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+: IMB, CNRS UMR 5251 ,Université de Bordeaux

ABSTRACT

The paper deals with numerical estimations of Lipschitzrotsu
relating locally the reconstruction error to the measumgngsror in
the compressive sensing framework. Most recent theotgipers
in the field parametrize such bounds relatively to certaimilias
of vectors called dual certificates, which are fundamertadeveral
reconstruction criteria. The paper provides two algorgHior com-
puting dual certificates that optimize their related retasion error
bounds. We give a greedy algorithm that provides a fast xppeaie
solution, and a convex-projection algorithm that computes exact
optimum.

I. INTRODUCTION

An important topic in compressive sensing, that comes sloieg
with the central problem of the recoverability of sparsenalg, is
the robustness to measurement noise for signals that ameatpr
recoverable in the absence of noise.

the non zero components. The recovery of the support génesdds
strong assumptions and might hold only for small enougheois

On the other side, noise robustness involves/theecovery error
regardless of the support, which in our casé8 — z°||2, for some
minimizer z° of the optimization problem (3). Noise robustness is
usually expressed in terms of some Lipschitz bodnhdelating the
22 recovery error to thé? norm of the noise, such as

lz* =22 < €5, [bll2 <6 (4)

in the case of the problem (3).

Classical theoretical estimations for such constants vgiren
in the well-studied context of random matrices with various
prescribed column distributions. Such matrices are shawsatisfy
the restricted isometry property (RIP), hence noise-ristass bounds
can be derived in terms of RIP constants.

Unfortunately these RIP assumptions can only be applied for
random matrices and are unsuitable in general for some gigtar-

Supposez” € R™ is an unknown sparse signal that has to bministic matrix. Deterministic matrices occur in varioyspéications,

recovered from an ill-posed linear problem
y=Az"+b Q)

in which y is a known vector, calledbservationor measure data
A € R™*™ is a known linear operator with < n, calledsensing

as for instance in tomography, which was our initial targetleation.
Here sensing matrices can be viewed as discrete versionadirR
transforms, whose behavior does not match the RIP context.
Other known results applying to deterministic matricesegvrors
bounds estimates using a semi implicit formula of the sotutf the

or measuring operatgrand b € R™ is an unknown vector called noiseless¢!-minimization problem, but are only valid under small-
sensingor measuring noiseSince the sensing matrix always hadi0ise assumptions.

a non-trivial kernel, "solving" (1) undergoesregularization which
classically means finding the solution(s) of (1) that mirziena certain
functional. In the noiseless cabe= 0, a vectorz, that coincides with
the unique solution of the regularized problem is callecoverable
or identifiablewith respect to the chosen functional.

If one is only interested in sparse signaf the natural choice for
such a functional would be th8-pseudo-norm|z|jo = #(supp(z)),
i.e. the number of non-zero coordinateszofUnfortunately solving
the /°-regularized problem is considered untractable, hencepalan

As an alternative, more recent papers focus on the locaivilmha
of the reconstruction error. One such approach theorbticahsists
in emphasizing an error bound for each member of a certairlyfam
of vectors associated to a local noiseless solution. Thestons are
calleddual certificatesand play a fundamental role in identifiability
criteria based on the so-calleburce condition[1], [11]. As such,
the theoretical bound estimates based on dual certificatesnare
versatile, since they are local - hence potentially moreuete - and
need no a priori assumptions on the magnitude of the measatem

choice is rather to consider a convéxregularization. In the noiseless noise. However, dual certificates are not unique, and findiegn

caseb = 0 this amounts to solving thbeasis pursuit[4]:

min ] st Az =y @
In the noisy case several variants have been developed,asutie
popular Lagrangian formulation, but here we will ratherds©n the
(equivalent) constrained optimization problem

@)

min [zl st Az —yll2 <6

This model has been explored by many papers and applied

a different applications in signal and image processingreHbée
identifiability of the original vector is evaluated by sigonsistency
and noise robustness.

is not straightforward and might have a significant compota
cost. The common strategy consists in building "candidatdsch
can be either generic or specific to a certain context. In treext
of super-resolution, Candes et al [2] [3] build a trigonorgepoly-
nomial which is a certificate under certain conditions. Ie game
context, Duval et al [8] constructed candidates by minimiztheir
£? norm and imposing a zero-derivative whenewérhas a non-zero
component. Also, Vaiter et al [14] compute a generic cartdida

. In this context involving dual certificates, theoreticabustness
L'{E)schitz bound were given throughout [1], [12] and [7], as
2 — 2"l < C(n)s,

[[bll2 <6, Q)

More preciselyz® is considered identifiable with sign consistencyvhere the constant'(n) depends, besides on the matAxand the

if the solution of (3) has the same support thérni.e. the positions of

support ofz", on some dual certificate € R™ for z°.



In the paper we provide two algorithms for computing dual Let us first discuss these notions in connection to the ifiability
certificatesn; which minimize their related Lipschitz error boundsof z° in the noiseless case, which means, as mentioned in the
C(n) in (5), based on two different approaches: introduction, the property o&° to be the unique minimizer of the

The first is a greedy algorithm that provides a fast approtémal’-regularized problem (2).
solution, by iteratively minimizing the error bound withspect to a ~ One can easily check that the source condition:biis a sufficient
current dual certificate candidate. This produces a fagappation condition forz° to be a minimizer of (2), but it does not guarantee
of the optimal bound, since all the numerical computationly cely its uniqueness.
on scalar products. One crucial step towards uniqueness is to turn the secorditmon

The second algorithm is based on a theoretical geometidttest in (7) into a strict inequality outside the supportadf, i.e. requesting
describes the exact optimal solution. More precisely wavegldothat that
the problem of finding the dual certificate minimizing thecedpound (A" D))l < 1, J=A{1,...,n}\ I 9)
can be reduced to computing the convex projection of a slaitabl_
vector over a certain convex set. As such, it gives the besir er
bound - which is attained for a unique dual certificatg;, but has
a higher computational cost than the greedy approximation.

The two algorithms are illustrated and numerically comgafia
compressive sensing matrices issued from a tomographycapph
framework. The relationship between theoretical bound rarmer- d(z") = A *sign(z°) (10)
ical observed bounds is also discussed.

his strengthened condition insures that no minimizer dfcgh be
supported anywhere but inside Searching for dual certificates with
this strengthened condition has been proposed by sevetarault
has been first exploited by Fuchs in [9], where the inequ#8)yis
tested for the generic pre-certificate

in order to derive a sufficient identifiability criterion. iBhlatter
condition is is also known as the irrepresentability cdnditin
statistics, see [7] for more details. Rather than testincadiqular

Notations:Throughout the papefe;):=1,...,» stands for the canon-
ical base inR”, A € R™*™ denotes a linear operator froR" to

R™, anda; = Ae;, (i =1, . n) the columns ofA. candidate, a more general sufficient criterion was given aijeY et
Forz = [z1,...,zs] € R", its support is denoted al in [14], where convex optimization is used to solve thebpem
supp(z) = {i € {1,...,n} | z:i # 0}, IC(z") = mﬂén |A37]l0 S. t. Afn = sign(z?) (11)
nerm™
and its vector sign byign(z) = [sign(zi)]i=1....n. whose solutions are dual certificates satisfying (9) whenev
Also, for some subsef C {1,...,n}, we denote#(I) the

IC(z%) < 1.

Finally, even ifz® admits a dual certificate satisfying (9), in order
for 2° to be the unique minimizer of (2) one has to make sure that
there are no other minimizers supported insideOne can see that
this happens if and only iA; is injective.

Summing up, this latter injectivity condition, togetherthv{8) and
(9) represent a strengthened version of the source condhit was

cardinal of I, we write x; for the restriction ofx to its components
indexed byI, and A for the submatrix ofA with the columnsa;,
i el

The notationA* stands for the adjoint oA, while A™ denotes
the Moore-Penrose pseudoinverse &f i.e. AT = (A*A) " 1A*
The p, g-operator norm of a matriA is

considered by Grasmair et al in [11][13][12]to describe itioéseless
Al = mad 2Lt and Al = AL, ©) [ geniabiny s
Dual certificates have a deep geometric interpretationt’in
Note that||All1,2 = max|a:||> and [AT ]2 = V/[[(A*A) 1. identifiability regarded in the context of polytope theoag consid-
Finally, for any subsef of R"™, we write Aff(M) andConv(M)  ered by Donoho in [6]. In fact, from the main result there tldas
for the affine, respectively convex envelopeidt In particular,B; = thatz® is identifiable if and only if the convex set
Conv({+e; }i=1,...,n) stands for the closed unit ball &" under the

¢ -norm. F(a°) := Conv({sgn(a?)ai : i € I}) (12)

is a face of affine dimensio#(7) — 1 of the image polytope

Let us begin by recalling the notion diual certificate its related P:=AB = Conv({#a; :i=1,...,n}) (13)

source(or rangg condition from regularization theory [1] and their Now the fact thatF'(z°) is a face of P means by definition that

connection with identifiability and noise robustness infitagnework there is a linear functional oR™, thus a vector; € R (via Riesz

of £*-minimization. representation theorem), that separak&s:’) from the rest of the
Fix a linear operatorA € R™*" from R" to R™, a vectorz’ polytope P. This translates by

in R™ and let] = supp(z”). A vectorn in R™ is called adual J .

certificatefor z° if the szgztozA*n belongns to the subgradient of the (n. sgn(z)ai) = 1 iel, (14)

¢! norm atz®. This latter set can be viewed as (n,xa;) <1  je€J, (15)

Il. STATE OF THEART

A|z°|s = {u € R" : us = sign(zr) and|jullc <1}  (7) which are nothing but equivalent forms of (8) and (9) respebt
o ] N ] Moreover the injectivity ofA; is equivalent to the fact thalf(z°)
If n satisfies only the first condition above, i.e. has affine dimensiog () — 1.
(A*n); = sign(x?) 8 This means precisely tha_tt dual certificates, in the sensdje)f t
strengthened source condition, can be regarded as segafatic-
then n is usually called acandidateor a pre-certificate Also, z° tionals for faces of the image polytoge. This geometric interpre-
is said to satisfy thesource conditionif it admits at least one dual tation is also very useful in the matter of noise robustntsst, will
certificate. be discussed next.



Let us suppose now that’ is noiseless-identifiable, thus satisfiesH,, passing through the fadgé(z°). Obviously the intersection of all
the strengthened source condition for some dual certificafssume  these hyperplanes is the affine closure of the fB¢e®), denoted
that z° is measured in (1) with some noige < b2 < ¢ and 0 0 0 )
denotez® a minimizer of the regularized problem (3). Estimating L(a7) = Af(F(27)) = Aff({sgn(zi)ai i€ I})  (23)

the noise robustness of the reconstruction deals with measthe |t js more convenient to considei the orthogonal complement of
reconstruction error:® — x°, which unfortunately has no implicit £(z°) in R™ and project the whole problem ont§. DenoteP x

along various directions, each direction producing anresstimate, (;, . .} andAy = (@i)ic fin,...1,1 IS the matrix with the columns
PRRES] 1)1E{12,..slp

with more or less accuracy. Among all possible directiohs, most {ai — ai,,i = {i2,...,ip}}, then
"fiable" are those given by the dual certificates, in the sefsealar o
products of the typéA*n, z° — z%). Such quantities characterize the Pr = Irnm — A1Af. (24)
Bregman distance betweer! andz?®, which was used by Burger et
al. [1] in order to measure the recovery error with a very $&mp
Lipschitz constant. However, the Bregman distance, as adpse  P; = PxP; = Conv({#4, : j € J}) and H,, = Px H,. (25)

distance, is a rather weak measure, and one would prefdizan . ) o . . .

estimation instead. This was done by Grasmair et al. [13]eting Now the entire affine subs_pa«t‘e(x ) projects onto a singleton, which
the Bregman distance to tii& norm. The resulting Lipschitz constantc@" P& shown to be precisely the vector
was afterwards reduced by Dossal et al [7], leading to tHevidhg ot d(z°)

result: @) = e

Puta; = Pxa; and consider the projected polytope

(26)

Theorem 1 ([7]). For any minimizera’ of (3) and any dual the dual vector of the generic pre-certificate:”) given in (10). It

certificaten satisfying the strengthened source condit{®hone has g5 5150 straightforward that

l2° —a°|| < C(n)s (16) 1
) = B, B = Dl By @

with
O =2 (1A 1o+ (IAT [|2]|A 11 17 Note that, in contrast to (ZZ)H,7 above is now a generic affine
(1) =2 (IA7 ]2 + (AT 121 Aslh2 + D)Rm) - (A7) hyperplane inK which passes just through the poitz°)™, and
Q(n) = lInll2 (18) whose distance to the projected reduced polytéheneeds to be
1—JA%N|so maximized. One can use then a couple of standard convexsimaly
Clearly the optimal Lipschitz constant is obtained for theald arguments to show the main result:

certificate that minimizes the fact@p(n), which solely depends on Theorem 3. Denotew® the point in P, at minimal distance from

n in (17). This leads to the optimization problem d(f’)*. Then
mnQ(n):  (A™n)r = sign(z]), [[(A'n)slle <1  (19) min Q(n) = 1 — 1
We give in the next section the explicit formula for the siint K D(L($Oi7 Py)  D(d(x)*, Py) (28)

of this problem and the corresponding algorithm that compubhe =
optimal dual certificate and its related Lipschitz bound. l[d(z%)* — w2

Moreover, the minimal value is attained for the unique dwatificate
Ill. A CONVEX-PROJECTION ALGORITHM FOR THE OPTIMAL

LIPSCHITZ BOUND d(z%)|)3
_ _ B Hope = I 2 (44— ). (29)
We saw in the last section that a dual certificajefor an — (d(°),w°)
identifiable vectorz” supported on/ has a geometric interpretation The algorithmic implementation is straightforward frome thast
as a separating functional for the fag&z") of the image polytope theorem:

P (see (12),(13)). This means that the dual affine subspace of
Hy,:={ueR™: (nu)=1} (20)

Algorithm 1 Convex projection algorithm for optimal Lipschitz
bound
is asupport hyperplanéor the faceF (z°), Le. Hy NP = F(z). 1: Putd(z®) = Aj*sign(z®;) andd(z°)" = d(z°)/||d(=")|3;

The key fact in solving the problem (19) is that the quan@{n)  2: Compute the projection matrix onts’: Px = Igm — A;A;
also has a strong geometric interpretation. More pregisggsider 3. put a;, = Pxaj, j € J;
4

the "reduced" polytope : Compute the convex projectiomo of d(z°)™ onto the convex

. closure of+a;, j € J
P;=C +a;: J J={1,... I 21 7
y=Convl(ttay g€ ) (J={L.onh\D) @D g ComniteQun = lda®)* —w]l;"

)]

One can show that:

Proposition 2. For any dual certificatey of 2° one has One can use any algorithm to compute the convex projection in
1 Step 4., which clearly is the most costly in terms of compiexi
Q(n) = D(H,, Py) @2 in our implementation we used am-dimensional version of the
whereD stands for the affine euclidian distance. Gilbert-Johnson-Keerthi (GJK) algorithm [10]. For thigadithm for
instance, each iteration comprises two steps, one stefhwwkidorms
Therefore in order to minimiz&)(n) one has to maximize the a support hyperplane computation, and a second step ciofan
distance from the reduced polytop® to a generic affine hyperplane simplex convex projection. The first step is rather fastcesiit relies



solely on scalar products. On the contrary, the simplexeptign is Algorithm 2 Greedy algorithm to compute a pre-certificate with
the costly part, since it is itself recursive. elimination

. N
In the next section we show how one can roughly eliminate thel: C.alculateno = Ay S|gn(;c I'I1) | h off
type of costly computation above, at the expense of somdsipac 2 /97 ¢ Vector zeros of the length of;

in the bound estimation. 3: I _bad + (1)
4: while Ij_bad is non empty do

while Ay, is injective do
ik < max|{(a;,,
g+ e ml
signy < signy U {sign({a;,,n)}

Iy < I Uj
IV. A GREEDY ALGORITHM FOR FASTLIPSCHITZ BOUNDS ik STk (agm)—{aj, m)
tr < Mmin t; = k

ESTIMATES i Iy, (A*A{ “signy);—(A* A “signy)
t; >0
10: nn— tkAfk*signk
11:  end while
In this section we construct an accelerated greedy algorith 12:  Ix_bad < component ofl); such thatAj, signy # signy
which only deals with scalar products, thus fast to compéwe, 13: Elimination of componentdy (/;_bad)

producing approximative Lipschitz bound estimations. 14:  Elimination of componentsign (Ix_bad)

. . . . 15: end while
The main idea is roughly to iteratively select a sequence ot

candidatesy which decrease the denominator in (18) until a dual
certificate is found. This is done by decreasing the scaladymt V. NUMERICAL RESULTS
between .columns oA indexed by the cosuppott of the signal and | thjs section, we create synthetic sets of sparse im4ge R of
the candidate vectoy at each step. sizexz = 64 x 64. The operatorh of the computed tomography will
More precisely, as fodC criterion (11), we aim to construct a be a classical Radon transform with parallel lines. Theraoigeal
candidaten with a minimal || A%7]|co. gap with a fan-beam like operator. The Radon transform i®peed
with the code written by Justin K. Romberg. In the noiselesse¢
the basis pursuit has been computed using linear progragnwiii
the Matlab optimization toolbox and OPTI toolbox [5] ( to spleup
At each stepk, ||A%n||- is reduced by adding a new componenthe calculations). We obtain the same results with thostbéso In
aj, to the vectomy41 = e — tkAﬂfsignk such that/, = J,_; U the noisy case, (3) was computed with SPGL1 toolbox [15] wtith
{jx} and A3, injective. The vectorsign is the appropriated sign best precision.
for effectively reducing the scalar products with the seldcolumns. . . )
The maximum of the scalar products between these selecteaioe - EMpirical performance of the greedy algorithm for nogssl
is scaled down together proportionally g and, moreover, identifiability

a

© N o

such that

The algorithm is initiated with the same generic candid#te,)
in (10) which also appears in the previous algorithm.

In this subsection we present the numerical results for teedy
algorithm regarding its ability to produce dual certificgteand
Has, )| = | A7k lloo (s €S) compare it with other existing criteria.
We used as a reference an empirical phase transition of'the
minimization is obtained, showing the degree of sparsitg ean

expect for within the identifiability zone. Different set$ sparse
where S denotes the set of selected columns. When the vegtor. P y sp

. o . ) images were built for each degree of sparsity. A first one, @& no
is modified, its scalar products witAj are also affected and there ge 9 P Y

) . negative, where non-zero components are set to 1 and thedeco
are some scalar products which can increase. The descéot fac

. where non-zero components can take -1 or 1 as value. At first, a
is computed to have the pest trade-off between the erucz"ﬂdrschundred signals are selected for a given sparsity and drcedanber
products and those which increase.

of angles. The basis pursuit is performed on each signalsgofean
Empirically, thesigny is stable by(Aj Aj )" ie sparsity and a probability of success is deduced. The dperé
repeated for each sparsity. Results are shown as a functitimeo
sparsity in Figure 1.

For the same set of selected sparse images, the pre-ceztfimae
computed via the greedy algorithm and it is checked whetteyr are
dual certificates. As for the basis pursuit, results are shasva ratio
of the number of dual certificates over the pre-certificatestion
of sparsity. The labeh;c denotes the candidate produced by
criterion. d is for the Fuchs criterion that only checks the particular
candidated(z") - see (10) -5, is the greedy algorithm without the
elimination step and),2 is the greedy algorithm with elimination.

The projection algorithm is not represented in the Figure@lbse

Finally, an optional elimination step can be used for clegni it finds a dual certificate for every identifiable®. It is a very
the superfluous columns at the end. For enough spafsethis good way to estimate the success of sparse approximatiord by
elimination step is not necessary. minimization. There is only one issue, the cost of time corafon

sign((A3, As,)” 'signk) = sign

Indeed, if the sign of the scalar product of an already setkect
column is inverted, the scalar product scalar will increastead
of decreasing. Consequently, the factgrwill be smaller and the
maximum of the scalar products will be limited. This stapilcan
be an indicator of a column which is no more needed.



sparsity 80 100 150 |
Q time(sec) Q time(sec) Q time(sec)
mean | 11.2262| 11.9678 | 15.29 11.38 37.44 15.13
median | 11.1787 | 11.8658 | 15.27 11.33 36.71 15.01
min 9.3402 9.9907 | 12.45 10.47 26.53 13.15
max 13.4216 | 16.3981 | 19.35 12.85 56.54 17.37

Table I: Results forQ obtained by the projection algorithm

sparsity 80 100 150 |
Q time(sec) Q time(sec) Q time(sec)
mean | 11.5985| 3.7014 | 15.84 4,58 42.95 9.64
median | 11.5188 | 3.5650 | 15.74 4.44 41.25 9.51
min 9.5915 2.8845 | 12.83 3.53 29.14 6.71
max 13.7379 | 5.7184 | 20.02 6.36 72.16 1454

Table II: Results forQ obtained by the greedy algorithm

Figure 1: Examples of® e R%4*6%4

because of the elimination of bad components. Close to tlaeseph
transition, finding a dual certificate is harder and therenaaay steps
of elimination, thus the algorithm struggles in a long lodmder a
certain degree of sparsity, the fast greedy algorithm lgaddual
certificates such that the correspondéhis neared to those of the
projection algorithm.

0.8r

0.6r

0.4r
C. Theoretical bounds versus real bounds

We end this section by a discussion on the quality of the ttexal
Lipschitz bounds. One general feature is that these bouldsys
emphasize a worst case, so they can be very pessimistic for an
arbitrary noise. A classical approach for testing how stialithey
are is to compute the recovery of a signal with a large numiber o
gaussian noises. In the context of computed tomographycthbize
of the directions of the ray, i.e the angles between the ragsam
axis, is important. All the results are obtained with a cansangular
pitch, except in the worst case where we first choose the titirec
which produces the best results for our purpose. We alsdrcmhs
"worst case" noise.

Locally, one knows that the solutiam™ with Jy = supp(z?) is

@), = a5, + AJTb— (A, AS) tsign(z)))  (30)

0.21

0.8r

0.61

0.4r

0.2r

%5

One can expect to maximiztb:% —:z:‘}A ||2 by building a noise vector

b based on the last suppaff during the execution of (3) where the
Figure 2: The ratio of vectors recovered By minimization as a matrix (AjAAJA)’1 is not well-conditioned. It could work for a
function of [|z°||o. The ratio of pre-certificated, n,, 752 andn;c small noise in the sense 6f. Indeed, a higher noise can impact the
which are dual certificates as a function |pf°||o sign. Following this idea, the algorithm 3 is proposed.

Algorithm 3 Building a worst case noise vector

can be near or worst thaft minimization itself as it is show in
the next section. The IC covers almost the whole set of iflebte
signals but it gives the worsf). The pre-certificate),2 is a dual
certificate for nearly all of identifiable signals. One carenthat the
enhanced greedy algorithm has a huge gain over the simpéeigre
approach. The Fuchs criterion is verified only on signal$aitow
degree of sparsity.

1: Find the last support/y such that(Aj, Az, )~" is not well-
conditioned

2: (U,S,V) « SVD((A3,As,)”") whereSV D is the Singular
Value Decomposition.

3: b+ V(1) whereV (1) is the vector with the maximum singular
value.

4: normalize b.

B. Projection vs Greedy

This subsection presents a comparison between the pmjecti The table Il presents the best results with the "worst casése
algorithm and the greedy algorithm regarding time compyeand vector for small noise and it compares to a hundred gaussiemes

quality of the Lipschitz bounds. and the theoretical boundary. As it is shown, the initial gaghe
The table | and Il present th@ obtained for different degrees of literature has been filled, while there is still a significdifference.
sparsity. One sees that the theoretical bounds differ from real bounyds

When the degree of sparsity approaches the phase trangtimm some varying factor. In the case of tomography matrices, ¢hn be
higher and the time computation explodes for the greedyritihgn, explained even in the continuous domain. Indeed® ffis the Radon



25, =9, ll2 Mean | Max | WC
TBi/||lz), —«5, ||l2 from theorem 1| 133.9 | 24.8 | 24.02
TBa/||lz), — 5, |l2 from [13] 728.7 | 134.9 | 130.7

Table Ill; Ratio between theoretical results and ré&akrror. T'B is
the theoretical boundary, mean is the me@rerror with gaussian
noises, idem with max and WC is thé-error with the "worst" case
noise.

transform operatorRf*Rf can be seen as deconvolution operator.
Duval et al [8] show in the context of sparse spike deconiaiuthat
there can be small Dirac movements. Thus one cannot expect a t
smalléQ-recovery error. Moreover, in the discrete domain this lead
a further increase of thé?-error when the resolution of the discrete
grid increases. In this context, even for small noises, elgre can
generally hope a better approximation, the theoreticaimesion of
the noise robustness still remains at some factor away.

One can note that this bound not only hold for a solutifrbut for
every solutionz® such that|z’||; < ||z°||:. Indeed, this theoretical
result covers the worst case for this set of solutions of i{3also
explains very well the gap with the reality.

Figure 3: The theoretical boundary in function of the mearthef
recovery error of a thousand different gaussian noises.

Even so, the figure 3 shows a correlation between the theateti
results and the reality. There is approximatively a rdtio

VI. CONCLUSION

The presented algorithms allow the numerical optimizatibsome
of the most recent and versatile theoretical results comgmoise-
robustness in compressive sensing. Numerical results ghawthey
are rather complementary with respect to different sparsigimes.
Also, one can choose one or the other according to the patenti
application priorities, speed versus quality. In additidne to their
inherently and natural geometrical content, part of thesdeehind
the proposed algorithms is susceptible to be adapted fareut
refinements of theoretical noise-robustness estimations.
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