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ABSTRACT

The paper deals with numerical estimations of Lipschitz bounds
relating locally the reconstruction error to the measurement error in
the compressive sensing framework. Most recent theoretical papers
in the field parametrize such bounds relatively to certain families
of vectors called dual certificates, which are fundamental to several
reconstruction criteria. The paper provides two algorithms for com-
puting dual certificates that optimize their related reconstruction error
bounds. We give a greedy algorithm that provides a fast approximate
solution, and a convex-projection algorithm that computesthe exact
optimum.

I. I NTRODUCTION

An important topic in compressive sensing, that comes alongside
with the central problem of the recoverability of sparse signals, is
the robustness to measurement noise for signals that are normally
recoverable in the absence of noise.

Supposex0 ∈ R
n is an unknown sparse signal that has to be

recovered from an ill-posed linear problem

y = Ax0 + b (1)

in which y is a known vector, calledobservationor measure data,
A ∈ R

m×n is a known linear operator withm < n, calledsensing
or measuring operator, and b ∈ R

m is an unknown vector called
sensingor measuring noise. Since the sensing matrix always has
a non-trivial kernel, "solving" (1) undergoes aregularization, which
classically means finding the solution(s) of (1) that minimize a certain
functional. In the noiseless caseb = 0, a vectorx0 that coincides with
the unique solution of the regularized problem is calledrecoverable
or identifiablewith respect to the chosen functional.

If one is only interested in sparse signalsx0, the natural choice for
such a functional would be theℓ0-pseudo-norm‖x‖0 = #(supp(x)),
i.e. the number of non-zero coordinates ofx. Unfortunately solving
theℓ0-regularized problem is considered untractable, hence a popular
choice is rather to consider a convexℓ1 regularization. In the noiseless
caseb = 0 this amounts to solving thebasis pursuit[4]:

min
x∈Rn

‖x‖1 s.t.Ax = y (2)

In the noisy case several variants have been developed, suchas the
popular Lagrangian formulation, but here we will rather focus on the
(equivalent) constrained optimization problem

min
x∈Rn

‖x‖1 s.t. ‖Ax− y‖2 ≤ δ. (3)

This model has been explored by many papers and applied in
a different applications in signal and image processing. Here the
identifiability of the original vector is evaluated by sign consistency
and noise robustness.

More precisely,x0 is considered identifiable with sign consistency
if the solution of (3) has the same support thanx0 i.e. the positions of

the non zero components. The recovery of the support generally needs
strong assumptions and might hold only for small enough noises.

On the other side, noise robustness involves theℓ2 recovery error
regardless of the support, which in our case is‖x0−xδ‖2, for some
minimizer xδ of the optimization problem (3). Noise robustness is
usually expressed in terms of some Lipschitz boundC relating the
ℓ2 recovery error to theℓ2 norm of the noise, such as

‖xδ − x0‖2 ≤ Cδ, ‖b‖2 ≤ δ (4)

in the case of the problem (3).
Classical theoretical estimations for such constants weregiven

in the well-studied context of random matricesA with various
prescribed column distributions. Such matrices are shown to satisfy
the restricted isometry property (RIP), hence noise-robustness bounds
can be derived in terms of RIP constants.

Unfortunately these RIP assumptions can only be applied for
random matrices and are unsuitable in general for some givendeter-
ministic matrix. Deterministic matrices occur in various applications,
as for instance in tomography, which was our initial target application.
Here sensing matrices can be viewed as discrete versions of Radon
transforms, whose behavior does not match the RIP context.

Other known results applying to deterministic matrices give errors
bounds estimates using a semi implicit formula of the solution of the
noiselessℓ1-minimization problem, but are only valid under small-
noise assumptions.

As an alternative, more recent papers focus on the local behavior
of the reconstruction error. One such approach theoretically consists
in emphasizing an error bound for each member of a certain family
of vectors associated to a local noiseless solution. These vectors are
calleddual certificatesand play a fundamental role in identifiability
criteria based on the so-calledsource condition[1], [11]. As such,
the theoretical bound estimates based on dual certificates are more
versatile, since they are local - hence potentially more accurate - and
need no a priori assumptions on the magnitude of the measurement
noise. However, dual certificates are not unique, and findingthem
is not straightforward and might have a significant computational
cost. The common strategy consists in building "candidates" which
can be either generic or specific to a certain context. In the context
of super-resolution, Candès et al [2] [3] build a trigonometric poly-
nomial which is a certificate under certain conditions. In the same
context, Duval et al [8] constructed candidates by minimizing their
ℓ2 norm and imposing a zero-derivative wheneverx0 has a non-zero
component. Also, Vaiter et al [14] compute a generic candidate.

In this context involving dual certificates, theoretical robustness
Lipschitz bound were given throughout [1], [12] and [7], as

‖xδ − x0‖2 ≤ C(η)δ, ‖b‖2 ≤ δ, (5)

where the constantC(η) depends, besides on the matrixA and the
support ofx0, on some dual certificateη ∈ R

m for x0.



In the paper we provide two algorithms for computing dual
certificatesη which minimize their related Lipschitz error bounds
C(η) in (5), based on two different approaches:

The first is a greedy algorithm that provides a fast approximate
solution, by iteratively minimizing the error bound with respect to a
current dual certificate candidate. This produces a fast approximation
of the optimal bound, since all the numerical computations only rely
on scalar products.

The second algorithm is based on a theoretical geometric result that
describes the exact optimal solution. More precisely we showed that
the problem of finding the dual certificate minimizing the error bound
can be reduced to computing the convex projection of a suitable
vector over a certain convex set. As such, it gives the best error
bound - which is attained for a unique dual certificateηopt, but has
a higher computational cost than the greedy approximation.

The two algorithms are illustrated and numerically compared for
compressive sensing matrices issued from a tomography application
framework. The relationship between theoretical bounds and numer-
ical observed bounds is also discussed.

Notations:Throughout the paper,(ei)i=1,...,n stands for the canon-
ical base inRn, A ∈ R

m×n denotes a linear operator fromRn to
R

m, andai = Aei, (i = 1, . . . , n) the columns ofA.
For x = [x1, . . . , xn] ∈ R

n, its support is denoted

supp(x) = {i ∈ {1, . . . , n} | xi 6= 0},

and its vector sign bysign(x) = [sign(xi)]i=1,...,n.
Also, for some subsetI ⊂ {1, . . . , n}, we denote#(I) the

cardinal ofI , we writexI for the restriction ofx to its components
indexed byI , andAI for the submatrix ofA with the columnsai,
i ∈ I .

The notationA∗ stands for the adjoint ofA, while A
+ denotes

the Moore-Penrose pseudoinverse ofA, i.e. A+ = (A∗
A)−1

A
∗.

The p, q-operator norm of a matrixA is

‖A‖p,q = max
x 6=0

‖Ax‖q
‖x‖p

and‖A‖p,p = ‖A‖p (6)

Note that‖A‖1,2 = max
i
‖ai‖2 and‖A+‖2 =

√

‖(A∗A)−1‖2.

Finally, for any subsetM of Rn, we writeAff(M) andConv(M)
for the affine, respectively convex envelope ofM . In particular,B1 =
Conv({±ei}i=1,...,n) stands for the closed unit ball ofRn under the
ℓ1-norm.

II. STATE OF THE ART

Let us begin by recalling the notion ofdual certificate, its related
source(or range) condition from regularization theory [1] and their
connection with identifiability and noise robustness in theframework
of ℓ1-minimization.

Fix a linear operatorA ∈ R
m×n from R

n to R
m, a vectorx0

in R
n and let I = supp(x0). A vector η in R

m is called adual
certificatefor x0 if the vectorA∗η belongs to the subgradient of the
ℓ1 norm atx0. This latter set can be viewed as

∂‖x0‖1 = {u ∈ R
n : uI = sign(xI) and‖u‖∞ ≤ 1} (7)

If η satisfies only the first condition above, i.e.

(A∗η)I = sign(x0
I) (8)

then η is usually called acandidateor a pre-certificate. Also, x0

is said to satisfy thesource conditionif it admits at least one dual
certificate.

Let us first discuss these notions in connection to the identifiability
of x0 in the noiseless case, which means, as mentioned in the
introduction, the property ofx0 to be the unique minimizer of the
ℓ1-regularized problem (2).

One can easily check that the source condition onx0 is a sufficient
condition forx0 to be a minimizer of (2), but it does not guarantee
its uniqueness.

One crucial step towards uniqueness is to turn the second condition
in (7) into a strict inequality outside the support ofx0, i.e. requesting
that

‖(A∗η)J‖∞ < 1, J = {1, . . . , n} \ I (9)

This strengthened condition insures that no minimizer of (2) can be
supported anywhere but insideI . Searching for dual certificates with
this strengthened condition has been proposed by several authors. It
has been first exploited by Fuchs in [9], where the inequality(9) is
tested for the generic pre-certificate

d(x0) = A
+∗
I

sign(x0) (10)

in order to derive a sufficient identifiability criterion. This latter
condition is is also known as the irrepresentability condition in
statistics, see [7] for more details. Rather than testing a particular
candidate, a more general sufficient criterion was given by Vaiter et
al in [14], where convex optimization is used to solve the problem

IC(x0) = min
η∈Rm

‖A∗
Jη‖∞ s. t.A∗

Iη = sign(x0
I) (11)

whose solutions are dual certificates satisfying (9) whenever
IC(x0) < 1.

Finally, even ifx0 admits a dual certificate satisfying (9), in order
for x0 to be the unique minimizer of (2) one has to make sure that
there are no other minimizers supported insideI . One can see that
this happens if and only ifAI is injective.

Summing up, this latter injectivity condition, together with (8) and
(9) represent a strengthened version of the source condition that was
considered by Grasmair et al in [11][13][12]to describe thenoiseless
ℓ1-identifiability.

Dual certificates have a deep geometric interpretation inℓ1-
identifiability regarded in the context of polytope theory,as consid-
ered by Donoho in [6]. In fact, from the main result there it follows
that x0 is identifiable if and only if the convex set

F (x0) := Conv({sgn(x0
i )ai : i ∈ I}) (12)

is a face of affine dimension#(I)− 1 of the image polytope

P := AB1 = Conv({±ai : i = 1, . . . , n}) (13)

Now the fact thatF (x0) is a face ofP means by definition that
there is a linear functional onRm, thus a vectorη ∈ R

m (via Riesz
representation theorem), that separatesF (x0) from the rest of the
polytopeP . This translates by

〈η, sgn(x0
i )ai〉 = 1 i ∈ I, (14)

〈η,±aj〉 < 1 j ∈ J, (15)

which are nothing but equivalent forms of (8) and (9) respectively.
Moreover the injectivity ofAI is equivalent to the fact thatF (x0)
has affine dimension#(I)− 1.

This means precisely that dual certificates, in the sense of the
strengthened source condition, can be regarded as separating func-
tionals for faces of the image polytopeP . This geometric interpre-
tation is also very useful in the matter of noise robustness,that will
be discussed next.



Let us suppose now thatx0 is noiseless-identifiable, thus satisfies
the strengthened source condition for some dual certificateη. Assume
that x0 is measured in (1) with some noise0 < ‖b‖2 ≤ δ and
denotexδ a minimizer of the regularized problem (3). Estimating
the noise robustness of the reconstruction deals with measuring the
reconstruction errorx0 − xδ, which unfortunately has no implicit
formula in general. It is much instead easier to measure thiserror
along various directions, each direction producing an error estimate,
with more or less accuracy. Among all possible directions, the most
"fiable" are those given by the dual certificates, in the senseof scalar
products of the type〈A∗η, x0−xδ〉. Such quantities characterize the
Bregman distance betweenx0 andxδ, which was used by Burger et
al. [1] in order to measure the recovery error with a very simple
Lipschitz constant. However, the Bregman distance, as a pseudo-
distance, is a rather weak measure, and one would prefer anℓ2-
estimation instead. This was done by Grasmair et al. [13] by relating
the Bregman distance to theℓ2 norm. The resulting Lipschitz constant
was afterwards reduced by Dossal et al [7], leading to the following
result:

Theorem 1 ([7]). For any minimizerxδ of (3) and any dual
certificateη satisfying the strengthened source condition(9) one has

‖xδ − x0‖ ≤ C(η)δ (16)

with

C(η) = 2
(

‖A+
I
‖2 + (‖A+

I
‖2‖AJ‖1,2 + 1)Q(η)

)

(17)

Q(η) =
‖η‖2

1− ‖A∗
J
η‖∞

(18)

Clearly the optimal Lipschitz constant is obtained for the dual
certificate that minimizes the factorQ(η), which solely depends on
η in (17). This leads to the optimization problem

min Q(η) : (A∗η)I = sign(x0
I), ‖(A∗η)J‖∞ < 1 (19)

We give in the next section the explicit formula for the solution
of this problem and the corresponding algorithm that computes the
optimal dual certificate and its related Lipschitz bound.

III. A CONVEX-PROJECTION ALGORITHM FOR THE OPTIMAL

L IPSCHITZ BOUND

We saw in the last section that a dual certificateη for an
identifiable vectorx0 supported onI has a geometric interpretation
as a separating functional for the faceF (x0) of the image polytope
P (see (12),(13)). This means that the dual affine subspace ofη

Hη := {u ∈ R
m : 〈η, u〉 = 1} (20)

is a support hyperplanefor the faceF (x0), i.e. Hη ∩ P = F (x0).
The key fact in solving the problem (19) is that the quantityQ(η)

also has a strong geometric interpretation. More precisely, consider
the "reduced" polytope

PJ = Conv({±aj : j ∈ J}) (J = {1, . . . , n} \ I) (21)

One can show that:

Proposition 2. For any dual certificateη of x0 one has

Q(η) =
1

D(Hη, PJ)
(22)

whereD stands for the affine euclidian distance.

Therefore in order to minimizeQ(η) one has to maximize the
distance from the reduced polytopePJ to a generic affine hyperplane

Hη passing through the faceF (x0). Obviously the intersection of all
these hyperplanes is the affine closure of the faceF (x0), denoted

L(x0) := Aff(F (x0)) = Aff({sgn(x0
i )ai : i ∈ I}) (23)

It is more convenient to considerK the orthogonal complement of
L(x0) in R

m and project the whole problem ontoK. DenotePK

the orthogonal projector ontoK. More precisely, suppose ifI =
{i1, ..., ip} andĀI = (āi)i∈{i2,...,ip} is the matrix with the columns
{ai − ai1 , i = {i2, ..., ip}}, then

PK = IRm − ĀI
¯
A

+
I
. (24)

Put ãj = PKaj and consider the projected polytope

P̃J = PKPJ = Conv({±ãj : j ∈ J}) and H̃η = PKHη. (25)

Now the entire affine subspaceL(x0) projects onto a singleton, which
can be shown to be precisely the vector

d(x0)+ =
d(x0)

‖d(x0)‖22
, (26)

the dual vector of the generic pre-certificated(x0) given in (10). It
is also straightforward that

Q(η) =
1

D(Hη, PJ )
=

1

D(H̃η, P̃J )
. (27)

Note that, in contrast to (22),̃Hη above is now a generic affine
hyperplane inK which passes just through the pointd(x0)+, and
whose distance to the projected reduced polytopeP̃J needs to be
maximized. One can use then a couple of standard convex analysis
arguments to show the main result:

Theorem 3. Denotew0 the point in P̃J at minimal distance from
d(x0)+. Then

min
η

Q(η) =
1

D(L(x0), PJ )
=

1

D(d(x0)+, P̃J )
=

=
1

‖d(x0)+ −w0‖2

(28)

Moreover, the minimal value is attained for the unique dual certificate

ηopt =
‖d(x0)‖22

1− 〈d(x0), w0〉
(d(x0)+ − w0). (29)

The algorithmic implementation is straightforward from the last
theorem:

Algorithm 1 Convex projection algorithm for optimal Lipschitz
bound

1: Put d(x0) = A
+∗
I

sign(x0
I) andd(x0)+ = d(x0)/‖d(x0)‖22;

2: Compute the projection matrix ontoK: PK = IRm − ĀIĀ
+
I ;

3: Put ãj = PKaj , j ∈ J ;
4: Compute the convex projectionw0 of d(x0)+ onto the convex

closure of±ãj , j ∈ J
5: ComputeQopt = ‖d(x

0)+ − w0‖−1
2

One can use any algorithm to compute the convex projection in
Step 4., which clearly is the most costly in terms of complexity.
In our implementation we used anm-dimensional version of the
Gilbert-Johnson-Keerthi (GJK) algorithm [10]. For this algorithm for
instance, each iteration comprises two steps, one step which performs
a support hyperplane computation, and a second step containing a
simplex convex projection. The first step is rather fast, since it relies



solely on scalar products. On the contrary, the simplex projection is
the costly part, since it is itself recursive.

In the next section we show how one can roughly eliminate the
type of costly computation above, at the expense of some precision
in the bound estimation.

IV. A GREEDY ALGORITHM FOR FASTL IPSCHITZ BOUNDS

ESTIMATES

In this section we construct an accelerated greedy algorithm 2
which only deals with scalar products, thus fast to compute,for
producing approximative Lipschitz bound estimations.

The main idea is roughly to iteratively select a sequence of
candidatesη which decrease the denominator in (18) until a dual
certificate is found. This is done by decreasing the scalar product
between columns ofA indexed by the cosupportJ of the signal and
the candidate vectorη at each step.

More precisely, as forIC criterion (11), we aim to construct a
candidateη with a minimal‖A∗

Jη‖∞.

The algorithm is initiated with the same generic candidated(x0)
in (10) which also appears in the previous algorithm.

At each stepk, ‖A∗
Jη‖∞ is reduced by adding a new component

ajk to the vectorηk+1 = ηk − tkA
+∗
Ik

signk such thatJk = Jk−1 ∪
{jk} andAJk

injective. The vectorsignk is the appropriated sign
for effectively reducing the scalar products with the selected columns.
The maximum of the scalar products between these selected columns
is scaled down together proportionally totk and, moreover,

|〈as, ηk〉| = ‖A
∗
Jηk‖∞ (s ∈ S)

where S denotes the set of selected columns. When the vectorη
is modified, its scalar products withA∗

J are also affected and there
are some scalar products which can increase. The descent factor tk
is computed to have the best trade-off between the reduced scalar
products and those which increase.

Empirically, thesignk is stable by(A∗
Jk

AJk
)−1 i.e

sign((A∗
Jk

AJk
)−1signk) = signk

Indeed, if the sign of the scalar product of an already selected
column is inverted, the scalar product scalar will increaseinstead
of decreasing. Consequently, the factortk will be smaller and the
maximum of the scalar products will be limited. This stability can
be an indicator of a column which is no more needed.

Finally, an optional elimination step can be used for cleaning
the superfluous columns at the end. For enough sparsex0, this
elimination step is not necessary.

Algorithm 2 Greedy algorithm to compute a pre-certificate with
elimination

1: Calculateη0 = A
+∗
I

sign(x0
I)

2: signk ← vector zeros of the length ofx0
I

3: Ik_bad← (1)
4: while Ik_bad is non empty do
5: while AIk

is injective do
6: jk ← max

jk /∈Ik
|〈ajk , η〉|

7: signk ← signk ∪ {sign(〈ajk , η〉}
8: Ik ← Ik ∪ jk
9: tk ← min

i/∈Ik
ti =

〈ai,η〉−〈ajk
,η〉

(A∗A
+∗

I
k

signk)i−(A∗A
+∗

I
k

signk)jk

such that

ti > 0
10: η ← η − tkA

+∗
Ik

signk

11: end while
12: Ik_bad← component ofIk such thatA∗

Ik
signk 6= signk

13: Elimination of componentsIk(Ik_bad)
14: Elimination of componentssignk(Ik_bad)
15: end while

V. NUMERICAL RESULTS

In this section, we create synthetic sets of sparse imagex0 ∈ R
n of

sizex = 64× 64. The operatorA of the computed tomography will
be a classical Radon transform with parallel lines. There isno real
gap with a fan-beam like operator. The Radon transform is performed
with the code written by Justin K. Romberg. In the noiseless case,
the basis pursuit has been computed using linear programming with
the Matlab optimization toolbox and OPTI toolbox [5] ( to speed up
the calculations). We obtain the same results with those toolbox. In
the noisy case, (3) was computed with SPGL1 toolbox [15] withthe
best precision.

A. Empirical performance of the greedy algorithm for noiseless
identifiability

In this subsection we present the numerical results for the greedy
algorithm regarding its ability to produce dual certificates, and
compare it with other existing criteria.

We used as a reference an empirical phase transition of theℓ1

minimization is obtained, showing the degree of sparsity one can
expect for within the identifiability zone. Different sets of sparse
images were built for each degree of sparsity. A first one, a non-
negative, where non-zero components are set to 1 and the second
where non-zero components can take -1 or 1 as value. At first, a
hundred signals are selected for a given sparsity and a certain number
of angles. The basis pursuit is performed on each signals of agiven
sparsity and a probability of success is deduced. The operation is
repeated for each sparsity. Results are shown as a function of the
sparsity in Figure 1.

For the same set of selected sparse images, the pre-certificates are
computed via the greedy algorithm and it is checked whether they are
dual certificates. As for the basis pursuit, results are shown as a ratio
of the number of dual certificates over the pre-certificates function
of sparsity. The labelηIC denotes the candidate produced byIC
criterion.d is for the Fuchs criterion that only checks the particular
candidated(x0) - see (10) -,ηg is the greedy algorithm without the
elimination step andηg2 is the greedy algorithm with elimination.

The projection algorithm is not represented in the Figure 2 because
it finds a dual certificate for every identifiablex0. It is a very
good way to estimate the success of sparse approximations byℓ1

minimization. There is only one issue, the cost of time computation



Figure 1: Examples ofx0 ∈ R
64×64
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Figure 2: The ratio of vectors recovered byℓ1 minimization as a
function of ‖x0‖0. The ratio of pre-certificatesd, ηg, ηg2 and ηIC
which are dual certificates as a function of‖x0‖0

can be near or worst thanℓ1 minimization itself as it is show in
the next section. The IC covers almost the whole set of identifiable
signals but it gives the worstQ. The pre-certificateηg2 is a dual
certificate for nearly all of identifiable signals. One can note that the
enhanced greedy algorithm has a huge gain over the simple greedy
approach. The Fuchs criterion is verified only on signals with a low
degree of sparsity.

B. Projection vs Greedy

This subsection presents a comparison between the projection
algorithm and the greedy algorithm regarding time complexity and
quality of the Lipschitz bounds.

The table I and II present theQ obtained for different degrees of
sparsity.

When the degree of sparsity approaches the phase transition, Q is
higher and the time computation explodes for the greedy algorithm,

sparsity 80 100 150
Q time(sec) Q time(sec) Q time(sec)

mean 11.2262 11.9678 15.29 11.38 37.44 15.13
median 11.1787 11.8658 15.27 11.33 36.71 15.01

min 9.3402 9.9907 12.45 10.47 26.53 13.15
max 13.4216 16.3981 19.35 12.85 56.54 17.37

Table I: Results forQ obtained by the projection algorithm

sparsity 80 100 150
Q time(sec) Q time(sec) Q time(sec)

mean 11.5985 3.7014 15.84 4.58 42.95 9.64
median 11.5188 3.5650 15.74 4.44 41.25 9.51

min 9.5915 2.8845 12.83 3.53 29.14 6.71
max 13.7379 5.7184 20.02 6.36 72.16 14.54

Table II: Results forQ obtained by the greedy algorithm

because of the elimination of bad components. Close to the phase
transition, finding a dual certificate is harder and there aremany steps
of elimination, thus the algorithm struggles in a long loop.Under a
certain degree of sparsity, the fast greedy algorithm leadsto dual
certificates such that the correspondentQ is neared to those of the
projection algorithm.

C. Theoretical bounds versus real bounds

We end this section by a discussion on the quality of the theoretical
Lipschitz bounds. One general feature is that these bounds always
emphasize a worst case, so they can be very pessimistic for an
arbitrary noise. A classical approach for testing how realistic they
are is to compute the recovery of a signal with a large number of
gaussian noises. In the context of computed tomography, thechoice
of the directions of the ray, i.e the angles between the rays and an
axis, is important. All the results are obtained with a constant angular
pitch, except in the worst case where we first choose the directions
which produces the best results for our purpose. We also construct a
"worst case" noise.

Locally, one knows that the solutionxλ with Jλ = supp(xλ) is

xλ
Jλ

= x0
Jλ

+A
+∗
Jλ

b− λ(A∗
Jλ

A
∗
Jλ

)−1sign(xλ
Jλ

) (30)

One can expect to maximize‖xλ
Jλ
−x0

Jλ
‖2 by building a noise vector

b based on the last supportJλ during the execution of (3) where the
matrix (A∗

Jλ
AJλ

)−1 is not well-conditioned. It could work for a
small noise in the sense ofℓ2. Indeed, a higher noise can impact the
sign. Following this idea, the algorithm 3 is proposed.

Algorithm 3 Building a worst case noise vector

1: Find the last supportJλ such that(A∗
Jλ

AJλ
)−1 is not well-

conditioned
2: (U, S, V )← SV D((A∗

Jλ
AJλ

)−1) whereSV D is the Singular
Value Decomposition.

3: b← V (1) whereV (1) is the vector with the maximum singular
value.

4: normalize b.

The table III presents the best results with the "worst case"noise
vector for small noise and it compares to a hundred gaussian noises
and the theoretical boundary. As it is shown, the initial gapin the
literature has been filled, while there is still a significantdifference.

One sees that the theoretical bounds differ from real boundsby
some varying factor. In the case of tomography matrices, this can be
explained even in the continuous domain. Indeed, ifRf is the Radon



‖xλ
Jλ

− x0
Jλ

‖2 Mean Max WC

TB1/‖xλ
Jλ

− x0
Jλ

‖2 from theorem 1 133.9 24.8 24.02

TB2/‖xλ
Jλ

− x0
Jλ

‖2 from [13] 728.7 134.9 130.7

Table III: Ratio between theoretical results and realℓ2-error.TB is
the theoretical boundary, mean is the meanℓ2-error with gaussian
noises, idem with max and WC is theℓ2-error with the "worst" case
noise.

transform operator,Rf∗Rf can be seen as deconvolution operator.
Duval et al [8] show in the context of sparse spike deconvolution that
there can be small Dirac movements. Thus one cannot expect a too
smallℓ2-recovery error. Moreover, in the discrete domain this leadto
a further increase of theℓ2-error when the resolution of the discrete
grid increases. In this context, even for small noises, where one can
generally hope a better approximation, the theoretical estimation of
the noise robustness still remains at some factor away.

One can note that this bound not only hold for a solutionxδ but for
every solutionxδ such that‖xδ‖1 ≤ ‖x

0‖1. Indeed, this theoretical
result covers the worst case for this set of solutions of (3).It also
explains very well the gap with the reality.

0 0.01 0.02 0.03 0.04 0.05 0.06
0

5

10

15

Figure 3: The theoretical boundary in function of the mean ofthe
recovery error of a thousand different gaussian noises.

Even so, the figure 3 shows a correlation between the theoretical
results and the reality. There is approximatively a ratioK.

VI. CONCLUSION

The presented algorithms allow the numerical optimizationof some
of the most recent and versatile theoretical results concerning noise-
robustness in compressive sensing. Numerical results showthat they
are rather complementary with respect to different sparsity regimes.
Also, one can choose one or the other according to the potential
application priorities, speed versus quality. In addition, due to their
inherently and natural geometrical content, part of the ideas behind
the proposed algorithms is susceptible to be adapted for future
refinements of theoretical noise-robustness estimations.
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