
. Recall that the rotation number of Õ′′

1 is 1/q1. So, the

rotation number of f̃ ′ at the outer boundary is 1/q1, which contradicts our assumption.

Let h : M̃ → M \ {z0} be a homeomorphism whose restriction to Ũ−
2 is equal to π. As

in the end of case ii), we deduce that f |
M\π(Õ′′

1 )
is isotopic to a homeomorphism R1/q1

satisfying that Rq1
1/q1

= Id. The lemma is proved.

Proof of Theorem 3.4. By the previous lemma, there exists a q′-periodic orbit O with rotation
number 1/q′ > 0 (associated to I) such that f |M\O is isotopic to a homeomorphism R1/q′

satisfying Rq′

1/q′ = Id. Let I ′ = (ϕt)t∈[0,1] be an identity isotopy of f q
′

that fixes every point

in O ∪ {z0}. Since the rotation number of O associated to I is 1/q′, each point in O is a fixed
point of f q

′

and its rotation number associated to Iq
′

is 1. Because I ′ fixes O∪{z0}, I
′|M\{z0}

is homotopic to J−1
z0 I

q′ |M\{z0}, where Jz0 is an identity isotopy of the identity fixing z0 such
that ρ(Jz0 , z0) = 1. By the first assertion of Proposition 2.12, one knows that ρs(I

′, z0) is
reduced to −1.

Let π′ : M̂ → M \ O be the universal cover. Since M \ O is a surface of finite type, we

can endow it a hyperbolic structure, and M̂ can be viewed to be the hyperbolic plane. Fix
ẑ0 ∈ π′−1(z0). Let f̂ be the lift of f |M\O that fixes ẑ0. Then, f̂ can be blown-up at ∞.

Let Î ′ = (ϕ̂t)t∈[0,1] be the identity isotopy of f̂ q
′

that lifts I ′. Then, ρs(Î
′, ẑ0) is reduced

to −1. On the other hand, ∞ is accumulated by the points of π′−1{z0} which are fixed points
of Î ′, so by the assertion ii) of Proposition 2.12, one knows that 0 is belong to ρs(Î

′,∞). But
f̂ can be blown-up at ∞, by the assertion iv) of Proposition 2.12, we know that ρs(Î

′,∞) is
reduced to 0.

Let Î0 be an identity isotopy of f̂ that fixes ẑ0 and satisfies ρs(Î0, ẑ0) = {0}. Then

ρs(Î
q′

0 , ẑ0) is reduced to 0, and hence Îq
′

0 |
M̂\{ẑ0}

is homotopic to Jẑ0 Î
′|
M̂\{ẑ0}

. So, ρs(Î
q′

0 ,∞)

is reduced to −1, and by the assertion i) of Proposition 2.12, we deduce that ρs(Î0,∞) is
reduced to −1/q′. Since f̂ can be blown-up at ∞, by the assertion iv) of Proposition 2.12,
one knows that the blow-up rotation number ρ(Î0,∞) is equal to −1/q′.

Every ẑ′0 ∈ π′−1{z0}\{ẑ0} is a contractible fixed point of f̂ q
′

|
M̂\{ẑ0}

associated to Î ′|
M̂\{ẑ0}

,

so it is not a contractible fixed point of f̂ |
M̂\{ẑ0}

associated to Î0|M̂\{ẑ0}
.

Let Ô′ be a periodic orbit of f̂ in the annulus M̂ \ {ẑ0} such that z0 /∈ π′(Ô′) and the
rotation number of Ô′ associated to Î0|M̂\{ẑ0}

is p/q. Then Ô′ is a periodic orbit of f̂ q
′

in the

annulus M̂ \ {ẑ0} and the rotation number associated to Î ′|
M̂\{ẑ0}

is pq′

q − 1. So, π′(Ô′) is a

periodic orbit of f in the annulus M \ {z0}, the rotation number associated to I ′ is pq′

q − 1,

the rotation number associated to Iq
′

is pq′

q , and the rotation number associated to I is p/q.

In particular, if ẑ′ is a contractible fixed point of f̂ |
M̂\{ẑ0}

associated to Î0|M̂\{ẑ0}
, π′(ẑ′) is

a contractible fixed point of f |M\{z0} associated to I|M\{z0}. So, f̂ |
M̂\{ẑ0}

does not have any

contractible fixed point associated to Î0.
Moreover, if p/q is irreducible, and if Ô′ is a periodic orbit of f̂ of type (p, q) associated

to Î0 at ẑ0 such that z0 /∈ π′(Ô′), then π′(Ô′) is a periodic orbit of f of type (p, q) associated
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to I at z0.
By Lemma 3.7, the property P) holds for (f̂ , Î0, ẑ0), and then holds for (f, I, z0).

3.2 The case where the total area of M is finite

In this section, we assume that the area of M is finite. Recall that f is an area preserving
homeomorphism of M , that z0 is an isolated fixed point of f satisfying i(f, z0) = 1, that I is
an identity isotopy of f that fixes z0 and satisfies ρs(I, z0) = {k}. Let (X, IX) be a maximal
extension of I that satisfies ρs(IX , z0) = ρs(I, z0). Write X0 = X \ {z0}. Then, X0 is a closed
subset of Fix(f), and IX can be extended to a maximal identity isotopy on M \X0 that fixes
z0. To simplify the notation, we still denote by IX this extension. Moreover, by definition
of Jaulent’s preorder, we know that a periodic orbit of type (p, q) associated to IX at z0 is
a periodic orbit of type (p, q) associated to I at z0. Let M0 be the connected component of
M \X0 that contains z0. Of course the total area of M0 is also finite. When M is a sphere,
f |M\{z0} has at least one fixed point (see Section 2.4), and hence X0 is not empty. So, M0 is
not a sphere. To simplify the notations, we denote by f0 the restriction of f to M0, and by I0
the restriction of IX to M0. If the property P) holds for (f0, I0, z0), it holds for (f, I, z0). So,
we will prove the following proposition, and the second part of Theorem 1.1 is also proved.

Proposition 3.12. Under the previous assumptions, the property P) holds for (f0, I0, z0).

We will prove this proposition in the following four cases:

- the component M0 is a plane and ρs(I, z0) is reduced to 0;

- the component M0 is neither a sphere nor a plane and ρs(I, z0) is reduced to 0;

- the component M0 is a plane and ρs(I, z0) is reduced to an non-zero integer k;

- the componentM0 is neither a sphere nor a plane and ρs(I, z0) is reduced to an non-zero
integer k.

We will use some results that will be deduced in the first two cases to obtain the last two
cases.

3.2.1 The case where M0 is a plane and ρs(I, z0) is reduced to 0

In this case, I0 is a maximal identity isotopy on the plane M0 that fixes only one point z0
and satisfies ρs(I0, z0) = {0}. The result of Proposition 3.12 is just a corollary of Theorem
3.4 and the following lemma:

Lemma 3.13. Under the previous assumptions, there exists a periodic orbit of f in the
annulus M0 \ {z0}.

Proof. Of course, we can assume that z0 is not accumulated by periodic orbits. As in Remark
3.3, one knows that z0 is an indifferent fixed point with rotation number ρ(I, z0) = 0.

Let F be a transverse foliation of I0. One knows that F has a unique singularity z0 and
an end ∞. By the assumption in Remark 3.2, z0 is a sink of F . Since f0 is area preserving
and the total area of M0 is finite, ∞ is a source of F and all the leaves of F are lines from
∞ to z0. Let π : R× (0, 1) →M0 \ {z0} be the universal cover such that the leaves of the lift
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F̃ of F are the vertical lines oriented upward. Let f̃ be the lift of f0 associated to I0, and
p1 : R× (0, 1) → R be the projection onto the first factor. Then we know that

p1(f̃(z̃)− z̃) > 0, for all z̃ ∈ R× (0, 1).

Let V be a small Jordan domain in the annulus M0 \ {z0} such that f(V )∩ V = ∅. Let Ṽ be
one of the connected components of π−1(V ). By choosing V small enough, one can suppose
that

|p1(z̃)− p1(z̃
′)| <

1

2
for all z̃, z̃′ ∈ Ṽ .

Then, for every z ∈ V and z̃ ∈ π−1{z}, we know that

p1(f̃
n(z̃)− z̃)

n
≥

(∑n
k=1 χV (f

k(z))
)
− 1

2

n
.

We define U = ∪k∈Zf
k(V ). By Poincaré Recurrence Theorem, almost all points in U are

recurrent. By Birkhoff-Khinchen Theorem, for almost all z ∈ U , and every z̃ ∈ π−1{z}, both
of the two limits

lim
n→∞

p1(f̃
n(z̃)− z̃)

n
and lim

n→∞

n∑

k=1

χV (f
k(z))

n

exist, and there exists a non negative measurable function ϕ on U that satisfies ϕ◦f = ϕ and

lim
n→∞

n−1∑

k=0

χV (f
k(z))

n
= ϕ(z) for almost all z ∈ U.

Moreover, by Lebesgue’s dominated convergence theorem,
∫

U
ϕ =

∫
χV = Area(V ) > 0.

Therefore, there exist a recurrent point z ∈ V and z̃ ∈ π−1{z} such that the limit

lim
n→∞

p1(f̃
n(z̃)− z̃)

n

exists and is positive. So, the rotation number of z is positive. We denote it by ρ.
On the other hand, let K0 be a small enough continuum at z0 whose rotation number is

0. We denote by (W \K0) ⊔ T
1 the prime-ends compactification at the end K0, which is an

annulus. We can extend f to T1 and know that the rotation number on T1 is 0. Then, there
exists a fixed point on T1 whose rotation number is 0.

By the remark that follows Proposition 2.16, there exists a q-periodic orbit of rotation
number p/q in the annulus (W \K0), for all irreducible p/q ∈ (0, ρ).

3.2.2 The case where M0 is neither a sphere nor a plane and ρs(I, z0) is reduced
to 0

Recall that f0 is an area preserving homeomorphism of M0, that z0 is an isolated fixed point
of f0 satisfying i(f0, z0) = 1, that I0 is a maximal identity isotopy that fixes only one point
z0 and satisfies ρs(I0, z0) = {0}.

As in Section 2.13, let π : M̃ → M0 \ {z0} be the annulus covering projection, Ĩ be the

natural lift of I0 to M̃ ∪ {⋆}, f̃ be the lift of f0 to M̃ ∪ {⋆} associated to I0. Then Ĩ is a

27



maximal identity isotopy and Fix(Ĩ) is reduced to ⋆. For all irreducible p/q ∈ Q, if O is a
periodic orbit of type (p, q) associated to Ĩ at ⋆, then π(O) is a periodic orbit of type (p, q)
associated to I0 at z0. So, if the property P) holds for (f̃ , Ĩ , ⋆), then it holds for (f0, I0, z0).
The result of Proposition 3.12 is a corollary of Theorem 3.4 and the following Proposition
3.14, which is the most difficult part of this article.

Proposition 3.14. There exists a periodic orbit of f̃ besides ⋆.

The idea of the proof of the proposition is the following: we will first consider several
simple situations such that there exists a periodic orbit of f̃ besides ⋆, then we suppose that
we are not in these situations and follow the idea of Le Calvez (see Section 11 of [LC05]) to
get a contradiction.

Let us begin with some necessary assumptions and lemmas. Of course, we can suppose
that ⋆ is not accumulated by periodic orbits of f̃ . As in Remark 3.3, ⋆ is an indifferent fixed
point of f̃ and the rotation number ρ(Ĩ , ⋆) is equal to 0. Let F be a transverse foliation of I0,
and F̃ be the lift of F . By the assumption in Remark 3.2, z0 is a sink of F , and ⋆ is a sink
of F̃ . Denote by W the attracting basin of z0 for F , and by W̃ the attracting basin of ⋆ for

F̃ . Write Ẇ = W \ {z0} and
˙̃
W = W̃ \ {⋆}. Recall that π| ˙̃

W
is a homeomorphism between

˙̃
W and Ẇ and can be extended continuously to a homeomorphism between W̃ and W . The
area on M0 induces an area on M̃ . So f̃ is area preserving, and the area of W̃ is finite.

Lemma 3.15. Under the previous assumptions, if there exists an invariant continuum K ⊂
W̃ with positive area, then there exists a periodic orbit besides ⋆.

Proof. The proof is similar to the proof of Lemma 3.13 except some small modifications when
we try to find a recurrent point with positive rotation number. We will give a more precise
description.

Since W̃ is different from M̃ ∪ {⋆}, we can not get a lift of f̃ as in the proof of Lemma

3.13. Instead, we will get a similar one by the following procedure. Let π′ : R2 →
˙̃
W be a

universal cover which sends the vertical lines upwards to the leaves of F̃ | ˙̃
W
. Since K is an

invariant subset of W̃ , we can lift f̃ |K\{⋆} to a homeomorphism f̂ of π′−1(K \ {⋆}) such that

p1(f̂(ẑ)− ẑ) > 0, for all ẑ ∈ π′−1(K \ {⋆}),

where p1 is the projection onto the first factor.
Also, we should replace the small Jordan domain V in the proof of Lemma 3.13 with V ∩K

by choosing suitable V such that the area of V ∩K is positive, that f(V ) ∩ V = ∅, and that
for every component V̂ of π′−1(V ), one has

|p1(ẑ)− p1(z̃
′)| < 1/2 for all ẑ, ẑ′ ∈ V̂ .

We can always find such a set because the area of K is positive.

Lemma 3.16. Under the previous assumptions, if there exists an invariant continuum K ⊂
W̃ such that ρ(Ĩ , K) 6= 0, then there exists a periodic orbit in M̃ .

Proof. Recall that π| ˙̃
W

is a homeomorphism between
˙̃
W and Ẇ . So, W̃ is a proper subset of

M̃ ∪ {⋆}, and the boundary of W̃ is the union of some proper leaves. By Remark 2.13, one
knows that f̃ can be blown-up at ∞ and the blow-up rotation number ρ(Ĩ ,∞) is equal to 0.

28



We consider the prime-ends compactification of M̃ \ K at the end K, and extend f̃

continuously to a homeomorphism of (M̃ \K)⊔S1. We get a homeomorphism g of the closed

annulus S∞ ⊔ (M̃ \K)⊔S1 that coincides with f̃ on M̃ \K, where S∞ is the circle we added
when blowing-up f̃ at ∞.

Moreover, g satisfies the intersection property and has different rotation numbers at each
boundary, then by Proposition 2.15, there exists a periodic orbit in M̃ \ K, which is also a
periodic orbit of f̃ .

Lemma 3.17. Suppose that there exists a closed disk D ⊂ W̃ containing ⋆ as an interior
point such that the connected component of

⋂
k∈Z f̃

−k(D) containing ⋆ is contained in the

interior of D. Then f̃ has another periodic orbit besides ⋆.

Proof. We will proof this lemma by contradiction. Suppose that f̃ does not have any other
periodic orbit. Let K be the connected component of

⋂
k∈Z f̃

−k(D) containing ⋆. We identify

K as a point {K}, and still denote by f̃ the reduced homeomorphism. The fixed point {K}
is a non-accumulated saddle-point of f̃ with index i(f̃ , {K}) = i(f̃ , K) = i(f̃ , 0) = 1. By
Proposition 2.14, f̃ can be blown-up at {K} and ρ(f̃ , {K}) is different from 0 ∈ R/Z. So,
ρ(Ĩ , K) is different from 0. By the previous lemma, f̃ has another periodic orbit besides ⋆,
which is a contradiction.

Now we begin the proof of Proposition 3.14.

Proof of Proposition 3.14. We will prove this proposition by contradiction. Suppose that
there does not exist any other periodic orbit except ⋆. Let (Dn)n∈N be an increasing sequence
of closed disks containing ⋆ as an interior point such that Dn is contained in the interior of
Dn+1 for all n ∈ N and ∪n∈NDn = W̃ . Let Kn be the connected component of ∩k∈Zf̃

−k(Dn)
containing ⋆. By Lemma 3.16, we know that ρ(Ĩ , Kn) is equal to 0 for every n ∈ N. By

Lemma 3.17, each Kn intersects the boundary of Dn. Let K = ∪n∈NKn ⊂ M̃ ∪ {⋆}. It is

an invariant set of f̃ . The boundary of W̃ is the union of proper leaves, so for every point
in ∂W̃ , either its image or its pre-image by f̃ will leave W̃ . Therefore, K can not touch the
boundary of W̃ , and is included in W̃ . But each Kn intersects the boundary of Dn, so K
intersects every neighborhood of ∞.

Lemma 3.18. There does not exist any connected component of M̃ \K that is included in

W̃ .

Proof. We will give a proof by contradiction. Suppose that there exists a component Ũ of
M̃ \K such that Ũ ⊂ W̃ . Then ∂U is a subset of K, which is invariant by f̃ . So, ∂(f̃n(U)) is

a subset of K for every n ∈ Z, and one deduces that ∪n∈Zf̃
n(Ũ) ⊂ W̃ . Moreover, ⋆ is not an

interior point of Ũ , and Ũ is homeomorphic to a disk. We know that the area of W̃ is finite,
so there exists q ∈ N such that f̃ q(Ũ) = Ũ . Then, one knows that f̃ q has a fixed point (see
Section 2.4), and hence f̃ has a periodic point different from ⋆. We get a contradiction.

Let π′ : M̂ → M̃ be the universal cover, and T be a generator of the group of covering
automorphisms. Let Î = (f̂t)t∈[0,1] be the natural lift of Ĩ, and F̂ be the lift of F̃ . Write

f̂ = f̂1. It is the lift of f̃ associated to Ĩ. Write K̂ = π′−1(K \ {⋆}), and Ŵ = π′−1(
˙̃
W ).

Because K is connected, each connected component of M̃ \K is simply connected. So, if

Ũ is one of the connected components of M̃ \K, and if Û is one of the components of π′−1(Ũ),

then Û does not intersect T (Û). Therefore, M̂ \ K̂ is not connected and has infinitely many
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components. By Lemma 3.18, each component of M̂ \ K̂ contains a proper leaf in ∂Ŵ , and
hence a disk bounded by this leaf. As in the following picture, this disk contains the image

Û

φ̂

f̂(φ̂)

Û

φ̂

f̂−1(φ̂)

Figure 2: Each component Û of M̂ \ K̂ is invariant by f̂

or the pre-image of this proper leaf by f̂ . So, every component of M̂ \ K̂ is invariant by f̂ .

Lemma 3.19. Each leaf in W̃ is an arc from ∞ to ⋆.

Proof. Recall that the area of W̃ is finite. So, there exist a leaf included in ∂W̃ such that W̃
is to its right and a leaf included in ∂W̃ such that W̃ is to its left. (Otherwise, W̃ contains

the positive or negative orbit of a wandering open set W̃ \ f̃(W̃ ) or W̃ \ f̃−1(W̃ ) respectively.)

Therefore, a leaf in W̃ is an arc from ∞ to ⋆.

Every leaf Φ̂ ⊂ Ŵ divides M̂ into two part. We denote by R(Φ̂) the component of M̂ \ Φ̂
to the right of Φ̂ and by L(Φ̂) the component to the left.

Lemma 3.20. There does not exist any leaf Φ̂ ⊂ Ŵ such that Φ̂ ⊂ K̂.

Proof. We can prove this lemma by contradiction. Suppose that Φ̂ ⊂ K̂. Then a component
of M̂ \ K̂ is either to the left or to the right of Φ̂. Moreover, if it is to the right (resp. left)
of Φ̂, it is to the right (resp. left) of f̂(Φ̂). Therefore, R(Φ̂) ∩ L(f̂(Φ̂)) is included in K̂, and
so the interior of K̂ is not empty. We deduce that K is an invariant set of f̃ with non-empty
interior and finite area. By Lemma 3.15, there exists a periodic orbit of f̃ in M̃ , which is a
contradiction.

Lemma 3.21. Let Φ̂ be a leaf in Ŵ , t 7→ Φ̂(t) be an oriented parametrization of Φ̂, and Û

be a component of M̂ \ K̂. If Φ̂ intersects Û , then both the area of L(Φ̂) ∩ Û and the area of
R(Φ̂) ∩ Û are infinite, and there exists t0 such that Φ̂(t) ∈ Û for all t ≤ t0.

Proof. We will first give a proof of the first statement by contradiction. We suppose that the
area of L(Φ̂)∩ Û is finite, the other case can be treated similarly. Then, L(Φ̂)∩R(f̂−1(Φ̂))∩ Û
is a wandering open set whose negative orbit is contained in L(Φ̂)∩ Û . It contradicts the fact
that f̂ is area preserving.

Let us prove the second statement. We know that both the area of L(Φ̂)∩ Û and the area
of R(Φ̂) ∩ Û are infinite. Since π′|

Û
is injective, both the area of π′(L(Φ̂) ∩ Û) and the area

of π′(R(Φ̂) ∩ Û) are infinite. The area of W̃ is finite, so both π′(L(Φ̂) ∩ Û) and π′(R(Φ̂) ∩ Û)

intersect M̃\W̃ , and hence both L(Φ̂)∩Û and R(Φ̂)∩Û intersect M̂\Ŵ . Therefore, there exists
a proper leaf Φ̂1 in L(Φ̂)∩Û and a proper leaf Φ̂2 in R(Φ̂)∩Û . Fix a parametrization t 7→ Φ̂1(t)
of Φ̂1 and a parametrization t 7→ Φ̂2(t) of Φ̂2, and draw a path γ in Û from a point of Φ̂1 to a
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point of Φ̂2. Let s1 = inf{t : Φ̂1(t) ∈ γ}, s2 = sup{t : Φ̂2(t) ∈ γ}, and γ′ be the sub-path of γ
connecting Φ̂1(s1) to Φ̂2(s2). Then, as in the following picture, Γ = Φ̂|(−∞,s1]γ

′Φ̂2|[s2,∞) is an

Φ̂Û

Φ̂1 Φ̂2

γ′

Φ̂Û

Φ̂1 Φ̂2

γ′

Φ̂Û

Φ̂1 Φ̂2

γ′

Φ̂Û

Φ̂1 Φ̂2

γ′

Figure 3: Four possible cases in the proof of Lemma 3.21

oriented proper arc and satisfies R(Γ) ⊂ Û . We know that Φ̂ intersects γ′. Let t0 be a lower
bound of the set {t : Φ̂(t) ∈ γ′}. We know that Φ̂|(−∞,t0] ⊂ Û .

Let δ : T1 → W̃ be an embedding that intersect F̃ transversely, and δ̂ : R→ Ŵ be the lift
of δ. Then δ̂ intersects every leaf in Ŵ , and intersects each leaf at only one point. Moreover,
if δ̂ intersects Φ̂ and Φ̂′ at δ̂(t) and δ̂(t′) respectively, and if t < t′, then Φ̂ is to the left of Φ̂′,
and Φ̂′ is to the right of Φ̂. We define a map h : R→ F̂|

Ŵ
by h(t) = Φ̂ if δ̂(t) ∈ Φ̂.

Lemma 3.22. The set of points t ∈ R such that h(t) ∩ Û 6= ∅ is open for each component Û

of Ŵ \ K̂.

Proof. We fix a component Û of M̂ \ K̂, and will first prove that the set {t : h(t) ∩ Û 6= ∅}
is open. Given a real number t such that h(t) intersects Û and z ∈ h(t) ∩ Û , there is a

trivialization neighborhood V of z such that V ⊂ (Û ∩ Ŵ ). Moreover, h−1(V ) is an open
interval containing t. So, the set {t : h(t) ∩ Û 6= ∅} is open.

By Lemma 3.20, each leaf of F̂ in Ŵ intersects at least a component of M̂ \ K̂. By lemma

3.21, each leaf of F̂ in Ŵ intersects at most one component of M̂ \ K̂. So, each leaf of F̂ in

Ŵ intersects exactly one component of M̂ \ K̂. Since M̂ \ K̂ has countable components,

R = ∪
Û
{t : h(t) ∩ Û 6= ∅}

is a disjoint union of countable many open sets. This is impossible.

3.2.3 The case where M0 is a plane and ρs(I, z0) is reduced to a non-zero integer
k

Recall that f0 is an area preserving homeomorphism of M0, that z0 is an isolated fixed point
of f0 satisfying i(f0, z0) = 1, and that I0 is a maximal identity isotopy that fixes only one
point z0 and satisfies ρs(I0, z0) = {k}. In this case, one can easily deduce that the result of
Proposition 3.12 is just a corollary of the result in the previous two cases. We will give a brief
explanation. Let J be the identity isotopy of the identity map on M0 fixing z0 and satisfying
ρs(J, z0) = 1. Write I ′0 = J−kI0. It is an identity isotopy of f0 that satisfies ρs(I

′
0, z0) = {0}.

By the result of Proposition 3.12 in the two cases we have already proved, the property P)
holds for (f0, I

′
0, z0). A periodic orbit in M0 of type (p, q) associated to I ′0 at z0 is a periodic

orbit of type (kq + p, q) associated to I0 at z0. So, the property P) holds for (f0, I0, z0).
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3.2.4 The case where M0 is neither a sphere nor a plane and ρs(I, z0) is reduced
to a non-zero integer k

Recall that f0 is an area preserving homeomorphism of M0, that z0 is an isolated fixed point
of f0 satisfying i(f0, z0) = 1, that I0 is a maximal identity isotopy that fixes only one point
z0 and satisfies ρs(I0, z0) = {k}.

As in Section 2.13, let π : M̃ → M0 \ {z0} be the annulus covering projection, Ĩ be the

natural lift of I0 to M̃ ∪ {⋆}, and f̃ be the lift of f0 associated to I0 to M̃ ∪ {⋆}. Then Ĩ is a
maximal identity isotopy and Fix(Ĩ) is reduced to ⋆. As before, if the property P) holds for
(f̃ , Ĩ , ⋆), it holds for (f0, I0, z0).

Let F be a transverse foliation of I0, and F̃ be the lift of F . Since ρs(I0, z0) is reduced to
a non-zero integer, by the assertion iv) of Proposition 2.12, z0 is a sink or a source of F and

⋆ is a sink or a source of F̃ . Let W be the attracting or repelling basin of z0 for F , and W̃
be the attracting or repelling basin of ⋆ for F̃ . Recall that π|

W̃\{⋆}
is a homeomorphism be

tween W̃ \ {⋆} and W \ {z0}. So, W̃ is a strict subset of M̃ ∪ {⋆}, and its boundary is the
union of some proper leaves. By Remark 2.13, one knows that f̃ can be blown-up at ∞ and
ρ(Ĩ ,∞) is equal to 0.

Let J be the identity isotopy of the identity map of M̃ ∪ {⋆} fixing ⋆ and satisfying
ρs(J, ⋆) = 1. Write Ĩ ′ = J−kĨ. We know that ρs(Ĩ

′, ⋆) is reduced to 0, and that the blow-up
rotation number ρ(Ĩ ′,∞) is equal to k. One deduces by the assertion ii) of Proposition 2.12
that there exists a neighborhood of ∞ that does not contain any contractible fixed points of
f̃ |

M̃
associated to Ĩ ′|

M̃
. Let (Y, ĨY ) be a maximal extension of ({⋆}, Ĩ ′) (see Section 2.6). One

knows that Y is a closed subset of the union of {⋆} and the set of contractible fixed points
of f̃ |

M̃
associated to Ĩ ′|

M̃
. So, there is a neighborhood of ∞ that does not intersect Y , and

hence Y is a compact set in M̃ ∪{⋆}. One knows also that ρs(ĨY , ⋆) is reduced to 0, and that
the blow-up rotation number ρ(ĨY ,∞) is equal to k. As in the previous subsection, in order
to prove the result of Proposition 3.12, we only need to prove that the property P) holds for
(f̃ , ĨY , ⋆), which is the aim of this subsection.

Proposition 3.23. Under the previous assumptions, the property P) holds for (f̃ , ĨY , ⋆).

Proof. To get this result, one has to consider two cases: Y is reduced to a single point ⋆ or
it contains at least two points. In the first case, the proposition is a corollary of Lemma 3.7.
Now, we will prove the proposition in the second case.

Suppose that Y contains at least two points and write Y0 = Y \ {⋆}. Let M̃0 be the

connected component of M̃ ∪ {⋆} \ Y0 containing ⋆. Recall that Y is a compact subset of

M̃ ∪ {⋆}. So, one has to consider the following two cases:

- M̃0 is a bounded plane,

- M̃0 is neither a sphere nor a plane.

In the first case, the area of M̃0 is finite, and the problem is reduced to the case of Section
3.2.1; while in the second case, we will prove the result of Proposition 3.12 like in Section
3.2.2.

Now, we suppose that M̃0 is neither a sphere nor a plane. Let π′′ : M̆ → M̃0 be an
annulus covering map, Ĭ be the natural lift of ĨY |M̃0

to M̆ ∪ {⋆̆}, and f̆ be the lift of f̃ |
M̃0

to

M̆ ∪ {⋆̆} associated to ĨY |M̃0
. As before, if the Property P) holds for (f̆ , Ĭ , ⋆̆), then it holds

also for (f̃ , ĨY , ⋆). So, the proposition is a corollary of Theorem 3.4 and the following Lemma
3.24.
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Lemma 3.24. There exists a periodic orbit of f̆ besides ⋆̆.

Proof. The proof is similar to the proof of Proposition 3.14.
Let F̃Y be a transverse foliation of ĨY , and F̆ be the lift of FY |M̃0

to M̆ ∪ {⋆̆}. Recall the

assumption in Remark 3.2, one knows that ⋆ is a sink of F̃Y and that ⋆̆ is a sink of F̆ . Let
W̃ ∗ be the attracting basin of ⋆ for F̃Y and W̆ be the attracting basin of ⋆̆ for F̆ . Recall that
π′′|W̆\{⋆̆} is a homeomorphism between W̆ \ {⋆̆} and W̃ ∗ \ {⋆}.

When k ≥ 1, one deduces by Proposition 2.12 that the end ∞ is sink of F̃Y . In this case
W̃ ∗ is a bounded subset of M̃ ∪ {⋆}, and hence the area of both W̃ ∗ and W̆ are finite. We
can repeat the proof of Proposition 3.14, and get the result.

Now, we suppose that k ≤ −1. In this case, the end ∞ is a source of of F̃Y .

Sublemma 3.25. Each leaf in W̆ is an arc from infinite to ⋆̆.

Proof. When the area of W̆ is finite, we deduces the result as in Lemma 3.19. Now suppose
that the area of W̆ is infinite. We consider the compactification of M̃ ∪{⋆} by adding a point

∞ at infinite, the added point ∞ is a source of F̃Y and is at the boundary of W̃ ∗. So, there
exists a leaf in W̃ ∗ from the singularity ∞ to ⋆ whose lift in W̆ is a leaf from infinite to ⋆̆.
Therefore, each leaf in W̆ is an arc from infinite to ⋆̆.

The difference between our case and the case of Proposition 3.14 is that the area of W̆
may be infinite. But we did not use this condition except in the proof of Lemma 3.19 and
Lemma 3.20. We have proven Sublemma 3.25 corresponding to Lemma 3.19. We will prove
that the area of K is finite, so the result of Lemma 3.20 is still valid.

Formally, suppose that there does not exist any periodic orbits besides ⋆̆. Let (Dn)n∈N be
an increasing sequence of closed disks containing ⋆̆ such that Dn is contained in the interior of
Dn+1 for all n ∈ N and ∪n∈NDn = W̆ . Let Kn be the connected component of ∩k∈Zf̆

−k(Dn)
containing ⋆̆ and K = ∪n∈NKn ⊂ M̆ ∪ {⋆}. We will prove that the area of K is finite.

Let K ′
n = π′′(Kn), and K ′ = ∪nK ′

n ⊂ M̃ ∪ {⋆} ∪ S∞, where S∞ is the circle we added
when blowing-up f̃ at ∞. As before, we can deduce that K ⊂ W̆ . Recall that π′′|W̆\{⋆̆} is a

homeomorphism between W̆ \ {⋆̆} and W̃ ∗ \ {⋆}. Therefore, we know that π′′(K) ⊂ K ′ , and
that the area of K is not bigger than the area of K ′. So, we only need to prove that the area
of K ′ is finite.

We will prove it by contradiction. Suppose that the area of K ′ is infinite. One deduces
that K ′ ∩ S∞ 6= ∅. As was proven in Section 3.2.2, one knows that ρ(Ĭ , Kn) = 0, and so
ρ(ĨY ,K

′
n) = 0 for all n ∈ N. Since (Y, ĨY ) is a maximal extension of ({⋆}, J−kĨ), one deduces

that ρ(J−kĨ , K ′
n) is equal to 0 and that ρ(Ĩ , K ′

n) is equal to k, for all n ∈ N.
Since K ′∩S∞ is invariant by f̃ and the blow-up rotation number ρ(Ĩ ,∞) = 0, there exists

a fixed point z̃1 ∈ K ′ ∩ S∞, and the rotation number of z̃1 (associated to Ĩ) in the annulus

M̃ ∪ S∞ is 0.
Let π′ : M̂ → M̃ ∪ S∞ be the universal cover, T be a generator of the group of covering

automorphism, and f̂ the lift of f̃ associated to Ĩ. Fix one ẑ1 ∈ π′−1(z̃1). It is a fixed
point of f̂ . Let U be a small neighborhood of ẑ1 such that Tn(U) ∩ U = ∅ for all n 6= 0.
Let V ⊂ U be a neighborhood of ẑ1 such that f̂2(V ) ⊂ U . Fix n large enough such that
K ′

n ∩ V 6= ∅, and choose an arc γ in V connecting ẑ1 and an accessible point of K ′
n such that

γ ∩K ′
n has exactly one point. By choosing a sub-arc of γ ∪ f̂−2(γ), we get a cross-cut γ′. On

one hand, T (γ′) ∩ γ′ = ∅ because γ′ ⊂ V . On the other hand, we consider the prime-ends

compactification of M̃ ∪S∞ \K ′
n at the end K ′

n, and denote by f̃K′

n
the extension of f̃ |

M̃\K′

n
.
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As was in Section 2.9, let π′K′

n
: π′−1(M̃ ∪S∞ \K ′

n)∪R→ (M̃ ∪S∞ \K ′
n)∪S

1 be the universal

cover, and f̂K′

n
the lift of f̃K′

n
whose restriction to π′−1(M̃ ∪ S∞ \K ′

n) is equal to f̂ . Recall

γ′

γ f̂−2

K′

n

(γ)T (γ)

T (γ′)

that ρ(Ĩ , K ′
n) is equal to k ≤ −1. So, the end-cut f̂−2

K′

n
(γ) > T−2k−1(γ) ≥ T (γ), which means

γ′ ∩ T (γ′) 6= ∅. We get a contradiction.

4 The case of diffeomorphisms

4.1 The index at a degenerate fixed point that is an extremum of a gener-

ating function

Let f be a diffeomorphism of R2 and g : R2 → R be a C2 function, we call g a generating
function of f if ∂212g < 1, and if

f(x, y) = (X,Y ) ⇔

{
X − x = ∂2g(X, y),

Y − y = −∂1g(X, y).
(1)

Every C2 function g : R2 → R satisfiying ∂212g ≤ c < 1 defines a diffeomorphism f of R2

by the previous equations. Moreover, the Jacobian matrix Jf of f is equal to

1

1− ∂212g(X, y)

(
1 ∂222g(X, y)

−∂211g(X, y) −∂211g(X, y)∂
2
22g(X, y) + (1− ∂212g(X, y))

2

)
.

Since det Jf = 1, the diffeomorphism f is orientation and area preserving. On the other hand,
every orientation and area preserving diffeomorphism f of R2 satisfying 0 < ε ≤ ∂1(p1 ◦ f) ≤
M < ∞ can be generated by a generating function, where p1 is the projection onto the first
factor.

Moreover, we can naturally define an identity isotopy I0 = (ft)t∈[0,1] of f such that ft is
generated by tg. Precisely, the diffeomorphisms ft are defined by the following equations:

ft(x, y) = (Xt, Y t) ⇔

{
Xt − x = t∂2g(X

t, y),

Y t − y = −t∂1g(X
t, y).

(2)

A point (x, y) is a fixed point of f if and only if it is a critical point of g. We say that a fixed
point (x, y) of f is degenerate if 1 is an eigenvalue of Jf (x, y). We will see later that a fixed
point (x, y) of f is degenerate if and only if the Hessian matrix of g at (x, y) is degenerate.

We can also define a local generating function. Precisely, if (x, y) is a critical point of a
C2 function g such that ∂12g(x, y) < 1, then one can define an orientation and area preserving
local diffeomorphism f at (x, y) by the equations (1). On the other side, if (x, y) is a fixed
point of an orientation and area preserving diffeomorphism f such that ∂1(p1 ◦ f)(x, y) > 0,
where p1 is the projection to the first factor, then one can find a C2 function g defined in a
neighborhood of (x, y), that defines the germ of f at (x, y) by the equations (1). Moreover,
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in both cases, we can define a local isotopy of f at (x, y) by the equations (2), and will call it
the local isotopy induced by g.

In this section, suppose that f : (W, 0) → (W ′, 0) is a local diffeomorphism at 0 ∈ R2, and
that g is a local generating function of f . We will prove the following Proposition 4.1, and
deduce Corollary 1.4 as an immediate consequence of Theorem 1.1 and Proposition 4.1.

Proposition 4.1. If 0 is an isolated critical point of g and a local extremum of g, and if the
Hessian matrix of g at 0 is degenerate, then i(f, 0) is equal to 1.

Proof. The idea is to compute the indices of the local isotopies, so that we can deduce the
Lefschetz index by Proposition 2.1.

We denote by I0 = (ft)t∈[0,1] the local isotopy induced by g. We have the following lemma

Lemma 4.2. The blow-up rotation number ρ(I0, 0) is equal to 0.

Proof. Since Hess(g)(0) is degenerate, one deduces that 0 is an eigenvalue of Hess(g)(0). Let
v be an eigenvector of Hess(g)(0) corresponding to the eigenvalue 0. We will prove that v is
a common eigenvector of Jft(0) corresponding to the eigenvalue 1 for t ∈ [0, 1], and hence the
blow-up rotation number ρ(I0, 0) is equal to 0.

Write

Hess(g)(0) =

(
̺ σ
σ τ

)
and v =

(
a
b

)
.

Then, one deduces that

̺τ − σ2 = 0, ̺a+ σb = 0, and σa+ τb = 0.

By a direct computation, one knows that for every t ∈ [0, 1],

Jft(0) =
1

1− tσ

(
1 tτ

−t̺ −t2̺τ + (1− tσ)2

)
=

1

1− tσ

(
1 tτ

−t̺ 1− 2tσ

)
,

and then

Jft(0)v =
1

1− tσ

(
a+ tτb

−t̺a+ b− 2tσb

)
=

1

1− tσ

(
a− tσa

tσb+ b− 2tσb

)
=

(
a
b

)
.

Since f is area preserving, the rotation set at 0 is not empty. By the assertion iv) of
Proposition 2.12, and the previous lemma, one can deduce that ρs(I0, 0) is reduced to 0, and
that for all local isotopy I of f that is not equivalent to I0, the rotation set ρs(I, 0) is reduced
to a non-zero integer.

Lemma 4.3. If I is a local isotopy of f that is not equivalent to I0, then i(I, 0) is equal to 0.

Proof. Let F be foliation locally transverse to I. Since ρs(I, 0) is reduced to a non-zero
integer, one can deduce by the assertion iii) of Proposition 2.12 that 0 is either a sink or a
source of F . By Proposition 2.3, one deduces that i(I, 0) = i(F , 0)− 1 = 0.
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In order to compute the index of I0, we will construct an isotopy I ′ that is equivalent to
I0, and prove that i(I ′, 0) = 0.

We define I ′ = (f ′t)t∈[0,1] in a neighborhood of 0 by

f ′t(x, y) =

{
(x, y) + 2t(X − x, 0) for 0 ≤ t ≤ 1/2,

(X, y) + (2t− 1)(0, Y − y) for 1/2 ≤ t ≤ 1,

where (X,Y ) = f(x, y).

Lemma 4.4. The family I ′ = (f ′t)t∈[0,1] is a local isotopy of f .

Proof. For every fixed t ∈ [0, 1], We will prove that f ′t is a local diffeomorphism by computing
the determinant of the Jacobian matrices, and then get the result.

Indeed, one knows
∂1X = 1/(1− ∂12g) > 0.

Then for t ∈ [0, 1/2],

det Jf ′

t
= det

(
1 + 2t(∂1X − 1)) 2t∂2X

0 1

)
= 2t∂1X + (1− 2t) > 0;

and for t ∈ [1/2, 1],

det Jf ′

t
= det

(
∂1X ∂2X

(2t− 1)∂1Y (2− 2t) + (2t− 1)∂2Y

)
= (2t− 1) det Jf + (2− 2t)∂1X > 0.

Lemma 4.5. The blow-up rotation number ρ(I ′, 0) is equal to 0, and hence I ′ is equivalent
to I0.

Proof. As in the proof of Lemma 4.2, we will prove that an eigenvector of Hess(g)(0) corre-
sponding to the eigenvalue 0 is a common eigenvector of Jf ′

t
(0) corresponding to the eigenvalue

1 for t ∈ [0, 1], and hence deduce the lemma.
We keep the notations in the proof of Lemma 4.2, and recall that

̺τ − σ2 = 0, ̺a+ σb = 0, and σa+ τb = 0.

For t ∈ [0, 1/2],

Jf ′

t
(0) = Id + 2t

(
∂1X(0, 0)− 1 ∂2X(0, 0)

0 0

)
= Id +

2t

1− σ

(
σ τ
0 0

)
,

and

Jf ′

t
(0)v = v +

2t

1− σ

(
σa+ τb

0

)
= v.

For t ∈ [1/2, 1],

Jf ′

t
(0) = Jf (0)− (2− 2t)

(
0 0

∂1Y (0, 0) ∂2Y (0, 0)− 1

)
= Jf (0)−

2− 2t

1− σ

(
0 0
−̺ −σ

)
,

and

Jf ′

t
(0)v = Jf (0)v +

2− 2t

1− σ

(
0

̺a+ σb

)
= v.

We have verified that v is a common eigenvector of Jf ′

t
(0) corresponding to the eigenvalue 1

for t ∈ [0, 1].
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To conclude, we will define a locally transverse foliation F0 of I ′ such that 0 is a sink or a
source of F0, and then deduce by Proposition 2.3 that i(I ′, 0) = i(F0, 0)− 1 = 0. Indeed, let
F0 be the foliation in a neighborhood of 0 whose leaves are the integral curves of the gradient
vector field4 of g. One knows that 0 is a sink of F0 if 0 is a local maximum of g, and is a
source of F0 if 0 is a minimum of g. We can finish our proof by the following lemma.

Lemma 4.6. The foliation F0 is locally transverse to I ′.

F0

0

z

f(z)

ft(z)

γz

Figure 4: The dynamics and foliation generated by g(x, y) = x2 + y2

Proof. Let U be a sufficiently small Jordan domain containing 0 such that F0 is well defined
on U , and V ⊂ U be a sufficiently small neighborhood of 0 such that f ′t is well defined
on V for t ∈ [0, 1], that f does not have any other fixed point in V except 0, and that
∪t∈[0,1]f

′
t(V ) ⊂ U . We will prove that for every z = (x, y) ∈ V \{0}, the path γz : t 7→ f ′t(x, y)

is positively transverse to F0, and then deduce the lemma.
Indeed, for t ∈ [0, 1/2],

det

(
2(X − x) ∂1g(f

′
t(x, y))

0 ∂2g(f
′
t(x, y))

)

= 2(X − x)∂2g(f
′
t(x, y))

= 2(X − x)∂2g(2tX + (1− 2t)x, y)

= 2(X − x)[∂2g(X, y) + (2t− 1)(X − x)∂212g(ξ, y)]

= 2(X − x)2[1− (1− 2t)∂212g(ξ, y)] ≥ 0

where ξ is a real number between x and X, and the inequality is strict if X 6= x.
For t ∈ [1/2, 1],

det

(
0 ∂1g(f

′
t(x, y))

2(Y − y) ∂2g(f
′
t(x, y))

)

= −2(Y − y)∂1g(f
′
t(x, y))

= −2(Y − y)∂1g(X, (2− 2t)y + (2t− 1)Y )

= −2(Y − y)[∂1g(X, y) + (2t− 1)(Y − y)∂212g(X, η)]

= 2(Y − y)2[1− (2t− 1)∂212g(X, η)] ≥ 0

where η is a real number between y and Y , and the inequality is strict if Y 6= y.
Since z = (x, y) is not a fixed point, either X 6= x or Y 6= y. If both of the inequalities

are satisfied, γz is positively transverse to F0; if X 6= x and Y = y, γz|t∈[0, 1
2
] is positively

4It means the vector field: (x, y) 7→ (∂1g(x, y), ∂2g(x, y)).
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transverse to F0, and γz|t∈[ 1
2
,1] is reduced to a point; if X = x and Y 6= y, γz|t∈[0, 1

2
] is reduced

to a point, and γz|t∈[ 1
2
,1] is positively transverse to F0.

Remark 4.7. In the proof, we have indeed proven that F0 is locally transverse to any local
isotopy of f that is equivalent to I0.

4.2 Discrete symplectic actions and symplectically degenerate extrema

In this section, we will introduce symplectically degenerate extrema. More details can be
found in [Maz13].

We say that a diffeomorphism F : T2 → T2 is Hamiltonian if it is area preserving and if
there exists a lift f satisfying

f(z + k) = f(z) + k for all k ∈ Z2, and

∫

T2

(f − Id)dxdy = 0.

Refering to [MS98], this definition coincides with the usual definition of a Hamiltonian dif-
feomorphism of a symplectic manifold. More precisely, we call a time-dependent vector field
(Xt)t∈R a Hamiltonian vector field if it is defined by the equation:

dHt = ω(Xt, ·),

where (M,ω) is a symplectic manifold and H : R × M → R is a smooth function. The
Hamiltonian vector field induces a Hamiltonian flow (ϕt)t∈R on M , which is the solution of
the following equation

∂

∂t
ϕt(z) = Xt(ϕt(z)).

We say that a diffeomorphism F of M is a Hamiltonian diffeomorphism if it is the time-1
map of a Hamiltonian flow. So, for a Hamiltonian diffeomorphism, there exists a natural
identity isotopy I which is defined by the Hamiltonian flow. We say that a fixed point of a
Hamiltonian diffeomorphism is contractible if its trajectory along I is a loop homotopic to
zero in M , and that a q-periodic point of a Hamiltonian diffeomorphism is contractible if it is
a contractible fixed point of F q.

Let F : T2 → T2 be a Hamiltonian diffeomorphism. Then F is the time-1 map of a
Hamiltonian flow, and we can factorize F by

F = Fk−1 ◦ · · · ◦ F0,

where Fj is C1-close to the identity, for j = 0, · · · , k − 1. For every j, let fj be the lift of Fj

that is C1-close to the identity, and gj be a generating function of fj . We define the discrete
symplectic action

g : R2k → R

by

g(z) :=
∑

j∈Zk

(< yj , xj − xj+1 > +gj(xj+1, yj)),

where z = (z0, ..., zk−1) and zj = (xj , yj).
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By a direct computation, we know that for every j ∈ Zk,

∂

∂xj
g(z) = yj − yj−1 + ∂1gj−1(xj , yj−1), and

∂

∂yj
g(z) = xj − xj+1 + ∂2gj(xj+1, yj).

So, z ∈ R2k is a critical point of g if and only if zj+1 = fj(zj) for every j ∈ Zk, and therefore
if and only if z0 ∈ R

2 is a fixed point of f = fk−1 ◦ · · · ◦ f0.
In particular, each fj commutes with the integer translation, and so g is invariant by the

diagonal action of Z2 on R2k and descends to a function

G : R2k/Z2 → R.

Moreover, [z] ∈ R2k/Z2 is a critical point of G if and only if zj+1 = fj(zj) for every j ∈
Zk, and therefore if and only if [z0] ∈ T2 is a contractible fixed point of F , where F =
Fk−1 ◦ · · · ◦ F0. In particular, critical points of G one-to-one correspond to contractible
fixed points of F . Moreover, for any period q ∈ N, contractible q-periodic points of F
correspond to the equivalent classes in R2kp/Z2 of critical points of the discrete symplectic
action g×q : R2kp/Z2 → R defined by

g×q(z) :=
∑

j∈Zkq

(< yj , xj − xj+1 > +g(j mod k)(xj+1, yj)),

where z = (z0, ..., zkp−1) and zj = (xj , yj).

Moreover, if [z0] ∈ T
2 is a contractible fixed point of F , then by a suitable shift one can

suppose that [z0] is fixed along the Hamiltonian flow, and hence the factors Fj fixes [z0] for
j = 0, · · · , k − 1. So, z0 is a fixed point of each fj and a critical point of each gj . We define
the the graded group of local homology

C∗(z
×kn
0 ) := H∗({g

×n < g×n(z×kn
0 ) ∪ {z×kn

0 }, g×n < g×n(z×kn
0 )).

Then Cj(z
×kn
0 ) are always trivial for j < mor(z×kn

0 ) and j > mor(z×kn
0 ) + nul(z×kn

0 ), where
mor(z×kn

0 ) is the dimension of negative eigenvector space of Hessian matrix of g×n at z×kn
0 ,

and nul(z×kn
0 ) is the dimension of the kernel of Hessian matrix of g×n at z×kn

0 .
We say that z0 is a symplectically degenerate maximum (resp. symplectically degenerate

minimum) if z0 is an isolated local maximum (resp. minumum) of the generating functions
g0, · · · , gk−1, and the local homology Ckn+1(z

×kn
0 ) is non-trivial for infinitely many n ∈ N.

Proposition 4.8 ([Maz13][Rue85]). Let z = z×k
0 be a critical point of g such that Ckn+1(z

×n)
is non-trivial for infinitely n ∈ N. Then 1 is the only eigenvalue of DF ([z0]), and the blow-up
rotation number ρ(I, [z0]) is equal to 0 for any identity isotopy of F fixing [z0].

Remark 4.9. In particular, a symplectically degenerate extremum satisfies the condition of
the proposition, and hence is a degenerate fixed point of F .

4.3 The index at a symplectically degenerate extremum

As in the previous subsection, let F : T2 → T2 be a Hamiltonian diffeomorphism, and
F = Fk−1 ◦ · · · ◦ F0 be a factorization by Hamiltonian diffeomorphisms Fi which are C1-close
to the identity. Let fj be the lift of Fj to R2 that is C1-close to the identity, and gj be a
generating function of fj , for j = 0, · · · , k − 1. As was recalled in the previous subsection,
if z0 is a symplectically degenerate extremum, then the blow-up rotation number ρ(I, [z0]) is
equal to 0 for any identity isotopy of F fixing [z0]. We will prove the following Proposition
4.10, and then can deduce Theorem 1.5 as an immediate corollary of Theorem 1.1.
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Proposition 4.10. If z0 is a symplectically extremum, then i(F, [z0]) is equal to 1.

We will only deal with the case where 0 is a symplectically degenerated maximum, the
other case can be treated similarly. Let us begin by some lemmas.

Lemma 4.11. Suppose that g is a (local or global) generating function of a diffeomorphism f ,
and that 0 is a local maximum of g such that the Hessian matrix of g at 0 is degenerate. Let
I = (ft) be the identity isotopy of f induced by g as in Section 4.1, and θ(t) be a continuous
function such that

Jft(0)

(
cos θ(0)
sin θ(0)

)

‖Jft(0)

(
cos θ(0)
sin θ(0)

)
‖

=

(
cos θ(t)
sin θ(t)

)
.

Then, one can deduce that θ(1) ≥ θ(0).

Proof. As in Section 4.1, we denote the Hessian of g at 0 by

Hess(g)(0) =

(
̺ σ
σ τ

)
.

Since 0 is a local maximal point of g, Hessg(0) is negative semi-definite. So, we knows that

̺ ≤ 0, τ ≤ 0, and ̺τ − σ2 = 0.

As was proved in Section 4.1, if (a, b) is a unit eigenvector of Hess(g)(0) corresponding to the
eigenvalue 0 , then it is a common eigenvector of Jft(0) corresponding to the eigenvalue 1.
Recall that

̺a+ σb = 0, and σa+ τb = 0.

So,

Jft(0)

(
−b
a

)
=

1

1− tσ

(
1 tτ

−t̺ 1− 2tσ

)(
−b
a

)
=

(
−b
a

)
+
t(̺+ τ)

1− tσ

(
a
b

)
.

Therefore

Jft(0)Ω = Ω

(
1 t(̺+τ)

1−tσ

0 1

)
,

where Ω =

(
a −b
b a

)
is a normal matrix. Since t(̺+τ)

1−tσ ≤ 0, one can deduce that θ(1) ≥

θ(0).

(a, b)

(−b, a) Jft (0)

(a, b)

(−b, a) +
t(̺+τ)
1−tσ

(a, b)

Lemma 4.12. If 0 is a symplectically degenerate maximum, then there exists a normal matrix
Ω such that

Ω−1Jfj (0)Ω =

(
1 cj
0 1

)

for j = 0, · · · , k − 1, where cj are non-positive real numbers.
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Proof. Let Ij = (fj,t)t∈[0,1] be the local isotopy of fj induced by gj as in section 4.1. Let Fj

be the foliation whose leaves are the integral curves of the gradient vector field of gj . As in
Section 4.1, one can deduce that 0 is a sink of Fj and that Fj is locally transverse to Ij .
Therefore, one knows that ρ(Ij , 0) ≥ 0, and that ρ(Ij , 0) = 0 if and only if 0 is a degenerate
fixed point of fj .

Let θ : [0, k] → R be a continuous function such that

Jf ′

jt
(0)

(
cos θ(j)
sin θ(j)

)

‖Jf ′

jt
(j)

(
cos θ(j)
sin θ(j)

)
‖

=

(
cos θ(j + t)
sin θ(j + t)

)
.

One knows that θ(j+1) > θ(j) if ρ(Ij , 0) > 0, and θ(j+1) ≥ θ(j) if ρ(Ij , 0) = 0. But we know
that ρ(Ik−1 · · · I0, z0) = ρ(I, [z0]) = 0, so there exists θ(0) ∈ R and a continuous function θ

as above such that θ(k) = θ(0). Therefore, ρ(Ij , z0) = 0 for j = 0, · · · , k − 1 and

(
cos θ(0)
sin θ(0)

)

is a common eigenvector of Jfj (0) corresponding to the eigenvalue 1. As in the proof of the
previous lemma, we can prove this lemma by choosing

Ω =

(
cos θ(0) − sin θ(0)
sin θ(0) cos θ(0)

)
.

Lemma 4.13. Suppose that g is a (local or global) generating function of a diffeomorphism
f , that 0 is a local maximum of g, and that the Hessian matrix of g at 0 is degenerate. If Ω
is a normal matrix, and if f ′ = Ω−1fΩ is generated by g′ in a neighborhood of 0, then 0 is a
local maximum of g′ and Hess(g′)(0) is degenerate.

Proof. Since Hess(g)(0) is degenerate, 1 is an eigenvalue of Jf (0) and hence an eigenvalue of
Jf ′(0). So, Hess(g′)(0) is degenerate.

Let F be the foliation whose leaves are integral curves of the gradient vector field of g, and
F ′ be the foliation whose leaves are integral curves of the gradient vector field of g′. Let I0 be
a local isotopy of f satisfies ρ(I0, 0) = 0, and I ′0 be a local isotopy of f satisfies ρ(I ′0, 0) = 0.
As was proved in Section 4.1, F is locally transverse to I0 and F ′ is locally transverse to I ′0.
Therefore, Ω ◦F ′ is locally transverse to I0. Since 0 is a maximal point of g, it is a sink of F .
By the remark that follows Proposition 2.9, one deduces that 0 is a sink of Ω ◦ F ′, and hence
a sink of F ′. Therefore, 0 is a local maximum of g′.

Lemma 4.14. Let g0 and g1 be local generating functions of f0 and f1 respectively such that
0 is a local maximal point of both g0 and g1, and that the Hessian matrices satisfy

Hess(gi)(0) =

(
0 0
0 ci

)
,

where ci ≤ 0 for i = 0, 1. Then there exists a function g which is a generating function of
f = f1 ◦f0 in a neighborhood of 0. Moreover, 0 is a local maximal point of g, and the Hessian
matrix satisfies

Hess(g)(0) =

(
0 0
0 c0 + c1

)
.
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Proof. Suppose that g0(0) = g1(0) = 0. Since 0 is a local maximal point of both g0 and g1, it
is a critical point of both g0 and g1. So,

∂1g0(0, 0) = ∂2g0(0, 0) = ∂1g1(0, 0) = ∂2g1(0, 0) = 0.

Write (x1, y1) = f0(x0, y0) and (x2, y2) = f1(x1, y1). By definition of generating functions,
one knows that

y1 − y0 + ∂1g0(x1, y0) = 0, and x1 − x2 + ∂2g1(x2, y1) = 0. (3)

Note that

det

(
∂211g0(0, 0) 1

1 ∂222g1(0, 0)

)
= −1.

So, by implicit function theorem, there exists a C1 diffeomorphism ϕ : W → W ′ such that
(x1, y1) = ϕ(x2, y0), where W and W ′ are sufficiently small neighborhoods of 0 in R2. More-
over,

Jϕ(0, 0) = −

(
∂211g0(0, 0) 1

1 ∂222g1(0, 0)

)−1(
0 ∂212g0(0, 0)− 1

∂212g1(0, 0)− 1 0

)
=

(
1 −c1
0 1

)
.

Let
g(x2, y0) = g0(x1, y0) + g1(x2, y1) + (x2 − x1)(y0 − y1),

where (x1, y1) = ϕ(x2, y0). We know that g(0, 0) = 0. In a neighborhood of 0, by a direct
computation and equations (3), one knows that

∂1g(x2, y0) =∂1g0(x1, y0)∂1x1(x2, y0) + ∂1g1(x2, y1) + ∂2g1(x2, y1)∂1y1(x2, y0)

+ (1− ∂1x1(x2, y0))(y0 − y1)− ∂1y1(x2, y0)(x2 − x1)

=∂1g0(x1, y0) + ∂1g1(x2, y1).

Similarly, one gets
∂2g(x2, y0) = ∂2g0(x1, y0) + ∂2g1(x2, y1).

So, g is a C2 function near 0. Moreover,

∂212g(0, 0) = ∂211g0(0, 0)∂2y1(0, 0) + ∂212g0(0, 0) + ∂212g1(0, 0)∂2y1(0, 0) = 0.

Because g0 and g1 locally generate f0 and f1 respectively, one deduces

∂1g(x2, y0) = −(y2 − y0) and ∂2g(x2, y0) = x2 − x0.

Therefore, g is a generating function of f in a neighborhood of 0.
By a direct computation, one gets

∂211g(0, 0) = ∂211g0(0, 0)∂1x1(0, 0) + ∂211g1(0, 0) + ∂212g1(0, 0)∂1y1(0, 0) = 0,

and
∂222g(0, 0) = ∂212g0(0, 0)∂2x1(0, 0) + ∂222g0(0, 0) + ∂222g1(0, 0) = c0 + c1.

So,

Hess(g)(0) =

(
0 0
0 c0 + c1

)
.
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We will conclude by proving that 0 is a locally maximum of g. Let ε > 0 be a small real
number such that |εc1| < 1. We will prove that in a sufficiently small neighborhood of 0,

g(x2, y0) ≤ g0(x1 +
1

ε
(y0 − y1), y0) + g1(x2, y1 + ε(x2 − x1)) ≤ 0,

and hence 0 is a locally maximum of g because the second inequality is strict for (x2, y0) 6=
0. Indeed, by Taylor’s theorem and equations (3), one knows that in a sufficiently small
neighborhood of 0,

g0(x1 +
1

ε
(y0 − y1), y0) = g0(x1, y0) +

1

ε
∂1g0(x1, y0)(y0 − y1) +

1

2ε2
∂211g0(ξ, y0)(y0 − y1)

2

= g0(x1, y0) +
1

ε
(y0 − y1)

2 +
1

2ε2
∂211g0(ξ, y0)(y0 − y1)

2,

where ξ is a real number between x1 and x1 + 1
ε (y0 − y1). Similarly, one deduces that in

sufficiently small neighborhood of 0,

g1(x2, y1 + ε(x2 − x1)) = g1(x2, y1) + ε(x2 − x1)
2 +

ε2

2
∂222g1(x2, η)(x2 − x1)

2,

where η is a real number between y1 and y1 + ε(x2 − x1). So,

g(x2, y0) =g0(x1 +
1

ε
(y0 − y1), y0) + g1(x2, y1 + ε(x2 − x1))

−
1

2ε
(y0 − y1)

2 −
ε

2
(x2 − x1)

2 + (x2 − x1)(y0 − y1)

−
1

2ε
(1 +

1

ε
∂11g0(ξ, y0))(y0 − y1)

2 −
ε

2
(1 + ε∂22g1(x2, η))(x2 − x1)

2.

For (x2, y0) 6= 0 that is in a sufficiently small neighborhood of 0, one can suppose that

|
1

ε2
∂11g0(ξ, y0)| < 1, and |ε∂22g1(x2, η)| < 1.

So,

g(x2, y0) ≤ g0(x1 +
1

ε
(y0 − y1), y0) + g1(x2, y1 + ε(x2 − x1)).

Now, we begin the proof of Proposition 4.10.

Proof of Propostion 4.10. Suppose that z0 is a symplectically degenerated maximum. By
Lemma 4.12, there exists a coordinate transformation such that in the new coordinate system
the Jacobian of each fj at z0 has the form

(
1 cj
0 1

)

where cj is a non-positive real number. We consider everything in the new coordinate system.
Each fj can be locally generated by a generating function g′j , and the Hessian of g′j at z0 has
the form (

0 0
0 cj

)
.

By Lemma 4.13, z0 is a local maximum of each g′j . So, by Lemma 4.14, we can construct a
generating function g′ such that
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- z0 is a local maximum of g′,

- Hess(g′)(z0) is degenerate,

- g′ generates f = fk−1 · · · f0 in a neighborhood of z0.

So, by Proposition 4.1, we know i(f, z0) is equal to 1, and hence i(F, [z0]) is equal to 1.
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Poincaré Phys. Théor., 42(1):109–115, 1985.

[Spa66] Edwin H. Spanier. Algebraic topology. Springer-Verlag, New York-Berlin, 1966.

45



[SZ92] Dietmar Salamon and Eduard Zehnder. Morse theory for periodic solutions
of Hamiltonian systems and the Maslov index. Comm. Pure Appl. Math.,
45(10):1303–1360, 1992.

46


	Introduction
	Preliminaries
	A classification of isolated fixed points
	Lefschetz index
	Local isotopies and the index of local isotopies
	Brouwer plane translation theorem
	Transverse foliations and its index at an isolated end
	Existence of a transverse foliation and Jaulent's preorder
	Dynamics of an oriented foliation in a neighborhood of an isolated singularity
	The local rotation type of a local isotopy
	Prime-ends compactification and rotation number
	The local rotation set
	Some generalizations of Poincaré-Birkhoff theorem
	Topologically monotone periodic orbits for annulus homeomorphisms
	Annulus covering projection
	Extend lifts of a homeomorphism to the boundary

	Proof of the main theorem
	The case where M is a plane
	The case where the total area of M is finite
	The case where M0 is a plane and s(I,z0) is reduced to 0
	The case where M0 is neither a sphere nor a plane and s(I,z0) is reduced to 0
	The case where M0 is a plane and s(I,z0) is reduced to a non-zero integer k
	The case where M0 is neither a sphere nor a plane and s(I,z0) is reduced to a non-zero integer k


	The case of diffeomorphisms
	The index at a degenerate fixed point that is an extremum of a generating function 
	Discrete symplectic actions and symplectically degenerate extrema
	The index at a symplectically degenerate extremum


