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Key Message: The developed model of gravitropism takes non instantaneous maturation of wood into

account which enabled to correctly simulate different gravitropic phases and realistic internal stress profiles.

Abstract A new biomechanical model of tree movement in relation to gravity (gravitropism) is proposed

in this study. The modelling of the progressive maturation of wood cells is taken into account, as well as

spatio-temporal variations in maturation strains (MS) and mechanical properties. MS were identified using

an inverse method that allows the model to fit the gravitropic reaction observed experimentally. For this
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purpose, the curvature during righting movement, the geometry and the mass distribution of a two-year-old

poplar tree were measured. The identified MS are higher than expected, which shows the underestimation

of MS by usual measurements. By using the same mechanical parameters and MS as an input, the model

gives satisfying results in terms of shape modelling for different trees up to 32 days after tree tilting. The

model is able to simulate the latency phase observed in the tree righting movement, and the internal stress

profile in the trunk is realistic (low compressive value in the central part of the trunk and zero stress in

newly-formed cells). The next development of the model will aim to simulate the end of the gravitropic

phase in relation with the regulation of MS by the tree.

Keywords Gravitropism · Biomechanical model · Poplar
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1 Introduction

Trees can maintain or modify the orientation of their trunk or branches in relation to gravity. These grav-

itropic movements are enabled by the asymmetrical production of reaction wood in plant parts that have

achieved their elongation (Scurfield, 1973). In most deciduous species, reaction wood is called tension wood

(TW) because this wood is subjected to longitudinal tensile stresses within the living tree. Stresses in trees

are mainly due to the wood cell maturation process. During their maturation, wood cells tend to shrink

in their longitudinal direction, but these maturation strains (MS) are impeded by the cells created earlier,

which are already stiffer, thus producing internal maturation stresses (Kubler, 1959). The high internal

stresses caused by TW can induce damage during wood exploitation and processing (Cassens and Serrano,

2004).

At the beginning of the righting-up movement of a tilted trunk, deciduous trees create TW with high

internal stresses on the upper face of the tilted trunk, and so-called opposite wood (OW) with low internal
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stresses on the lower face (on the opposite side). In fact, a recent study on the kinematics of the gravitropic

movement of artificially tilted poplars (Coutand et al, 2007) revealed three phases: a latency phase (no

curving up of the tilted trunk), a gravitropic phase (curving up) and an autotropic phase (decurving enabling

the trunk to become straight and vertical). Within this last phase TW is produced on the opposite side.

Several biomechanical models concerning tree gravitropism can be found in the literature. They were

built to simulate the movement of growing trees and/or to compute the internal stresses with a technological

aim (because of the splitting or twisting of planks due to stresses). Kubler (1959) was the first author to

calculate analytically the internal stresses in the case of a trunk growing symmetrically for an elastic and

transversally isotropic material. Then Archer and Byrnes (1974) extended these formulae for asymmetrical

growth. Later, Fournier et al (1991a,b) developed a semi-analytical model which showed that maturation

stresses are much greater than stresses due to the self-weight of the tree. Numerical finite element modelling

of tree shape regulation was also developed by Fourcaud et al (2003). Recently, biomechanical models have

shown that viscoelasticity can increase the righting-up efficiency of trees (Dlouhá et al, 2008; Coutand et al,

2011). These biomechanical models consider that the maturation process is instantaneous: when cells are

created in the model, they immediately acquire the mechanical properties of a matured wood cell and they

produce a given level of MS.

As noticed by Coutand et al (2007), gravitropic righting in young poplar trees occurs over a few weeks;

thus the kinetics of maturation (i.e. changes with time in terms of mechanical properties and MS) could

have an effect on the gravitropic response. Nevertheless, none of the existing biomechanical models considers

a progressive maturation. Moreover, they do not usually use experimentally determined properties as input

data, and thus cannot be compared to experimental measurements of gravitropic movement.

In the present paper, a model is built with the aim of simulating the righting-up of tilted trees which

create TW on the upper face of the trunk during a single season of growth. Both progressive maturation

and the viscoelasticity of green wood are taken into account. The objectives are (i) to compare the proposed

model featuring progressive maturation to models with instantaneous maturation and (ii) to compare the

model to experimental measurements to estimate MS by inverse identification.

After the present introduction, the second part of this work presents the biomechanical model, with

special emphasis on the modelling of progressive maturation. In the third part, the experimental data used

as the input to the model and the identification of MS are presented. Then the results are discussed and
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conclusions are drawn concerning the value of MS obtained and the ability of the model to simulate tree

gravitropism.

2 Biomechanical modelling

2.1 General description of the model

The biomechanical model presented in the following is an enhancement of the model of Coutand et al (2011)

(TWIG). As in this previous work, it is programmed using MATLAB version 7.5 (2007). The same principles

of modelling are used, typically the geometrical definition of the tree and the incremental formulation of

the viscoelastic behaviour. They are briefly recalled hereafter.

The TWIG model (Coutand et al, 2011) is a semi-analytical model based on Euler-Bernoulli beam theory.

The mechanical properties used are those of wood in the longitudinal direction. According to Fournier et al

(1991b), such a model is sufficient to approach the longitudinal internal stresses that are the main cause of

tree gravitropic movements.

The tree is modelled by a beam whose diameter evolves discontinuously along its length L in nseg

cylindrical segments, themselves numbered iseg (Fig. 1a, b). This model does not account for the longitudi-

nal growth. Indeed, experimental measurements show that longitudinal growth is small during gravitropic

reaction (Pot, 2012). However, it could be modelled using an additional mass at the tip of the beam.

Asymmetrical radial growth is modelled considering the eccentricity of the outer cylinder of each segment

relatively to the pith (Fig. 1). The coefficient δ is the distance between the centre of the pith and the centre

of the new outer cylinder. The difference in mechanical properties between TW and OW is taken into

account thanks to the division of the cross section of the beam into two angular sectors, defined by angle

γ (Fig. 1c, d). Model parameters depend on the face considered and are named using the index ”up” for

parameters relative to the upper face of the tilted tree and ”low” for parameters relative to the lower face

of the tilted tree. For the sake of simplicity, the ”face” index is used in the following as a generic term for

”up” or ”low”.

The beam in Fig. 1a is anchored at its base and the external forces are only due to the self-weight of the

structure. Branches are not represented, but their effect in terms of weight is considered as a distributed

mass which can evolve during the growing season (see section 3.3 for details). Weight induces a normal force
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Nw, a shear force Tw and a bending moment Mw on the structure. Shear forces are neglected, in keeping

with the Euler-Bernoulli assumption. Maturation induces internal normal forces Nm and bending moments

Mm which bend the beam. Finally, the total normal forces and bending moments are noted in a vector {F}

as the sum of the normal forces and bending moments due to weight and maturation:

{F} =

 Nw +Nm

Mw +Mm


Oxyz

(1)

These normal forces and bending moments produce a longitudinal strain along the axis that is noted εO

and a curvature (χ) of the beam. It is also noted in vector form (named the vector of generalised strains)

as follows:

{D} =

 εO

χ


Oxyz

(2)

2.2 Spatio-temporal description

In order to model the maturation process, the variations over time of wood mechanical properties must

be taken into account. Since the tree is growing in diameter, there are also spatial variations in the whole

structure. This is the reason why it is necessary to consider the spatio-temporal variation of the parameters.

In the model, radial growth is considered as an incremental problem: growth is modelled by the addition

at each time step it of a new radial growth increment idr = it (Fig. 1). By this means, every radial growth

increment is denoted at every time step using index idr. This enables the spatial heterogeneity of the beam

to be represented.

The duration of growth that is simulated, denoted T , is divided into n growth increments. Thus, the

duration of a growth increment is ∆tdr = T
n . Thanks to the distinction between spatial and temporal

increments, it is possible to define the time at the beginning of the current growth step as:

t(it) = it∆tdr (3)

and the time of creation of a given growth increment idr as:

t(idr) = idr∆tdr (4)
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With these two characteristic times, it is possible to define the age of each growth increment, denoted â.

The age of a growth increment is defined as the difference between the time at the end of the current growth

step and the time of creation of the increment. Thus, the age of a given growth increment at time step it is:

â = (it + 1− idr)∆tdr (5)

By this means, when a growth increment is created at a given time step, it immediately has an age of ∆tdr.

This age has a physical meaning, since it corresponds to the age of the wood cells contained in the

modelled tree. It enables the modelling of the change in mechanical properties according to the maturation

stage of each increment.

Finally, any parameter P of the model depends on spatial and temporal increments, and can be written

as Pface(iseg, idr, it). It varies with the circumferential position (”face” index), the longitudinal position

(iseg), the radial position (idr), and the time (it). The decoupling between spatial and temporal increments

enables the parameters of each spatial increment to vary freely with time increments. This decoupling is

the main contribution of the present work, since other models usually consider instantaneous maturation

for which the parameters of spatial increments do not change with time after their creation.

2.3 Incremental formulation of viscoelastic behaviour

As in Coutand et al (2011), a viscoelastic constitutive law of green wood mechanical behaviour and an

incremental calculation method are used to model tree gravitropism. The fundamental principle of this

modelling is to decompose time into increments of ∆t and calculate Boltzmann’s equation over the finite

time interval [t, t + ∆t], under the hypothesis of linearity over this interval. This leads to the following

equation:

{∆F} =
[
K∗] {∆D}+

{
Fhist

}
(6)

where {∆F} is the variation in normal force and bending moment during time increment ∆t; [K∗] is the

fictitious stiffness matrix; {∆D} is the variation in longitudinal strain and curvature during time increment

∆t; and
{
Fhist

}
is the normal force and bending moment which accounts for the effect of the total load

history since the beginning of the loading period.
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The viscoelastic constitutive law used is based on a Burgers’ rheological model (Fig. 2), in accordance

with the results of Pot et al (2013b). By this means, Burgers’ rheological parameters appear in mathematical

expressions of [K∗] and
{
Fhist

}
(Pot, 2012), but the fundamental principle of incremental formulation do

not change with respect to Jurkiewiez et al (1999) or Coutand et al (2011).

The time increments of the viscoelastic calculation (∆t) are different from time increments that de-

scribe the growth of the trunk (denoted ∆tdr). Indeed, the time increments of the incremental viscoelastic

formulation must be short enough to observe the hypothesis of the linearity of the equations (Jurkiewiez

et al, 1999). The duration of growth increments cannot be short enough to verify linearity, because it would

lead to a high number of spatial increment and thus high dimensions for matrix and vectors, which would

overload memory. Consequently, growth time increments are subdivided into viscoelastic calculation time

increments. Thus, the calculation is divided into two steps:

1. The first calculation is performed at the beginning of each growth step, thus at time t(it). The variation

in force and moment due to maturation and weight are then calculated and equation 6 is solved.

2. Next, a calculation loop is performed without considering growth and maturation. However tree move-

ments and changes in internal forces can appear because of viscoelasticity and weight. Time t is incre-

mented in the viscoelastic formulation with the short time increment ∆t until the next growth increment.

During these two calculation steps, the viscoelastic formulation (equation 6) is inverted and used for

each segment in order to obtain the variation in generalised strains {∆D(iseg, t)}:

{∆D(iseg, t)} =
[
K∗(iseg, t)

]−1
(
{∆F (iseg, t)} −

{
Fhist(iseg, t)

})
(7)

The same formulation is used for steps where growth and maturation appear and steps where only the effect

of viscoelasticity is concerned. However, when growth occurs, maturation forces appear in {∆F (iseg, t)} and

the mechanical parameters are changed.

2.4 Determination of time step size and computational errors

2.4.1 Influence of time step size on viscoelastic calculation

The influence of time step size on viscoelastic calculation was determined thanks to a preliminary study on

the creep of a wood beam. This beam had similar characteristics as those used in the present study. A 3
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m long cylindrical homogeneous beam of radius r = 15 mm and density of ρ = 500 kg.m−3 was tilted to

α = 35◦ from the vertical and its deflection under self-weight was modeled. The analytical expression of the

curvature can be easily calculated in the case of a non-growing beam:

χ(x, t) = J(t)
Mw(x)

I(x)
(8)

with J(t) = 1
E0

+ t
E0τ∞

+ 1
E1

(
1− e−t/τ1

)
the compliance function of Burgers’ model (with notations of

Fig. 2), I the second moment of inertia, and Mw(x) the bending moment along the position x in the stem

due to self weight. Burgers model parameters are mean value find in Pot et al (2013b): E0 = 3 GPa, E1 =

3.5 GPa, τ1 = 38 hours, and τ∞ = 200 days.

The evolution with time of curvature at stem base obtained with the model is presented in Fig. 3a

for different sizes of time step (∆t), and compared to the analytical result. The less the ∆t, the more the

accuracy of the model. With the lowest time step size presented here, ∆t = 0.0063 days (9 minutes), the

maximum relative error between model and theoretical formula is 0.17%.

2.4.2 Influence of growth step size

The discretization of the viscoelastic calculation is not the only source of computational error: the quantity

of growth increments may have an influence on the accuracy of the computation because of the decoupling

between growth and mechanical effect (see Guillon et al (2012) for more details about the numerical methods

for the biomechanics of growing trees). However, there are no analytical results for a viscoelastic growing

beam, thus no comparison with the model can be completed. A simple way to evaluate the effect of growth

increment size is to compare the results obtained for different quantity of growth increments.

The temporal evolution of the curvature at trunk base during radial growth and gravitropic reaction has

been compared to computation with 10, 50, 111 and 1 110 growth increments, each of them being divided

in 100 viscoelastic increments. Here, the input data of the model are those defined in part 3 for tree A, that

is the same input data as those used for discussing the results in part 4. The results presented in Fig. 3b

show that curves obtained for 50, 111 and 1 110 growth increments are superimposed. Between the 111 and

1 110 growth increments calculations, the relative difference in curvature is about 0.82%.

This low difference allows us to ignore computational errors concerning the comparison between model

results and experimental measurements of curvature. Moreover, in all following calculations, 111 growth
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increments (∆tdr) divided in 100 viscoelastic increments (∆t) will be used during the calculation period of

70 days. This quantity of growth increments corresponds to the limit of a classical 32-bit operating system

because of the maximum memory size of 2 GB allocated to MATLAB on such systems.

2.5 Modelling normal forces and bending moments due to maturation

In equation 7, the variation in normal forces and bending moments {∆F (iseg, t)} is calculated as the sum

of the normal forces and bending moments due to weight and maturation (see equation 1).

Normal forces and bending moments due to weight can easily be calculated using knowledge of wood

density and radial growth increments. Thus, the variation is calculated as the difference between two time

steps.

Normal forces and bending moments due to maturation are calculated by considering that maturation

stresses are generated at the time of the creation of growth increments by the full locking of MS. Thanks

to the model presented above, these MS can vary with each spatial or growth temporal increment; they are

denoted ∆εmface(iseg, idr, t(it)). The maturation stresses created because of the impediment of these MS are

calculated thanks to the modulus of elasticity (MOE) of Burgers’ model, denoted E0,face(iseg, idr, it), as

follows:

∆σm
face(iseg, idr, t(it)) = E0,face(iseg, idr, t(it))∆εmface(iseg, idr, t(it)) (9)

Normal forces ∆Nm and bending moments ∆Mm produced by these maturation stresses are calculated by

integration onto the surface of each spatial increment denoted Sface(iseg, idr):


∆Nm

face(iseg, idr, t(it)) =

∫
Sface(iseg,idr)

∆σm
face(iseg, idr, t(it))dS

∆Mm
face(iseg, idr, t(it)) =

∫
Sface(iseg,idr)

∆σm
face(iseg, idr, t(it))zdS

(10)

Since MOE and MS are constant within a single spatial increment, normal forces and bending moments

due to wood maturation can be written as follows:
∆Nm

face(iseg, idr, t(it)) = E0,face(iseg, idr, t(it))∆εmface(iseg, idr, t(it))Sface(iseg, idr)

∆Mm
face(iseg, idr, t(it)) = E0,face(iseg, idr, t(it))∆εmface(iseg, idr, t(it))Aface(iseg, idr)

(11)
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where Aface(iseg, idr) =

∫
Sface(iseg,idr)

zdS is the static moment of a given spatial increment. The total

increments of normal forces and bending moments due to wood maturation on a given segment and time

increment are computed as the sum of the normal forces and bending moments on each radial increment of

the upper and lower face. This gives finally:


∆Nm(iseg, t(it)) =

idr=it∑
idr=1

∆Nm
sup(iseg, idr, t(it)) +∆Nm

inf (iseg, idr, t(it))

∆Mm(iseg, t(it)) =
idr=it∑
idr=1

∆Mm
sup(iseg, idr, t(it)) +∆Mm

inf (iseg, idr, t(it))

(12)

3 Input data of the model

The model described above is able to consider any spatio-temporal variations in mechanical parameters.

Input data are needed for this model: spatio-temporal variation in geometry, mass, viscoelastic properties,

and MS must be known. Several prior experimental studies (Coutand et al, 2007; Pot et al, 2013a,b; Pot,

2012) are used to this end. However, it is not possible to measure MS variations during wood maturation.

Since the variations of the other parameters were known, MS were obtained by inverse identification thanks

to the comparison between tree righting calculated with the model and the experimental observations.

The MS temporal variation obtained from this identification is presented in this section, as well as input

parameters that were measured experimentally (mechanical properties, cross section geometry and mass

distribution). The principal input parameters of the model with progressive maturation are summarized in

table 2.

The experimental data are measured on two different sets of two-year-old hybrid poplars (Populus

deltoides x Populus nigra, cv I4551) that were tilted by about 35◦ from the vertical at the beginning of

the growing season. A first set of seven trees was used in Pot (2012) and Pot et al (2013b) to measure

mechanical properties and mass distribution during 63 days. A second set of four trees was used specifically

for the present work for cross section and shape measurement in order to perform a comparison between

the experimental and modelled righting of trees during gravitropic reaction. They were felled at the end of

the season. They are named A, B, C and D in the following.
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3.1 Mechanical properties

Pot et al (2013b) performed creep tests on wood samples harvested in the basal part of the trunk. They

give temporal variations in the parameters of Burgers’ model according to the age of the wood cells. In

this study, it is assumed that all cells have the same viscoelastic properties once they are matured. This

approximation is consistent with the results of Pot et al (2013a). In addition, negligible differences were

found by Pot et al (2013b) between the viscoelastic behaviour of OW and that of TW.

Consequently, in the present model, the same values of viscoelastic parameters are used for both faces.

Without any information about longitudinal variations, it is assumed that mechanical properties do not vary

with the longitudinal position in the tree. For the sake of simplicity, longitudinal increments iseg and ”face”

index are omitted in expressions of viscoelastic parameters. Finally, viscoelastic parameters depend only on

the maturation state, i.e. wood cell age. In the model, the relation between age and radial increments idr

or temporal increments it is obtained thanks to equation 5.

Temporal variations in each viscoelastic parameter of Burgers’ model are approximated by appropriate

mathematical functions that smooth the variations of the experimental data (see Fig. 9 in Pot et al (2013b)).

Thus, E1 is modelled by a linear function: E1(â) = 1.1 + 0.17â where E1 is in GPa and â in days. η1 is

obtained by the relation η1 = E1τ1 with a constant value of τ1 = 38 hours. 1
η∞

is modelled by a slightly

decreasing exponential function: 1
η∞

= 6.75 10−12 exp (−9.4 10−3â), where η∞ is in Pa.days and â in days.

The temporal variation of E0 was studied in Pot (2012). It was modelled thanks to the addition of an

exponential function and a Gaussian function that are schematically presented in Fig. 4. Contrary to other

parameters of Burger’s model, it was shown that there is a difference between TW and OW: the height of

the peak due to the Gaussian function was higher for TW (6500 MPa) than for OW (3800 MPa).

3.2 Cross section geometry

The diameter of trees A, B, C and D was regularly measured during the season from the base to the top

of the tree as described in Coutand et al (2007); Pot (2012). The diameter at the trunk base on the day of

tilting is presented in table 1. The spatial and temporal variations in diameter for each of these trees are

used as input data in the biomechanical model.
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The cross section is supposed to be perfectly circular. The geometry is defined thanks to the eccentricity

of the growth increments and a TW sector angle (Fig. 1). Eccentricity is defined by a coefficient of eccentricity

set to 0.4, which means that the centre of each growth increment is located at a distance from the pith centre

of 40% of the growth ring thickness. This value was found in Pot et al (2013b). The angle of the TW sector

is set to 180◦ thanks to experimental measurements which show that it does not significantly vary with

longitudinal position in the tree and that the mean value is 180±20◦ (Pot, 2012). As a first approximation,

both of these geometrical parameters are considered constant with space and time.

The pith is considered in the cross section as a cylinder of constant radius of rpith = 2.65 mm, according

to experimental measurements all along the trunk (Pot, 2012). Note that pith is considered as an elastic

material with a MOE of 30 MPa, which is one hundred-fold lower than wood, as suggested by Alméras and

Fournier (2009).

3.3 Mass distribution

3.3.1 Mass distribution along the trunk

The mass distribution of the two sets of trees (11 trees) was measured by weighing different parts of the

trees. After tree felling, the trunk was divided into logs of 35 cm length. They were weighed when the trees

were felled (i.e. in green state). Density was then calculated thanks to diameter measurements under the

hypothesis of a perfectly conical shape. The results for trees felled at different dates along the season are

shown in Fig. 5a. It appears that green wood density increases from about 600 to 1100 kg.m−3 along the

length of the trunk. This result could be due to a higher water content in the upper parts of the trunk.

Indeed, the pith is in greater proportion in the upper part of the trunk since its diameter remains almost

constant along the tree. This highly porous material must be full of water and then have a density close to

1000 kg.m−3, which finally induces a higher density at the top of the tree.

In the following, the longitudinal variation in wood density is modelled thanks to a cubic polynomial

equation that fits the experimental data, as follows:

ρ(x) = 17.42x3 − 0.91x2 − 3.25x+ 627.50 (13)
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where ρ is the density in kg.m−3 and x is the distance from trunk base in m. Since the density is used in

the model, the mass of the trunk automatically increases when growth occurs.

3.3.2 Mass distribution of the foliage

The mass of the foliage of the set of seven trees felled at different dates along the season is presented in

Fig. 5b. It appears that there is an increase in foliage mass along the season. A linear approximation gives

a rate of mass increase of 3.6 10−3 kg.day−1. This rate was used to model the temporal variation in foliage

mass of each tree.

The mass of the foliage of trees A, B, C and D was measured at the end of the season. The foliage was

divided in two parts along the trunk, and the length of these parts was measured. The total mass for each

tree is presented in table 1. Note that foliage mass can vary by 30% between trees. In the model, the foliage

mass of each tree is used in input by distributing linearly the mass of the two measured parts over their

length for each tree. The variation in foliage mass along the season is modelled thanks to the rate of mass

increase found above. It is important to take this variation into account, because over a period of 70 days

the foliage mass can vary by more than 50%. In terms of mass it represents about 40% of the total tree

mass.

3.4 Maturation strains

3.4.1 Definition of the temporal variation

To the best of the authors knowledge, no method for measuring MS during wood maturation exists, whereas

it is the most influential parameter according to various authors (Alméras et al, 2005; Coutand et al, 2011).

Measurements of residual longitudinal maturation strains (RLMS) exist, but they give information on strains

in the periphery of the tree only, i.e. cells that are always in the same maturation state. As mentioned by

Gril and Thibaut (1994), MS must not appear instantaneously; therefore it is necessary to consider their

temporal variation with maturation (wood cell age in our case). Moreover, the level of MS produced by

wood cells may vary along the season and with the gravitropic response because of different qualities of

TW, as mentioned by Coutand et al (2007). Thus, it seems necessary to model temporal variations in terms

of MS that are due both to maturation and variations along the season.
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A Gaussian cumulative distribution function was chosen to model the temporal variation in MS with

wood cell age (Fig. 6a). The shape of such a function enables the modelling of a smooth increase in MS

during a customizable period (the maturation time), and then an asymptote is reached, which models the

half of MS creation when the wood cells are mature. MS variation with wood cell age for a given face is

defined by the equation:

εmface(â, t) = εmtot,face(t)

∫ â

0
exp

(
(u− τâ,face)

2 ln (0.01)

(δâ,face/2)
2

)
du (14)

where τâ,face is the characteristic time which defines the middle of the distribution, δâ,face is the width

of the distribution at 1% of its height, and εmtot(t) is the final value of MS when the total strain has been

reached.

εmtot(t) can vary with time in order to model variations in MS along the season. Its variations are

arbitrarily defined with the same type of Gaussian distribution function (Fig. 6b):

εmtot,face(t) = Cface

∫ t

0
exp

(
(u− τt,face)

2 ln (0, 01)

(δt,face/2)
2

)
du (15)

where τt,face is the characteristic time which define the middle of the distribution, δt,face is the width of

the distribution at 1% of its height, and Cface is a constant which is adjusted in order to obtain the desired

maximum value of MS (which is noted εmtot,face(t 7→ +∞)). With this second function, wood cells created at

the beginning of the gravitropic reaction produce lower MS than wood cells created later in the season, which

simulates a variation in TW quality at the beginning of the gravitropic reaction. This function determines

the regulation of MS along the season regardless of the righting of the tree, thus it must be identified from

experimental measurements.

3.4.2 Inverse identification of MS temporal variation

Because of the lack of experimental methods to determine the MS temporal variations, the parameters

defined above were identified by fitting the modelled temporal variations of the curvature at the trunk base

of tree A to experimental data. To identify model parameters, some assumptions were made, because the

numerous parameters induce an indeterminate system. Firstly, the same temporal parameters were used for

both upper and lower faces, which means that maturation was presumed to occur at the same rate in both
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TW and OW. Secondly, the temporal parameters relative to MS variations with wood cell age were fixed

according to experimental data:

– δâ,face, which is the duration of maturation in terms of MS, is determined thanks to an experimental

study (see Pot (2012)) which showed that the MOE increases while maturating up to 13 to 25 days after

cell creation. In the present study, it is assumed that the average of this duration corresponds to the

duration of the maturation in terms of MS, thus: δâ,face = 19 days.

– τâ,face, which is the time when MS reach 50% of their final value, can be reasonably bounded between 5

and 12 days. Indeed, higher value than 12 days would lead to very low deformations for wood cells aged

of 8 days (cf. τâ,face= 15 days in Fig. 6a), which is not consistent with the fact that RLMS measurements

provide significant deformations in the first millimeter of the outer part of growing trees (see Coutand

et al (2014)). Lower value than 5 days would signify that maturation is almost instantaneous, this

particular case is discussed in part 4.

Thirdly, the maximum MS of the lower face, denoted εmtot,inf (t 7→ +∞) was set to 0.005. By doing so, it

represents a moderate proportion (between 11% and 36%) of the maximum MS of the upper face that is

found below, which seems probable.

By considering these assumptions, the maximum MS of the upper face (εmtot,sup(t 7→ +∞)) and the

temporal parameters relative to its variation along the season (τt,face and δt,face) were identified by min-

imizing the squared differences between experimental and modelled curvature at trunk base of tree A up

to 32 days after tilting. The optimization was done thanks to a constrained interior-point algorithm. Lower

and upper boundaries of the optimization were chosen to keep a physical meaning of the parameters, that

is : 1 < τt,face < 30, 2 < δt,face < 70 and 0.005 < εmtot,sup(t 7→ +∞) < 0.1. Different initial values of the

parameters were tested close to these bounds, without significant change in the optimized result.

Three different values of τâ,face were tested in input (5, 8 and 12 days, cf. Fig. 6a). The results are

presented in table 3. The identification gives an interval of [0.014;0.044] for εmtot,sup(t 7→ +∞), which is

discussed in section 4.4. The three results are comparable in term of fitting of the temporal evolution of

curvature. In the following discussions, the parameters obtained for τâ,face= 8 days are chosen. These

parameters are listed in table 2. The corresponding MS temporal variation along the season is presented

in Fig. 6b. Thanks to these parameters, the temporal variation in tree A curvature at the trunk base was
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correctly simulated up to 32 days after tilting (Fig. 7a). The MS parameters obtained for this tree were

then used to simulate the gravitropic reaction of trees B, C and D (see section 4.3).

3.5 Input data for the elastic model and the model with instantaneous maturation

The parameters used for the viscoelastic model with progressive maturation are described in the above

sections. To the best knowledge of the authors, it is the first time that such a model has been proposed; it

is useful, therefore, to compare it to models with more usual hypothesis. To do this, the same model was

used but the input parameters were modified.

Firstly, the effect of viscoelasticity was studied in comparison with an elastic model with progressive

maturation. The same MOE and MS parameters as viscoelastic with progressive maturation calculation

were used. The only difference was the viscoelastic behaviour, which was not taken into account.

Secondly, the proposed model was compared to a classical elastic model with instantaneous matura-

tion. MOE were set instantaneously to their mean value according to experimental bending tests, that is

E0,inf (iseg, idr, t) = 3 GPa for the lower face and E0,sup(iseg, idr, t) = 5.1 GPa for the upper face. This

induces better righting-up efficiency; thus, it was necessary to use lower MS to obtain the same curvature.

This is why, by maintaining the same value of MS of 0.005 on the lower face, MS of 0.0052 on the upper face

enabled us to obtain the same curvature value as with experimental measurements 28 days after tilting.

4 Results and discussion

4.1 Comparison of curvature

Results of the model in terms of curvature at the trunk base are presented in Fig. 7a. They are compared to

experimental data (solid black line). Despite the better righting-up efficiency regarding the level of MS, an

elastic model with instantaneous maturation (dash-dotted green line) cannot correctly simulate the temporal

curvature variation. Indeed, the lag period during which there is no tree curvature cannot be simulated. For

this instantaneous model, the curvature increases quickly at the beginning of growth, and then the rate of

curvature decreases progressively because of the increase in diameter of the trunk. Indeed, this increase in

diameter induces an increase in flexural rigidity, which counterbalances the effect of MS.
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Conversely, the viscoelastic model with progressive maturation (solid red line) can simulate the slow

decrease in curvature during the first days after tilting. This decrease is explained by the shape of the tem-

poral variation in MS maximum value, increase in tree weight, and viscoelastic creep. The elastic calculation

(dashed blue line) shows that the decrease in curvature is lower than that obtained with the viscoelastic

model with progressive maturation in this zone. The quick increase in curvature between 18 and 32 days

after tilting is also steeper with the viscoelastic model with progressive maturation than for the elastic model

with progressive maturation. This shows that viscoelasticity has a significant effect on tree gravitropism,

which was already highlighted by the models of Dlouhá et al (2008) and Coutand et al (2011). However,

this is the first time to the authors knowledge that this result has been confirmed by using experimental

data as an input to the model.

From 32 days after tilting to 70 days after tilting, the rate of curvature in the model remains almost

constant, while experimental results show a decrease in this rate. The model’s behaviour is consistent with

the temporal variation in total MS used, which reaches its maximum value about 32 days after tilting (Fig.

6b) and then remains constant. To model the decrease in curvature rate that is observed experimentally, it

would be necessary to change the temporal variation of MS along the season, with a decrease 32 days after

tilting. This result shows that there is a decrease in the intensity of MS, which can be interpreted as the

regulation of the level of MS by the tree in order to avoid becoming too curved and exceeding the vertical

limit. This latter explanation is consistent with the results of Coutand et al (2007), which show that there

exists an autotropic phase when the trunk is decurved to finally become straight and vertical.

4.2 Comparison of stress profiles

In Fig. 7b, the stress profiles of tree A obtained with the model for the same three assumptions discussed

above are presented (no experimental data are available). The stress profiles are compared to the only

temporal position when the curvature at the trunk base is almost the same for each model, that is 28 days

after tilting. Consequently, these 3 different stress profiles give rise to the same trunk curvature.

All three models present a Kubler-like profile (Kubler, 1959) in the central part, with a radius of between

2.65 mm and 17.6 mm from the centre of the pith. This is due to the initial calculation of the model, for which

the tree is considered to grow symmetrically with OW mechanical properties up to the radius measured
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when tree was tilted, that is 17.6 mm for tree A. Stresses in the pith are not presented, since its MOE is

very low.

It is worth noting that compressive stresses close to the pith reach very high negative values for the elastic

model with instantaneous maturation (less than -80 MPa), whereas taking maturation into account leads

to maximum compressive stresses of -40 MPa and adding viscoelasticity leads to maximum compressive

stresses of -20 MPa. The results of the elastic model with instantaneous maturation are consistent with

theoretical model of Kubler (1959), for which stresses tend towards infinity close to the pith. However, this

result is not physically admissible, contrary to the stress profile obtained thanks to the proposed model, for

which both progressive maturation and viscoelasticity induce lower compressive stresses.

A discontinuity in stresses is observed when the tree is tilted, corresponding to a radius of 17.6 mm

in Fig. 7b. This is due to the inclination of the tree, which induces a brutal change in stresses. When the

tree is tilted, the upper face is tensed and the lower face is compressed. Then new growth increments begin

their maturation on a structure for which internal stresses have changed instantaneously, bringing about

the observed discontinuity.

In the part of the tree that grows when the tree was tilted (r > 17.6 mm), the elastic model with

instantaneous maturation presents a quasi-linear shape for the stress profile, while models with progressive

maturation show a more complex profile. For the model with instantaneous maturation, stress is maximum

at the periphery of the tree i.e. newly formed cells. This is not realistic, because cells that have just been

created are not mature and have a very low MOE, thus they cannot exhibit such a stress level. Conversely,

models with progressive maturation show zero stress for new cells, and it increases progressively as the cells

become older, i.e. the distance from the periphery increases. This is due to the progressive appearance of

both MS and MOE variations, which are defined in Fig. 4 and 6a. Moreover, stresses in the zone of 17.6 to

19 mm from the pith on the upper face of the tree are lower for models with progressive maturation than

for models with instantaneous maturation. This is due to the progressive increase in total MS after tilting

(Fig. 6b), which enables the lag period to fit the curvature.

4.3 Comparison of the shape of different trees

Fig. 8 presents both the modelled and experimental shapes of the 4 trees named A, B, C, D at different

times after tilting. As explained before, the diameter and foliage mass of each tree were used as an input for
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the model, but mechanical properties and MS are the same for all four trees. Trees B, C and D can differ

from tree A by up to 31% in foliage mass and 14% in diameter at the trunk base (table 1). This difference in

trunk diameter results in a difference in the second moment of area up to 68%. The second moment of area

is proportional to flexural rigidity; thus the forces necessary to right-up these different trees are significantly

different. Using the model with the same MS and mechanical parameters for these different trees enables

us to test the robustness of the model.

The initial deflection just after tilting is well described for each tree all along its length (dashed-dotted

blue lines in Fig. 8). This shows that MOE measurements by bending tests are appropriate to modelling

tree mechanical behaviour, and that the hypothesis of a constant MOE all along the trunk is admissible

before gravitropic reaction.

The modelled shape of tree A 28 days after tilting is compared with experimental measurements (dashed

green lines in Fig. 8a). The modelled curvature fits the experimental data not only at the trunk base as

shown in Fig. 7a, but also all along the trunk. This validates the hypothesis of identical maturation in terms

of MS and MOE all along the trunk up to 28 days after tilting.

For trees B, C and D, experimental and modelled shapes 28 days after tilting are in good agreement.

The same observation can be made 7 days after tilting, when the 4 trees present, experimentally and by

modelling, a similar sagging. The same observations can be made for intermediate times. Thus, by using

exactly the same mechanical properties and MS temporal variation, the model can simulate the gravitropic

movement of different trees up to 28 days after tilting. However, from 28 to 32 days after tilting, the model

and experimental results start to diverge, and finally the modelled shape 70 days after tilting is very different

from the experimental shape, as shown for each tree of Fig. 7. This divergence appears while the temporal

variation of total MS defined here remains constant over time (Fig. 5b). Thus, this behaviour shows that MS

must start to decrease about 30 days after tilting, possibly because of an autotropic reaction that prevents

the tree to overshoot the vertical. Indeed, in a recent paper (Coutand et al, 2014), it is shown that RLMS

of the upper side start to decrease about 35 days after tilting.

4.4 Discussion on MS modelling

By using the same mechanical parameters and MS in input, the viscoelastic model with progressive matu-

ration presents satisfying results in terms of shape modelling for different trees up to 32 days after tilting.
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The maximum MS values of the upper face, which are obtained by inverse identification, are between 0.014

and 0.044 (with maximum MS of the lower face set to 0.005). These level of strain are far greater than the

RLMS measurements of TW performed on the same tree clones (less than 0.003 in (Coutand et al, 2014)).

However, such strains are necessary to obtain the high curvature increase between 18 and 32 days after

tilting.

This discrepancy could be explained by the fact that RLMS are not a good indicator of the MS that exist

in the tree. Indeed, RLMS measurements were performed on several wood cells located in the periphery of

the trunk (see Yang and Waugh (2001) for a review). In the part of the tree where these measurements

were performed, there are cells in different maturation states, and thus the RLMS are not representative

of the MS of wood cells that are fully matured. Moreover, RLMS measurements are elastic measures:

the deformation due to stress release is measured instantaneously just after the grooves are made. Thus,

viscoelastic deformations do not have time to occur during the measurement, whereas the viscoelastic

behaviour of wood is significant, as it was shown in a previous work (Pot et al, 2013b). Indeed, it was shown

in this latter study that longitudinal slats of green TW that are harvested from poplar trees and maintained

in water curve over a period of several weeks because of internal maturation stresses and the viscoelastic

behaviour of green wood. This curvature reach a value of 0.019 mm−1 in average for slats that are in the

periphery of the tree. Assuming that maturation stresses are fully released when this autonomous curvature

is reached, the radius of curvature, i.e. wood deformations, are linked to the differential of MS between the

two sides of the slat. With a curvature of 0.019 mm−1 and a thickness of 1.3 mm as in Pot et al (2013b), a

value of 0.025 for this differential of MS between the two sides of the slat is obtained. Since these strains are

only due to the release of internal stresses, this shows that wood cells can reach strains of the same order

of magnitude as those found by inverse identification thanks to the present model. Consequently, it can be

concluded that RLMS cannot be assimilated to the MS that really occur during wood cell maturation. It

would be useful to establish a relationship between RLMS and MS. Finally, the assumption of the model

concerning MS seems acceptable in order to model quantitatively the first steps of gravitropic reaction.

5 Conclusion

A biomechanical model of tree gravitropism is proposed in this work. The main contribution is the modelling

of the progressive maturation of wood while the tree is growing. This is done by taking into account spatio-
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temporal changes in the mechanical properties. The model uses experimental data of temporal and spatial

variations in geometry and the mechanical properties of young poplar trees. To the best of the authors’

knowledge, this is the first time that such comparisons between biomechanical model and experimental

measurements of gravitropism have been performed.

MS were identified thanks to the model in order to fit the temporal variation in the curvature of a

given tree during its gravitropic reaction. The testing of these MS on the gravitropic reaction of four

different trees shows that the hypotheses made concerning temporal variations in MS are relevant. It appears

that MS in TW must be higher than those obtained with usual estimations of MS, which are based on

RLMS measurements. As a result, the exploitation of the present model shows that RLMS measurements

underestimate the MS that are really experienced by wood cells. The main suspected cause is the viscoelastic

behaviour of green wood, which is not taken into account by RLMS measurements.

The proposed model provides significant improvements in the modelling of tree gravitropism. Firstly, the

modelling of temporal variations in MS over the course of the season enables the simulation of the temporal

variation in tree curvature in the latency phase and at the beginning of the gravitropic phase. Secondly,

the internal stress profile in the trunk is more realistic than stress profiles obtained with elastic models or

models with instantaneous maturation. Further work is currently being carried out to simulate the end of

the gravitropic phase (and possibly the autotropic phase) by taking into account the regulation of MS.
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Fig. 2 Representation of a Burgers’ rheological model
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Fig. 8 Experimental and modelled shapes of different trees at different times along the season: just after tilting, 7 days,
28 days, and 70 days after tilting
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Table 1 Diameter at the trunk base at the time of tilting and foliage mass 70 days after tilting for the 4 different trees
studied

Tree Diameter at trunk base at Foliage mass 70 days
the time of tilting (mm) after tilting (kg)

A 35.2 0.541
B 31.4 0.414
C 32.1 0.470
D 30.9 0.473
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Table 2 Input parameters used for trees A, B, C and D for the viscoelastic model with progressive maturation

Parameters Value and unit

Material properties (section 3.1)

Burgers’ parameter τ1 38 hours

Burgers’ parameter E1 E1(â) = 1.1 + 0.17â (GPa)

Burgers’ parameter 1
η∞

1
η∞

=

6.75 10−12 exp (−9.4 10−3â)
(Pa.jour)-1

Peak value of E0 for OW 3800 MPa

Peak value of E0 for TW 6500 MPa

Tree parameters (section 3.2 and 3.3 )

Length of the trunk L
Experimental

measurement for each tree
(m)

Radius of the trunk r(x, t)
Experimental

measurement for each tree
(m)

Initial tilt angle α
Experimental

measurement for each tree
(close to 35o)

Angular sector of TW γ 180o

Coefficient of eccentricity 0.4 m/m

Pith radius rpith 2.65 mm

Wood density ρ(x) Equation 13 (kg.m−3)

Foliage mass linear
repartition

Experimental
measurement for each tree

(kg.m−1)

MS parameters (section 3.4)

Middle of MS temporal
distribution of maturation

τâ,face

8 days

Width of the distribution
of maturation δâ,face

19 days

Middle of MS temporal
distribution along the

season τt,face

14 days

Width of the distribution
along the season δt,face

59 days

Maximum value of MS on
lower face

εmtot,inf (t 7→ +∞)
0.005 m/m

Maximum value of MS on
upper face

εmtot,sup(t 7→ +∞)
0.027 m/m
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Table 3 Results of the identification of MS parameters by fitting the temporal evolution of curvature at trunk base of tree
C, for different values of τâ,face

Fixed parameter Optimised parameters

τâ,face (days) τt,face (days) δt,face (days) εmtot,sup(t 7→ +∞)

5 21 66 0.044
8 14 59 0.027
12 1.6 47 0.014


