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Acoustics in the Lagrange picture: an application to the Rayleigh radiation pressure

At the undergraduate level, most lectures and textbooks on hydrodynamics make use of the so-called Euler picture, where the pressure, temperature and velocity of the fluid are treated as continuous fields defined by the value they take at each point of the reference frame the fluid moves in. There nevertheless exists another possible description of the movement which consists in labelling the fluid elements themselves, and keeping this labelling in the course of the motion. This so-called Lagrange picture is scarcely taught for it often introducess more complicated mathematics, as soon as a three-dimensional geometry is considered. Yet it is actually more intuitive than the Euler picture. In this paper, we illustrate the point in the example of the Rayleigh acoustic radiation pressure. An improved physical insight ensues, which is of interest to students graduating in acoustics.

I. INTRODUCTION

Fluid mechanics is often presented [START_REF] Landau | Fluid Mechanics[END_REF][START_REF] Georges | An Introduction to Fluid Dynamics[END_REF] and taught, at least at the undergraduate level, in a way quite similar to electrodynamics. To put it briefly, a (usually Galilean) reference frame is chosen. At a given point r of this frame, and at time t, the physical state of the fluid is described by a set of functions: mass density ρ, pressure P , fluid velocity v (with respect to the frame), temperature T , and so on. So one deals with a set of (coupled) continuous fields ρ( r, t), P ( r, t), v( r, t), T ( r, t), etc. For instance, in the absence of any external force (gravity or else), the movement of an inviscid 19 fluid is governed by the well-known Euler equation,

ρ( r, t) ∂ v ∂t + ( v • --→ grad) v = - --→ grad P. (1) 
This description of the fluid motion will be referred to in the present paper as the Euler picture. Such a picture has many advantages. First, it is convenient to describe the dynamics of the fluid by means of local equations coupling fields, exactly as in electrodynamics. The Euler equation ( 1) is an example of such a local description. Second, the Euler picture is particularly well suited to situations in which the fluid really flows: when studying the stream of a river passing under some bridge, we are interested in the very behaviour of the water under this bridge at a time t, whatever the origin or the past behaviour of this water. Nevertheless, the Euler picture has a few drawbacks. First, in equation ( 1), the left-hand side is obviously nonlinear in field v, due to the ( v • --→ grad) v term. A second drawback of the Euler picture shows up when free boundary conditions between two fluids must be imposed. Let us consider the example illustrated in figure 1: two different fluids -say 1 and 2 -are separated at rest by the (infinite) plane at x = 0. Consider a plane pressure wave propagating from x = -∞ in fluid 1 towards the boundary. As is well known, this incident wave splits at the interface into two parts: a reflected wave, travelling back to x = -∞ through medium 1, and a transmitted wave, travelling towards x = + ∞ through medium 2. It is a time-honoured undergraduate level exercise to determine the reflection and transmission coefficients at the interface. In principle, the answer is easy: the continuity of pressure (due to the finite acceleration of a fluid element),

P 1 (interface) = P 2 (interface), (2a) 
and of velocitiy (due to the absence of a gap),

v 1 (interface) = v 2 (interface), (2b) 
provides two equations enabling us to calculate both coefficients. The above reasoning is undoubtedly correct, but raises a non-trivial difficulty: where is the interface? At x = 0? Certainly not, since the interface itself moves back medium 1

x = 0 x = + ∞ medium 2 x = -∞
FIG. 1: Medium 1 and medium 2 are separated at rest by the plane x = 0. When a pressure wave propagates, the interface does not remain at x = 0, but moves back and forth on either side of the plane x = 0. In the Euler picture, locating the interface at x = 0 appears as a zero-order approximation.

and forth, due to the wave motion. As a matter of fact, the x = 0 plane spends half the time in medium 1 and half the time in medium 2. Of course, locating the interface at x = 0 is the best approximation, and it leads to the correct values of the reflection and transmission coefficients, but it should be regarded only as a zero-order approximation.

In fact, the difficulties of the Euler picture mentioned above can (up to a point) be overcome using a different framework, known as the Lagrange picture [START_REF] Philipp | Methods of Theoretical Physics[END_REF][START_REF] Guyon | Hydrodynamique Physique[END_REF][START_REF] Bennett | Lagrangian Fluid Dynamics[END_REF] . [START_REF]Lagrange picture" are the exact transposition to fluid mechanics of the so-called "Schrödinger picture" and "Heisenberg picture" of quantum mechanics. 21[END_REF] It is precisely the aim of section II to sketch the main features of the Lagrange picture which is hardly taught in academic courses and scarcely used when studying acoustic wave propagation in fluids. The reason is that the Lagrange picture brings in some involved mathematics like tensor calculus and differential geometry as soon as one considers a three-dimensional propagation. Consequently, for the sake of simplicity, we shall restrict ourselves to the one-dimensional case and show in subsection II A that, in the Lagrange picture, linearity or nonlinearity is a purely thermodynamic issue. Subsection II B is devoted to the linear thermodynamic response and the attendant picture of sound propagation. Section III deals with the nonlinearity of the thermodynamic response and tackles the cumbersome problem of the Rayleigh acoustic radiation pressure, which can be given a simpler solution in the Lagrange picture with greater physical insight.

II. AN OUTLINE OF THE LAGRANGE PICTURE

A. What is it all about?

Contrary to the Euler picture, which labels the geometric points of the reference frame disregarding the origin of the fluid elements passing through these points at time t, the Lagrange picture labels the fluid elements disregarding the position they occupy at time t. More specifically, consider a fluid at some time t 0 . We denote by r 0 the fluid element that occurs to stand at point r 0 of the reference frame at time t 0 . We shall henceforth keep this label r 0 to denote this fluid element, whatever its later position. Thus, at time t > t 0 , the fluid element r 0 will be found at some point r given by r( r 0 , t) = r 0 + u( r 0 , t),

where u( r 0 , t) is the displacement undergone by the fluid element r 0 between times t 0 and t (see fig. 2). The physical state of the fluid is still described by a set of continuous fields: mass density, pressure, velocity, temperature, etc. The correspondence between both pictures is very simple. With superscripts E and L respectively standing for "Euler" and "Lagrange", and quantity A standing for whichever parameter ρ, P , v, T , etc., we have

A E r( r 0 , t), t = A L ( r 0 , t), (4) 
with r( r 0 , t) given by (3). Concretely, the above equation means that A L ( r 0 , t) denotes the actual value of parameter A taken at time t by the fluid element labelled r 0 which is currently at point r 0 + u( r 0 , t) of the reference frame, i.e.

A L ( r 0 , t) mathematically coincides with to A E r( r 0 , t), t .

In appendix A, the Lagrange picture is applied to the calculation of the reflection and transmission coefficients at an interface between two fluids. It is shown that the Lagrange picture offers several advantages from a technical point of view. To begin with, this picture rids us of the formal nonlinearity associated with the ( v • --→ grad) v term on the left-hand side of the Euler equation (1). This enables us to recognize genuine nonlinearities, thereby allowing a perturbative resolution of the field equations. We shall take advantage of such a simplification in section III, when dealing with the Rayleigh acoustic radiation pressure.

We focus on the simplest situation one may have to face: the one-dimensional problem. Let us therefore consider a fluid at rest occupying a cylindrical volume with axis Ox 0 and cross-sectional area S (fig. 3a), at equilibrium pressure

x 0 x y z y 0 z 0 ρ 0 , P 0 time t 0 reference position r 0 volume V 0 time t position r = r 0 + u volume V ρ, P u (r0 ,t ) -→ -→ -→ -→ -→ -→ FIG.
2: An element of fluid with reference position r0 is displaced and deformed in the course of time. In the Lagrange picture, this fluid element is labelled r0 and keeps this label throughout its motion.

(r 0 , P 0 ) (a) P 0 and mass density ρ 0 . Both ends, labelled x 0 = 0 and x 0 = L, are bounded by pistons that are provisionally supposed to be fixed. As displayed in fig. 3, the slice of fluid located between faces x 0 and x 0 + dx 0 has mass ρ 0 Sdx 0 , where ρ 0 is the equilibrium mass density. At time t, its thickness is

x 0 = 0 x 0 x 0 + dx 0 x 0 = L 0 (b) S S x 0 = 0 x 0 x 0 + dx 0 x 0 + u(x 0 ) x 0 + dx 0 + u(x 0 + dx 0 ) x 0 = L 0
x 0 + dx 0 + u(x 0 + dx 0 , t) -x 0 + u(x 0 , t) = 1 + ∂u ∂x 0 dx 0 , (5a) 
so that its mass density is just

ρ(x 0 , t) = ρ 0 1 + ∂u ∂x 0 . (5b) 
In the Lagrange picture, the pressure forces undergone by the slice of fluid are respectively SP 0 (x 0 , t) (left end) and -SP (x 0 + dx 0 , t) (right end). Applying Newton's Second Law to the slice, we obtain

ρ 0 ∂ L2 u ∂t 2 = - ∂P ∂x 0 , (6) 
where superscript L on the left-hand side recalls that the time derivative is understood at constant x 0 (even if the current position at time t of the face labelled "x 0 " is miles away from the point with abscissa x 0 of the reference frame). Equation ( 6) deserves two comments: (i ) it is exact (no approximation was made); (ii ) it is strictly linear in displacement u or in velocity v = ∂ L u ∂t . If we now want to get a closed-form propagation equation, we have to connect the pressure P (x 0 , t) with the expansion factor ∂u ∂x0 or equivalently the mass density ρ. This connection involves thermodynamics. Throughout the present article, we shall assume, for the sake of simplicity, that any transformation undergone by the fluid is isentropic. In the framework of the Lagrange picture, this means that the entropy of any fluid slice [x 0 , x 0 + dx 0 ] is, at any time, equal to its equilibrium value. So, in the course of the motion, the pressure P (x 0 , t) can be expressed as a function of the sole 21 mass density ρ(x 0 , t). In the isentropic relation of state P = P (ρ), let us expand the extra pressure P (x 0 , t) -P 0 in increasing powers of (ρ(x 0 , t) -ρ 0 )/ρ 0 = 1 + ∂u ∂x0 -1 :

P (x 0 , t) -P 0 = -κ 1 ∂u ∂x 0 + 1 2 κ 2 ∂u ∂x 0 2 + • • • , (7) 
where the compressibility κ 1 > 0, due to the Second Law of thermodynamics. Combining the mechanical equation ( 6), in which the superscript L for "Lagrange" is henceforth omitted, with the above thermodynamic relation (7), we get the sound propagation equation

ρ 0 ∂ 2 u ∂t 2 = κ 1 ∂ 2 u ∂x 2 0 1 - κ 2 κ 1 ∂u ∂x 0 + • • • . ( 8 
)
The above equation is nonlinear in displacement u, its nonlinearity originating exclusively in the κ 2 , κ 3 , etc. terms in the thermodynamic expansion (7).

B. The linear thermodynamic response and the propagation of sound

In this subsection, we linearize equation ( 7), i.e. we take κ 2 = κ 3 = • • • = 0. The propagation equation ( 8) also becomes linear, and reads

1 c 2 ∂ 2 u ∂t 2 = ∂ 2 u ∂x 2 0 , ( 9a 
) with c = κ 1 ρ 0 , (9b) 
which is the usual d'Alembert wave equation for sound propagation. Let us look for the associated eigenmodes, i.e. the monochromatic solutions of (9a). Owing to the boundary conditions we have chosen, they necessarily read

u n (x 0 , t) = ℜ A n sin(k n x 0 ) e -iωnt , (10a) 
with ℜ denoting the real part. In (10a),

ω n = ck n , k n = nπ L 0 (n = 1, 2, • • • ), (10b) 
and A n is a complex amplitude. Note that, insofar as the linearization of the thermodynamic relation ( 7) is relevant, the above solution is exact, contrary to the solution generally proposed in the framework of the Euler picture, which also involves neglecting the ( v • --→ grad) v term. 22 Let us now determine the overall acoustic energy associated with the wave, i.e. the variation (with respect to the rest state) of the total energy of all slices [x 0 , x 0 + dx 0 ]. Since there is neither a heat exchange between neighbouring slices nor an external force, we just have to determine the work done by the pressure force to drive each fluid slice from its equilibrium state to its current state at time t. For the [x 0 , x 0 + dx 0 ] slice, the work is exactly

dE = t 0 dt ′ -SP (x 0 + dx 0 , t ′ ) ∂u(x 0 + dx 0 , t ′ ) ∂t ′ + SP (x 0 , t ′ ) ∂u(x 0 , t ′ ) ∂t ′ = -Sdx 0 t 0 dt ′ ∂ ∂x 0 P ∂u ∂t ′ = -Sdx 0 t 0 dt ′ ∂P ∂x 0 ∂u ∂t ′ + P ∂ 2 u ∂x 0 ∂t ′ . ( 11a 
)
Owing to (6) and to the linearized version of (7), the above equation becomes

dE = Sdx 0 1 2 ρ 0 ∂u(x 0 , t) ∂t 2 -P 0 ∂u(x 0 , t) ∂x 0 + 1 2 κ 1 ∂u(x 0 , t) ∂x 0 2 . ( 11b 
)
Integrating over the whole fluid and accounting the boundary conditions, we finally get the overall acoustic energy E, which is a constant of the movement:

E = 1 2 ρ 0 S L0 0 dx 0 ∂u ∂t 2 + c 2 ∂u ∂x 0 2 . (11c) 
Now, since any solution u(x 0 , t) of the wave equation (9a) is a linear combination of eigenmodes of the type (10a), the above energy E may also be written, according to Parseval theorem,

E = 1 4 ρ 0 SL 0 ∞ n=1 |A n | 2 ω 2 n . (11d) 
We complete these results with the following thought experiment. Suppose that, while a given eigenmode (say, n) is established in the cylindrical cavity bounded by the two pistons displayed in fig. 3, we slowly move the piston located at the end labelled "x 0 = L 0 " at, say, a constant velocity V . By "slowly", we mean "adiabatically in the Ehrenfest sense". In this connection, let us define the effective number N n of quanta in mode n such that [START_REF]The reduced Planck constant is introduced here artificially[END_REF] We have discussed at some length this issue in a former paper [START_REF] Devaud | The adiabatic invariant of the n-degree-of-freedom harmonic oscillator[END_REF] , and shown that, in the course of such an adiabatic parametric excitation of the system, the number N n of quanta is conserved. Let us recall that, in the Lagrange picture, the label "x 0 = L 0 " of the fluid in contact with the moving piston remains unchanged, although the total length of the fluid column is obviously L(t) = L 0 + V t. In this respect, it is convenient to split the displacement u(x 0 , t) into two parts, and let

N n ω n = 1 4 ρ 0 SL 0 |A n | 2 ω 2 n , so that E = ∞ n=1 N n ω n .
u(x 0 , t) = x 0 L 0 V t + w(x 0 , t). ( 12 
)
The first term on the right-hand side is the displacement of the slice labelled x 0 , associated with a quasistatic expansion (or compression, according to the sign of V ) of the fluid. The second term is the extra displacement of the fluid slice due to the acoustic wave. Observe that the boundary conditions for w(x 0 , t) are the same as for u(x 0 , t): w(x 0 = 0, t) = w(x 0 = L 0 , t) = 0. Now, let us rewrite the wave equation (9a) in terms of w instead of u. From ( 12), we get

1 c 2 ∂ 2 w ∂t 2 = ∂ 2 w ∂x 2 0 , (13) 
so that w and u are governed by the same equation. Solution (10a) is consequently unchanged: surprising though it may be, the motion of the piston has strictly no influence upon eigenmode n. In particular, no frequency shift 24 occurs: the wave number k n = nπ L0 as well as the angular frequency ω n = ck n keep their initial values even if L(t) happens to become twice (or half) its initial value L 0 . Moreover, from equation (11d) one concludes that, since neither the quanta number N n (Ehrenfest adiabaticity) nor the angular frequency ω n are modified, the acoustic energy is unchanged. To move the piston, the operator has of course to account for the quasistatic variation of the instantaneous equilibrium pressure P eq (t) of the fluid:

P (x 0 , t) -P 0 = -κ 1 ∂u ∂x 0 = -κ 1 V t L 0 + ∂w ∂x 0 P (x 0 , t) -P eq (t) = -κ 1 ∂w ∂x 0 , (14a) 
with

P eq (t) = P 0 -κ 1 V t L 0 , (14b) 
but he has no extra work to supply, associated with the acoustic wave itself. Before finishing with our thought experiment, we should emphasize one point: although equation ( 13) holds whatever the value of velocity V , the Ehrenfest adiabaticity is required during the initial acceleration of the piston, from V = 0 to its final speed.

Another interesting point is: what happens when our acoustic wave meets an interface, as illustrated in fig. 1? This point has been raised in the introduction (see equations (2) and the attendant text). The Lagrange picture is shown in appendix A to provide a straightforward answer to this question.

The propagation of longitudinal expansion/compression waves through a mass-distributed spring (e.g. such as those designed as decorative objects or toys for children) is well described by the equations of this subsection, but the ideal fluid considered in the calculations does not exist. In the next subsection, we consider a more realistic approximation of the thermodynamic relation (7), better suited to real fluids.

III. TAKING NONLINEARITY INTO ACCOUNT: THE RAYLEIGH RADIATION PRESSURE

Let us now retain the second-order term in (7):

P (x 0 , t) -P 0 = -κ 1 ∂u ∂x 0 + 1 2 κ 2 ∂u ∂x 0 2 . ( 15 
)
Accounting for the nonlinearity κ 2 has the following consequence. Suppose that we move the right piston (labelled "x 0 = L 0 ") by an amount δL, and consider the motion of the fluid with respect to this new equilibrium position. Then we have, replacing V t with δL in (12),

u(x 0 , t) = x 0 L 0 δL + w(x 0 , t), (16a) 
so that (15) becomes

P (x 0 , t) -P eq = -κ ′ 1 ∂w ∂x 0 + 1 2 κ 2 ∂w ∂x 0 2 , (16b) 
with

P eq = P 0 -κ 1 δL L 0 + 1 2 κ 2 δL L 0 2 , ( 16c 
)
κ ′ 1 = κ 1 1 - κ 2 κ 1 δL L 0 . ( 16d 
)
Expressions (16b) and ( 15) are alike. They differ in the equilibrium pressure, as was already noticed in the linear case ((16c) is just the generalization of (14b) with V t replaced by δL). They differ also in the linear compressibility coefficient κ 1 being changed into κ ′ 1 , due to the nonzero value of κ 2 . This change of the compressibility causes a frequency shift when moving piston L 0 , as well as an acoustic radiation pressure. We shall come back to this nomenclature later and show that the frequency shift and the radiation pressure are inherently entangled and, so to say, consubstantial.

How can we solve for u(x 0 , t) obeying the nonlinear propagation equation ( 8)? Unless an exact solution can be found, a good approach is the perturbation method, provided that the condition | ∂u ∂x0 | ≪ 1 is fulfilled. For the sake of simplicity, let us start from an eigenmode of the linearized wave equation, say (see (10a))

u (1) (x 0 , t) = A sin(kx 0 ) cos(ωt -ϕ), (17a) 
where we have dropped the eigenmode index n. While u [START_REF] Landau | Fluid Mechanics[END_REF] (x 0 , t) is not a solution of the non linear wave equation, the exact solution having u [START_REF] Landau | Fluid Mechanics[END_REF] as its linear approximation can be expanded in increasing powers of amplitude A:

u(x 0 , t) = u (1) (x 0 , t) + u (2) (x 0 , t) + • • • , (17b) 
where u (i) ∼ A i . Let us look for u [START_REF] Georges | An Introduction to Fluid Dynamics[END_REF] (x 0 , t). Using ( 8) and (9b), we have

1 c 2 ∂ 2 u (2) ∂t 2 - ∂ 2 u (2) ∂x 2 0 = - κ 2 κ 1 ∂ 2 u (1) ∂x 2 0 ∂u (1) ∂x 0 . ( 18a 
)
The above equation means that the first-order solution u [START_REF] Landau | Fluid Mechanics[END_REF] acts as a source term for the second-order displacement u [START_REF] Georges | An Introduction to Fluid Dynamics[END_REF] . From (17a), this source term is:

- κ 2 κ 1 ∂ 2 u (1) ∂x 2 0 ∂u (1) ∂x 0 = κ 2 κ 1 A 2 k 3 2 sin(2k 0 x 0 ) 1 + cos(2ωt -2ϕ) 2 . ( 18b 
)
As a result, solution u [START_REF] Georges | An Introduction to Fluid Dynamics[END_REF] is the sum of two contributions: one is static and the other is oscillating at the angular frequency 2ω. Let us focus on the former contribution. Accounting for the boundary conditions u [START_REF] Georges | An Introduction to Fluid Dynamics[END_REF] with index "s" standing for "static". Now it is interesting to calculate, up to the second order in amplitude A, the static extra pressure P [2] s -P 0 associated with the acoustic mode. From (15), we get P [START_REF] Georges | An Introduction to Fluid Dynamics[END_REF] (x 0 , t)

(x 0 = 0, t) = u (2) (x 0 = L 0 , t) = 0, it is u (2) s (x 0 ) = κ 2 κ 1 A 2 k 16 sin(2kx 0 ), (19) (a) 
-P 0 = -κ 1 ∂u (1) ∂x 0 + ∂u (2) ∂x 0 + 1 2 κ 2 ∂u (1) ∂x 0 2 . ( 20 
)
The first-order extra pressure term -κ 1 ∂u [START_REF] Landau | Fluid Mechanics[END_REF] ∂x0 oscillates at the angular frequency ω, and consequently averages to zero over time. The second-order extra pressure term is the sum of a static and a 2ω-oscillating contribution. Focussing on the former contribution, we find, after all calculations have been carried out, P [START_REF] Georges | An Introduction to Fluid Dynamics[END_REF] s -

P 0 = 1 8 κ 2 A 2 k 2 . ( 21 
) Quantity P [2]
s -P 0 is homogeneous (P [2] s does not depend on x 0 ), as expected from a static extra pressure (otherwise it would entail a permanent flow). This static extra pressure is known as the Rayleigh radiation pressure. At this juncture, a comparison with electromagnetic waves is of interest.

The existence of radiation pressure exerted by an electromagnetic wave onto some encountered obstacle is well known and can be easily figured out even at the undergraduate level. The electric field E of the wave moves electric charges in the obstacle (free carriers in a conductor, bound charges in a dielectric), resulting in an electric current density . Then, the magnetic field B of the wave exerts the Lorentz force density  × B onto the charges and the latter force is transmitted to the obstacle's lattice. The calculation of the overall force undergone by the obstacle is easy in the one-dimensional case (plane wave encountering a plane obstacle). We owe to Maxwell the first prediction of this effect in 1871 [START_REF] Clerk | A Treatise on Electricity and Magnetism[END_REF] . This phenomenon can also be looked at in a quantum framework: the incident electromagnetic wave is regarded as a flux of photons, each photon with energy hν carrying a mechanical momentum hν/c. When the wave interacts with matter, the latter momentum (or a part of it) is transferred to the lattice and the classical result is recovered [START_REF] Cagnac | Modern Atomic Physics: Fundamental Principles[END_REF] . Such a radiation pressure was experimentally observed in 1899 by P. N. Lebedev 9 using a device analogous to the Nichols radiometer.

In analogy with electrodynamics, J.W. Rayleigh introduced the acoustic radiation pressure as early as 1902 [START_REF] Rayleigh | On the pressure of vibrations[END_REF][START_REF] Rayleigh | On the momentum and pressure of gaseous vibrations, and on the connexion with the virial theorem[END_REF] . It was observed by W. Altberg in 1903 [START_REF] Wilhem | Ueber die Druckkräfte der Schallwellen und die absolute Messung der Schallintensität[END_REF] . Nevertheless, although an acoustic stress tensor can be defined, which is prima facie analogous to the Maxwell tensor, the comparison stops there: on the one hand, no microscopic mechanism providing us with an acoustic force density analogous to the Lorentz force can be put forward; on the other hand, the photon has no real acoustic counterpart: the phonon is but a quasiparticle carrying no mechanical momentum. Moreover, while there exists only one electromagnetic radiation pressure, there are at least two kinds of acoustic radiation pressure, according as the fluid in which the acoustic wave propagates is bounded (the Rayleigh configuration, illustrated in fig. 4a) or is free to skirt around the obstacle (the Langevin configuration, illustrated in fig. 4b). Since the beginning of the twentieth century, a wealth of studies have been devoted to this rather puzzling and little understood issue [START_REF] Brillouin | Les tenseurs en mécanique et en élasticité[END_REF][START_REF] Erna | Experimental studies on acoustic radiation pressure[END_REF][START_REF] Robert | Radiation pressure-the history of a mislabeled tensor[END_REF][START_REF] Boa | Acoustic radiation pressure produced by a beam of sound[END_REF][START_REF] Wang | Acoustic radiation pressure[END_REF] .

It is clear from figure 4 that the Rayleigh configuration can be implemented in a one-dimensional geometry. On the contrary, the Langevin configuration involves a two-or three-dimensional geometry. For the sake of a pedagogic account, we have focussed in this paper on the simpler one-dimensional case. Moreover we argue that the calculation is easier in the framework of the Lagrange picture.

Let us go back to formula (21). It is noteworthy that P [2] s -P 0 is proportional to coefficient κ 2 , and thus owes its very existence to the nonlinearity of the thermodynamic relation (15): this is the reason why we could not find such an extra pressure in the linear framework of subsection II B. A simple relation exists between the Rayleigh radiation pressure and the (Lagrange) acoustic energy density E that can be derived from (11d):

E = E SL 0 = 1 4 ρ 0 A 2 ω 2 = 1 4 κ 1 A 2 k 2 . ( 22a 
)
According to (21), the relation is P [START_REF] Georges | An Introduction to Fluid Dynamics[END_REF] s -P 0 = 1 2

κ 2 κ 1 E. (22b) 
Lastly, let us show how deeply the radiation pressure and the frequency shift are entangled. Consider again the thought experiment discussed in subsection II B, in which we slowly move the piston at the end labelled "x 0 = L 0 ". Splitting the displacement u according to (12), we are led to modify equations (14a-b) according to (16b-c), i.e.

P (x 0 , t) -P eq (t) = -κ 1 1 - κ 2 κ 1 V t L 0 ∂w ∂x 0 + 1 2 κ 2 ∂w ∂x 0 2 , (23a) 
with

P eq (t) = P 0 -κ 1 V t L 0 + 1 2 κ 2 V t L 0 2 . ( 23b 
)
As was already mentioned, the important point is that the linear term -κ 1 ∂w ∂x0 is changed into -κ ′ 1 ∂w ∂x0 , due to the variation δL = V t of the length of the cavity:

κ ′ 1 = κ 1 1 - κ 2 κ 1 V t L 0 , (24) 
in agreement with (16d). Consequently, the wave equation governing w becomes

ρ 0 ∂ 2 w ∂t 2 = κ ′ 1 ∂ 2 w ∂x 2 0 1 - κ 2 κ 1 ∂w ∂x 0 , (25) 
which is the same equation as for u except that κ 1 is replaced by κ ′ 1 (compare for instance with ( 8)). Linearizing equation (25), we find a wave equation with a modified speed of sound c ′ given by

c ′2 = κ ′ 1 ρ 0 = c 2 1 - κ 2 κ 1 V t L 0 . ( 26a 
)
This modification of the speed of sound, associated with an unchanged 25 wavevector k n = nπ L0 , shifts the angular frequency:

ω ′2 = ω 2 1 - κ 2 κ 1 V t L 0 . (26b) 
Observe in passing that the amplitude A of mode n is changed, too. Nevertheless, since the piston is moved adiabatically (in the Ehrenfest sense), we have (see (11d) and the discussion thereafter)

A ′2 ω ′ = A 2 ω. (26c) 
As a consequence, the change in the acoustic energy of the wave is

δE = 1 4 ρ 0 SL 0 A 2 ωδω. (27a) 
Using (26b), (9b), (10b) and ( 21), this is tantamount to

δE = - 1 8 κ 2 A 2 k 2 SδL = -(P [2] s -P 0 )δV, (27b) 
which shows that δE is the work the operator has to supply in order to vary the volume of the cavity by an amount δV = SδL. The acoustic pressure present is -δE/δV. This is in line with the usual definition of a pressure, given that the transformation is isentropic.

In appendix B, it is shown that the radiation pressure is related to the static relative expansion through the compressibility κ 1 . It is also shown that the present description of the radiation pressure carries over to solid state physics, where the thermal expansion of a solid may be thought of as the outcome of the Rayleigh radiation pressure.

(10a) would hold unchanged, whereas the wavevector quantification relation (10b) would become k n = n + 1 2 π L0 . As regards the energy balance, (11a) and (11b) would be unchanged while energy E should be replaced by the (conserved) quantity E + P 0 Su(L 0 , t) in (11c) and (11d). Due to the new boundary condition, piston L 0 would move, and its position become L 0 + δL(t). The static part δL s = δL(t) can be obtained by setting P 0 = P eq (δL s ) + 1 8 κ 2 A 2 k 2 , as suggested by (21), with P eq (δL s ) given by (16c). Hence an acoustically induced static expansion δLs L0 of the medium ensues, given in our second-order approximation by

δL s L 0 = 1 8 κ 2 κ 1 A 2 k 2 = 1 κ 1 
(P [START_REF] Georges | An Introduction to Fluid Dynamics[END_REF] s -P 0 ). (B1)

Now, let us suppose that not only one, but all modes, are excited simultaneously. Averaging out all interference terms, the static relation (22b) becomes P [START_REF] Georges | An Introduction to Fluid Dynamics[END_REF] s -P 0 = 1 2

κ 2 κ 1 n E n , (B2a) 
where E n stands for the overall acoustic energy density in mode n (see (11d) for instance). Relation (B1) can be generalized in the same way, yielding the static expansion caused by the acoustic radiation pressure, namely

δL s L 0 = 1 2 κ 2 κ 2 1 n E n . (B2b) 
We now come to the Grüneisen approach of the thermal expansion of matter in solid-state physics [START_REF] Ashcroft | Solid State Physics[END_REF] . This approach consists in regarding solids -which are de facto nonlinear compounds -as linear media with volume-dependent vibrational mode frequencies. That is to say, the angular frequency of mode n is ω n (L) and the so-called Grüneisen parameter g n of a one-dimensional solid is defined as

g n = - d ln ω n d ln L . ( B3 
)
Thermal expansion originates precisely in g n being nonzero. Now, in the calculation developed in the present paper, we find (up to the second order, see (16d) or (26a))

ω 2 0 = ω 2 n0 1 - κ 2 κ 1 δL L 0 , (B4a) 
whence

g n = - δ ln ω n δ ln L = 1 2 κ 2 κ 1 . (B4b) 
In other words, the existence of a Rayleigh acoustic radiation pressure, on the one hand, and the thermal expansion under constant P 0 , on the other hand, originate in a non-vanishing Grüneisen parameter g = 1 2 κ2 κ1 , regardless of n. In a pictorial parlance, one may say that the thermal expansion of a solid is just the outcome of the Rayleigh radiation pressure associated with the thermally excited vibrational modes.

FIG. 3 :

 3 FIG. 3: (a). The fluid at rest, with equilibrium mass density ρ0 and pressure P0. (b). The fluid at time t: both ends, labelled x0 = 0 and x0 = L, are made up of pistons that are provisionally supposed fixed.

FIG. 4 :

 4 FIG. 4: Two kinds of acoustic radiation pressure, according to the geometry. (a) Rayleigh configuration: the fluid that propagates the acoustic wave is bounded by the obstacle. (b) Langevin configuration: the wave can skirt around the obstacle.
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IV. CONCLUSION

In this article, we have promoted the idea that introducing the Lagrange picture of fluid dynamics could be useful in the teaching of acoustics at the undergraduate level. On the one hand, the Lagrange picture can complement the Euler picture, as our alternative derivation of the reflection/transmission coefficients in appendix A shows. On the other hand, the Lagrange picture can be superior to the Euler picture, as our treatment of the Rayleigh radiation pressure has shown. The physical meaning of that pressure if much clearer in the Lagrange picture.

Appendix A: Reflection/transmission coefficients in the Lagrange picture

We go back to the question raised in the introduction and show that the Lagrange picture provides an exact calculation of the reflection/transmission coefficients. Let us consider fig. 1 again. At rest, medium 1 and medium 2 are separated by the plane x = 0. Choosing the rest state of the system to implement the Lagrange labelling of the fluid elements, x 0 = 0 means both the right-hand face of the last slice of medium 1, and the left-hand face of the first slice of medium 2. This labelling will "follow" the motion of the system and (provided of course that no mixing occurs between the two fluids) the Lagrange labelling of the interface will remain x 0 = 0 throughout the propagation of the acoustic wave, whatever the amplitude of the latter and without any approximation. Let us consider an acoustic wave coming from x = -∞. This incident wave is described by the displacement field u i (x 0 , t) = f i t -x0 c1 , where c 1 = κ 11 /ρ 01 is the speed of sound in medium 1 and f i is any (regular) function. When the wave reaches the interface (labelled x 0 = 0, whatever its motion), it splits into a reflected wave u r (x 0 , t) = f r t + x0 c1 and a transmitted wave u t (x 0 , t) = f t t -x0 c2 , where c 2 = κ 12 /ρ 02 is the speed of sound in medium 2. In summary, the displacement field reads

while the (extra) pressure field reads, owing to (7):

where Z 1 = κ 11 /c 1 = √ κ 11 ρ 01 and Z 2 = κ 12 /c 2 = √ κ 12 ρ 02 stand for the acoustic impedances of media 1 and 2.

Writing the continuities of u and p at the interface x 0 = 0 at any time t, we obtain the well-known result

In the framework of the linear thermodynamic response, the Lagrange picture provides thus the simplest quantitative description of the reflection/transmission phenomenon of an acoustic wave at an interface.

Appendix B: Connection with the Grüneisen approach in solid-state physics

In section III, we have considered rigid boundary conditions, namely both pistons were fixed, or moved at a velocity imposed by the operator as regards piston L 0 . One may wonder how our results would be modified if, say, piston L 0 were not fixed, but subject to the external pressure P 0 . Then, the boundary condition on the fluid slice labelled L 0 would no longer be u(x 0 = L 0 ) = 0 at any time, but instead P (x 0 = L 0 ) = P 0 . Of course, equations (5a) through