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Hyperelasticity with rate-independent microsphere hysteresis model

for rubberlike materials
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The mechanical behavior of elastomers strongly differs from one to another. Among these differences,
hysteresis upon cyclic load can take place, and can be either rate-dependent or rate-independent. In
the present paper, a microsphere model taking into account rate-independent hysteresis is proposed
and applied to model filled silicone rubbers behavior. The hysteresis model is based on a combination
of monodimensional constitutive equations distributed in space. The behavior of each direction is
described by a collection of parallel spring slider elements. The sliders are Coulomb dampers with
non-zero break-free force in tension. This model is tested on a filled silicone rubber by the way of uniaxial
tensile and pure shear tests. The mechanical response of the material is well predicted for such tests.
Finally, the constitutive equations are implemented in the finite element software ABAQUS. Calculation
results highlight good performances of the proposed model.

1. Introduction

The study and modeling of the mechanical behavior of rubber-
like materials have been widely studied in last decades due to the
increasing number of industrial applications, such as vibration iso-
lators, tires or shock absorbers, non exhaustively. Classically, rub-
bers are filled by mineral fillers in order to improve their
physical properties. The addition of fillers typically implies an
increase of stiffness and a reinforcement of crack growth resistance
[1,2]. However, it also induces numerous additional effects [1,2].
Among them, one can cite the stress softening, which mainly
occurs between the first and second loads, and often called the
Mullins effect [3] (which can rarely be observed in unfilled rubbers
too [4]), the stress relaxation and the mechanical hysteresis
(unload different from load).

The load and unload responses of filled rubber differ during cyc-
lic tests. Even if this evolution is mainly due to the Mullins effect
during the first cycle, a difference between load and unload
responses is still observed once the material is softened, i.e. after
the first cycle. This phenomenon, so-called hysteresis, can depend
on the strain rate [5], the crosslinks density [6] or the temperature
[7].

* Corresponding author.
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Several micromechanism-inspired approaches of the hystere-
sis phenomenon were proposed in the literature, based on differ-
ent physical considerations. To the opinion of Bergstrom and
Boyce [6], hysteresis is induced by the viscous reptation of elas-
tically inactive macromolecules. This type of micromechanism
has also motivated a micro-sphere approach [8], where hystere-
sis is considered to be due to the fillers entanglement. Some
authors considered that a part of the broken cross-links can be
re-formed upon unload [9]. More recently, the idea of a succes-
sive breakdown of filler clusters taking place during a load, and
of a complete re-aggregation of the filler particles taking place
during an unload was proposed [10]. This implies filler-induced
hysteresis.

According to either the physical or the phenomenological
approach used, different viscoelastic models with or without dam-
age were proposed to take into account the hysteresis (for example
[11-13]). A classical hypothesis of the proposed constitutive mod-
els is the multiplicative split of the deformation gradient into elas-
tic and inelastic parts [6,14-17]. Other approaches used a history
dependent function to account for the hysteresis [18].

Even though most of the papers focused on the viscoelastic
behavior of the material, some of them studied the rate-indepen-
dent hysteresis [9,11,18,19]. To distinguish stress-softening and
hysteresis, most of the authors removed the Mullins effect from
the material behavior by carrying out beforehand several loading
cycles [6,15].



This paper focuses on the quasi-static modeling (i.e. the rate
independent behavior) of hysteresis effect after stress-softening.
The aim of this work is to propose a directional method able to rep-
resent the difference between load and unload, easily extendable
to anisotropy and well-adapted to the implementation in a finite
element code.

The different mechanical tests carried out on a filled silicone
rubber and the results obtained are presented in Section 2. The the-
oritical background to model hysteresis is introduced in Section 3.
In Section 4, experimental data are compared with simulations and
results are discussed. Section 5 presents model implementation in
a finite element code with calculation results obtained in case of
heterogeneous test and capacities of the model. Finally, concluding
remarks close the paper.

2. Experimental setup
2.1. Materials

The material considered here is a filled silicone rubber (Bluestar
RTV 3428). Its mechanical properties were previously investigated
[7,20,21] and it was shown that this material exhibits stress-soft-
ening, occurring mainly during the first load, hysteresis and tem-
perature dependent behavior.

2.2. Loading conditions

Two types of classical tests are carried out, uniaxial tensile tests
and pure shear tests. These tests are performed using a Gabo Eplex-
or 500 N. For the uniaxial tensile tests, the length, width and thick-
ness of the specimens are 12, 2 and 2 mm, respectively and a 25 N
load cell is used. For the pure shear tests, the length, width and
thickness of the specimens are 2, 40 and 2 mm, respectively and
a 500 N load cell is used. Several tests were carried out at different
strain rates on the considered material, and it was observed that no
significant difference can be observed for strain rates lower than
7 =1.67 x 102 s~1. As a consequence, to assume quasi-static con-
ditions, the tests of this paper are performed at a low strain rate,
ie. 2=167x107s.

In order to distinguish mechanical hysteresis from Mullins
effect, a preconditioning test is carried out on each specimen to
remove the stress softening from the mechanical behavior. This
procedure is classically applied in the literature to ensure test
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repeatability [6,15,22]. In the present study, preconditioning con-
sists in performing 5 cycles of load unload to a stretch of /1 = 3.
Results of uniaxial tensile tests are presented in Fig. 1(a), in terms
of the nominal stress versus the stretch /. Fig. 1(b) shows that there
is no more stress softening between the 4th and 5th cycles proving
that 5 cycles are sufficient to remove the Mullins effect from the
mechanical behavior of the silicone rubber. The results are quite
similar for planar tensile tests and are not reported here.

2.3. Experimental results

Uniaxial tensile test is first carried out with increasing load
cycles. These cycles are performed to 4 = 1.5,2 and 2.5 (see histo-
gram in Fig. 2). It can be observed in Fig. 2(a) that there is a differ-
ence between loads and unloads, and that this phenomenon
increases with increasing stretch. It is worth noting that there is
still a very few residual strain.

A similar planar tensile test is performed, with three cycles to
J=1.5,2and 2.5. The results of this test are presented in
Fig. 2(b). The curve is quite similar as for the uniaxial tensile test,
the only difference is the stress level that is higher for the planar
tensile test.

Two additional non-classical uniaxial tensile and planar tensile
tests are performed to study the hysteresis phenomenon. The first
test (called ‘nc1’ in the following) is a load-unload major loop with
two hysteresis loops during the load and the unload. The second
test (‘nc2’) is also a load-unload tensile test with a hysteresis
sub-loop inside a first loop during the load. Fig. 3 presents the his-
tograms and results of these tests. Once again, it can be seen that
the stress level is higher for planar tensile tests. In the ‘nc2’ test,
the size of the hysteresis sub-loop is smaller than the size of the
hysteresis loop, whereas for the ‘nc1’ test the four hysteresis loops
seem to have the same size.

3. Theory
3.1. Motivation

As mentioned above, hysteresis is a phenomenon whose physi-
cal mechanisms are still not clearly understood. Similarly to the
other elastomers, silica filled silicone rubbers exhibit a hysteresis
loop in terms of the stress-strain relationship [7]. The hysteresis
loop is not observed when the silicone rubber is unfilled [7],
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Fig. 1. Preconditioning test to remove the stress softening during an uniaxial tensile test, with (a) the five first cycles and (b) the fourth and fifth cycle, at a stretch of 1 = 3.
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Fig. 2. Evolution of the hysteresis during a tensile test for (a) uniaxial tensile test
and (b) planar tensile test.

showing that hysteresis is not due to macromolecular network
deformation but to fillers, more especially to interactions between
fillers and rubber matrix [23]. Similar results are observed in other
elastomers, for which hysteresis can also be wrongly attributed to
viscosity. Indeed, phenomena that are rate-independent in a given
range of strain rates and whose effects are different between load
and unload induce a hysteresis loop. This is for instance the case in
natural rubber, for which hysteresis loop is due to strain-induced
crystallization and not to viscosity [24,25].

3.2. Decomposition of the material behavior

According to the previous motivations, the model for filled sili-
cone rubber should take into account the macromolecular network
elasticity and the hysteresis generated by the difference in the fill-
ers/rubber matrix interactions between load and unload. Classi-
cally, models reported in the literature are based on the
decomposition of the material behavior into two or three parts. A
first hyperelastic part is completed with a viscous part, a damage
part or both of them. Even though such a representation is usually
used for elastomers, it was also used for other materials, for exam-
ple to study metallic alloys and magnetization phenomena [26,27].

In the present paper, this approach is adapted to represent time
independent hysteresis in elastomers. For this purpose, the model
is only composed of a hyperelastic part, represented by a nonlinear
spring, and a hysteretic part, represented by infinity of spring—fric-
tion slider associations.

The hyperelastic Cauchy stress opyp.r and the hysteresis Cauchy
stress opy are added to obtain the mechanical response of the
material. By assuming that the material is incompressible, the total
stress writes as follows:

0 = O'hyper + O'hyst - pl (1)

where p is the hydrostatic pressure, introduced for taking account
the incompressibility, and I is the identity tensor.

3.3. Hyperelastic part

The hysteresis part described in the next section can be used
with any hyperelastic constitutive equations. As an example, in
the present paper, a classical model with a Biderman strain energy
[28] is used. This constitutive equation is given by:

Wiyper = C1o(lh — 3) + C20(l1 — 3)2 +c30(lh — 3)3 +co1(lr —3) (2)

where c1g, C20, C30 and co; are the material parameters, I; and I, are
respectively the first and second strain invariants of the right Cau-
chy-Green tensor C = F'F, and F is the deformation gradient. These
invariants are defined as I; = tr(C) and I, = %(tr(C)2 —tr(C%)).

3.4. Hysteresis part

3.4.1. General form

For an initially isotropic material, the chains constituting the
silicone rubber are assumed to be equidistributed in space. In this
case, an infinity of directions in the space is used to model the
material behavior [29]. However, an infinite number of directions
leads to integration problems, and consequently a discrete number
of directions is a better solution. This is the reason why the 42
directions proposed by BaZant and Oh [30] are used in the present
study. The directional repartition is classically used to model rub-
ber-like materials, especially to describe Mullins effect [31-34].
Nevertheless, any other spatial repartition can be chosen. By the
way, initial directions unit vectors a{’ are defined, and initial direc-
tion tensors A{, current direction vectors a? and tensors A” and
normalized current direction tensor Af,” are respectively calculated
by:

. . . . . . 0 g a
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The main advantage of using a microsphere repartition is that
only monodimensional constitutive equations are needed to repre-
sent a tridimensional behavior. No tridimensional tensorial gener-
alization of constitutive equations is required as in [19].

The time independent model used for the hysteretic part is
shown in Fig. 4. In this representation, the effect of interactions
between fillers and the rubber matrix is considered to be different
during load and unload. As a consequence, a non-classical friction
slider is introduced and its behavior is presented in Fig. 5. First,
when loaded in tension, the stretch and stress increase until the
stress reaches the limit value of the slider, and stays then equal
to this value. When it is relaxed, the stretch and stress decrease
until the stress reaches zero and stays constant to this value. So
the system comes back to its initial configuration by creating a hys-
teresis loop as illustrated in Fig. 5(a). Second, when the network is
initially compressed, the stretch decreases but the stress stays
equal to zero. When the load in compression is relaxed, the net-
work starts to resist and the stress increases until the sliding limit
is reached (cf. Fig. 5(b)). This represents a friction slider that is only
used in one loading direction.

Each direction is represented by the scheme presented in Fig. 4.
The sum of an infinity of linear springs with different sliders can be
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Fig. 3. Results of (a) uniaxial load-unload tensile test and (b) planar tensile load-unload test with four hysteresis loops and of (c) uniaxial load-unload tensile test and (d)

planar tensile load-unload test with a hysteresis loop inside another one.

Hysteresis

Fig. 4. Representation of the hysteresis rheological model in a direction.
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Fig. 5. Behavior of an (a) initially stretched and (b) initially compressed spring-
friction slider association in series.

represented by a global equation. Here, the repartition proposed by
Favier and Guélin [26] is used, leading to a global formulation

given by:
Elny/I{
i (4)

0

o = gy tanh

where ¢ is the stress in the considered direction i, E is equivalent
to an initial slope, g, the maximum reachable stress by the hyster-
esis part of each direction, and Iﬁp is the fourth invariant of the right
Cauchy-Green tensor C. It is defined by I{ = trﬁCAg) , and it repre-
sents the square of the elongation 4 in direction a. It is worth
noting that by affecting a different value of E and o, in each direc-
tion it is possible to induce anisotropy.

The stress tensor is finally obtained by summing the contribu-
tions of each direction:

42

Oy = Y wia Ay (5)
i1

where ; is the weight corresponding of each direction [30].

3.4.2. Inversion point

To create a difference between load and unload, inversion
points are introduced. A similar method was already used by
[19,35-39]. An inversion point is defined as a change in the load
evolution (load to unload or conversely). The creation of inversion
points is detected by means of an evaluation of the sign of the
expression (o — gl \dI{, where dI{ is the fourth invariant incre-
ment. An algorithm introducing the conditions of add and erase of
inversion points is presented in Fig. 6 [36]. This algorithm is
applied for each direction of the microsphere hysteresis model. It
is worth noting that the first point of a test is considered as
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Fig. 6. Management of inversion points algorithm, where ¢ is the current stress, (T;” is the stress of the inversion point, I is the number of inversion points and dlf,” is the

difference between the values of IE,” at the current and the previous step time.

inversion point, so there is always at least one inversion point.
Once the inversion points introduced, the monodimensional con-
stitutive equation presented in Eq. (4) becomes:

E(ln\/li_i)— In \/%>
0o

where ¢! and I{)  are respectively the stress and the square of the
elongation of the inversion point.

Two examples are presented to illustrate the inversion points.
Fig. 7(a) shows a load-unload curve with creation of an inversion
point. At the end of the first load, an inversion point is created
(point A). Thus, the unload stress—strain curve AO is the same as
the load curve OA, but in a frame with point A as origin and the

axes oriented so that (J(i) - aﬁffy) and (ln\/@*m \/ Igi)nv) are

positive on AO. Thus, the unload curve is the same as the load
curve by a similarity of ratio —1. By this way, the scheme presented

o =g} + gptanh

(6)

A Y E—— Frame 2 A
—_—
o Frame 1 In(Vls) o Frame 1 1 In(ls)
c Frame 2 O o
—_—
(a) | |

Frame 1 In(Vls) A Frame 2 In(3la) -
In(Vle, )

by the friction sliders is totally respected and allows us to extend
easily the model to more complex cyclic paths. Let us consider a
subloop in a first loop, as represented in Fig. 7(b). The first load
(OA) is defined as previously by Eq. (6). There is next a first unload
(AB), defined by Eq. (6), with the point A as new inversion point.
Then, a second load occurs (BC), where the point B is a new inver-
sion point, followed by a second unload (CD, with C a new inver-
sion point). These second load and unload are also governed by
Eq. (6), with for inversion point the points B and C respectively.
Finally, a third and last load is performed (DE). This reload is
defined by Eq. (6), considering the point D as inversion point until
joining the point C. At this point (C), the subloop CDC is closed and
points C and D are no more considered as inversion points. The
third load takes now the point B for inversion point in Eq. (6)
and is the extension of BC until joining point A. At point A, the sub-
loop ABA is closed and there is only O as inversion point. As a con-
sequence, the end of this reload AE is the extension of OA and is
governed by Eq. (6). The load DE is so made by three different arcs.

(b) B In(\1,)

[¢]

Fig. 7. (a) Basis change due to an inversion point and (b) example of cyclic path in a direction.



Table 1
Equations and inversion points in Fig. 7(b).

Segment Equation List of inversion Inversion point used in
points Eq. (6)
OA (6) (6] (o]
AB (6) OA A
BC (6) OAB B
cD (6) OABC C
DC (6) OABCD D
CA (6) OAB B
AE (6) (o] (o]
Table 2
Values of the material parameters fitted on experimental data.
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Fig. 8. Uniaxial tensile test with increasing cycles. Experiments (full lines) and
simulation (dashed lines) (a) and comparison of the experimental and simulated
hysteresis loops size (b).

Table 1 summarizes the equations and inversion points governing
the different segments of this curve.

This kind of method was already used to model hysteresis in
rubberlike materials [19,40], where similar inversion points were
implemented in a tridimensional model, with a tridimensional cri-
terion, but it was validated on uniaxial tensile and compression

tests only. The originality of the present approach is that the inver-
sion points are only controlled by a monodimensional criterion.

The model is based on the use of friction pads, with inversion
points. This idea was already used for other kind of materials,
and the thermodynamical dissipation of the scheme was already
studied by Guélin [36]. The principle stays the same for the present
study.

4. Results and discussion

The constitutive equations previously described are used to
simulate a filled silicone behavior with the Matlab software. The
parameters are identified from experimental data obtained during
the uniaxial tensile test presented in Section 2. They are reported
in Table 2. These parameters are then used to simulate the other
experimental tests.

The simulation of the first uniaxial tensile test with three
increasing cycles is presented in Fig. 8(a). This figure shows that
the silicone behavior is well predicted by the model for this exper-
iment as the curves are nearly confounded. The prediction of the
hysteresis loops size (calculated as the difference between load
and unload) presented in Fig. 8(b) is satisfactory for this test.
Fig. 9(a) shows the simulation of the planar tensile test with three
increasing cycles. It can be seen that the stress level reached is
overestimated in this case, which is due to the hyperelastic
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Fig. 9. Planar tensile test with increasing cycles. Experiments (full lines) and
simulation (dashed lines) (a) and comparison of the experimental and simulated
hysteresis loops size (b).
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constitutive equation, overestimating the stress for the planar ten-
sion for elongation between /=2 and4. This was previously
explained by Marckmann and Verron [41]. However, the hysteresis
loop size prediction is acceptable despite the overestimation of the
stress, as presented in Fig. 9(b). A more complete constitutive

equation could be used to obtain best predictions of the hyperelas-
tic behavior of the material, but the aim of this paper is to show
that the hysteresis part can be adapted for all the existing hyper-
elastic constitutive equations, so the Biderman model is kept as
it gives reasonable predictions.
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The results of the simulations of ‘nc1’ for uniaxial and planar
tensile tests are presented in Fig. 10(a) and (b) respectively. The
sizes of the hysteresis loops are very well predicted, as shown in
Fig. 10(c) and (d). Fig. 10(e) and (f) show respectively the results
of the simulation of the test ‘nc2’ for uniaxial and planar tensile
tests. Even if the size of the greater hysteresis loop is not perfectly
predicted in the two cases, the size of the little one is the same for
the model as for the experiments and the prediction of the material
behavior is acceptable.

5. Extension of the model
5.1. Finite element implementation

The model proposed in this paper is developed in the frame-
work of isotropic and anisotropic invariants. To take into account
the material incompressibility, a quasi-incompressible formulation
of the strain energy function is needed:

W:W(L,izji{)) +U() (7)

where I, = I;'?I;,I, = ;%I and 1{ = I, are the incompress-
ible invariants and J* = I; = det(C) the square of the volume varia-
tion. The model is implemented into the finite element software
ABAQUS via a UMAT. Details about the numerical implementation
of I, I, I, constitutive equations can be found in [42-45]. The finite
element implementation needs the calculation of the second Piola-
Kirchhoff stress tensor and the Lagrangian deviatoric tangent mod-
ulus. They are calculated by means of the strain energy derivation.
The second Piola-Kirchhoff stress tensor is defined as:

Nominal Stress (MPa)

0,5 i
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T T T T T T
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S

Fig. 12. Simulation of a cyclic tensile test with a great hysteresis.
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The volume variation function considered here is the classical
function U(J) = K(J — 1), used in ABAQUS, where K is a material
parameter. The general form of the Lagrangian tangent modulus
is presented in [46]. The isochoric part of the Lagrangian deviatoric
tangent modulus is calculated by:
8

N
C=2-¢ 9



In the case of a strain energy function of the form
W =Wi(Ih) + Wa(ly) + Y Wy(ly), it is expressed by:

_ o — a o [— oh "9 [ oI
L _ v Y v o2 v (i) Y14
Cetae W ac) Tac (sz ac) 25 <W-4 ac

where W is the strain energy derivation with respect to the ith
incompressible invariant of the right Cauchy-Green tensor.

This tangent modulus is expressed as a function of the deriva-
tives of the strain energy function with respect to the first, second
and fourth invariants. The results of the derivations with respect to
the first and second invariants are immediate, they are the deriva-
tives of Wiy, of Eq. (2). For the fourth invariant the first and sec-
ond derivatives are given without inversion points respectively by:

Eln (ﬁ)

(10)

W_4 =0y tanh W_44
Oo
E J[(Eln ( 72”)
=— |1-tann?| — 7 (11)
21 0o

These derivations change when an inversion point occurs, and
in this case the first and second derivatives of the strain energy
function with respect to the fourth invariant are given respectively

by:
E<1n< zg>) - m( 75;,;,,))

0o

70 7()
e (e (V) - ()
—— | 1—tanh

21Y 0o

W4=|0" +0,tanh

(12)

44 =

It is to note that the tangent modulus has to be expressed in the
Eulerian configuration. For this purpose, push-forward operation is
carried out [46].

In order to check the model performance and convergence, a
non-classical test was carried out on a diabolo structure, meshed
with approximately 6000 elements (8-node linear bricks with
hybrid formulation, i.e. linear in displacement and constant in
pressure) and using the same material parameters as previously
(cf. Table 2). It is subjected to a torsion load of 300°, next partially
unloaded and reloaded, and finally totally unloaded (see the histo-
gram in Fig. 11). The moment function of the angle is plotted in
Fig. 11. _

In each element, each direction aj’ of the hysteresis model
experiences inversion points during the simulated test. In order
to illustrate that, the direction a{’ =z is considered in the initial
configuration. Pictures 1-5 represent the number of inversion
points in that direction in each element at different times (see
the histogram in Fig. 11). It is worth noting that before the end
of the first load (picture 1), some elements have already one or
two inversion points meaning that the considered direction was
loaded and unloaded several times during the torsion load, due
to the important rotation of the material directions and to the vol-
ume conservation of the considered elements. An increase of the
inversion points number is observed during the first three steps,
and it decreases after the closure of the hysteresis loop. It should
be noted that a maximum principal elongation value of 2.5 is
obtained (the parameters were identified for this elongation during

the uniaxial tensile test in the previous section), proving the good
performance of the proposed model.

5.2. Higher hysteresis simulation

The material used in this paper to validate the proposed model
presents a weak rate-independent hysteresis. In order to show the
possibilities of fitting of higher hysteresis, a simulation with
greater parameters of hysteresis is presented in this section. The
parameters for the hyperelastic constitutive equation are kept
(Table 2), and the hysteretic parameters E and o, are taken equal
to 5 MPa and 1 MPa respectively. Three increasing cycles of
load-unload tensile are simulated, from a stretch equal to 1 to a
stretch equal to 1.5, 2 and 2.5 successively. Results of this simula-
tion is presented in Fig. 12, and it can be seen that the difference
between load and unload is more important than previously.

6. Conclusions

In this paper, a microsphere model was proposed to take into
account rate-independent hysteresis. This method is based on the
decomposition of rubber-like mechanical behavior into a first usual
hyperelastic model and a second hysteresis model. This method
can be adapted to any existing hyperelastic constitutive equations.
This was illustrated by associating the hysteresis part with a clas-
sical Biderman constitutive equation. To describe the hysteretic
behavior, a non classical friction slider was introduced, represent-
ing a different behavior in tension and compression, and it must be
initially loaded in tension to bring a contribution.

The predictions of the model are compared to experimental
data in case of uniaxial tensile and planar tensile tests. The hyster-
esis is well predicted for these tests, even though the hyperelastic
part cannot perfectly predict the elastomer mechanical behavior
for planar tensile tests.

A finite element implementation was carried out on the soft-
ware ABAQUS. A test on a non-classical geometry with a complex
loading and an important number of elements shows the good effi-
ciency of the model. A simulation with high hysteresis loops shows
the possibilities of adaptation of the model for different materials.
Further investigations about the association of hyperelastic
mechanical response, Mullins effect and hysteresis are currently
carried out by the authors.
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