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Abstract: In this work an observer for a class of delayed nonlinear triangular systems with
multiple and simple time-delay is proposed. The main feature of this observer is that it is easy to
implement because of its constant gain. First, the observer synthesis is presented for nonlinear
systems with variable time-delay and is extended for nonlinear systems with multiple time-delay.
The observer performance is evaluated through numerical simulations.
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1. INTRODUCTION

In the recent years time-delayed systems have been in-
vestigated extensively because of the delay phenomenon
is often encountered in various engineering systems such
as mechanical and electrical systems, communication net-
works, among others. The source of a time-delay may
be due to the nature of the system or induced into the
system due to the transmission delays associated to other
components interacting with the system. A time-delay may
be the origin of instability or oscillations in a system. For
this reason, many researchers are devoted to investigate
the different fields of automatic control for time-delayed
systems, such as stability, observability, controllability
and system identification, among others. For instance, in
Richard (2003), different control approaches for delayed
systems are presented.
The case of observer design for state estimation of nonlin-
ear systems is treated by many authors from a theoretical
and practical point of view, see for instance, Gauthier et al.
(1992), Gauthier and Kupka (1994), Targui et al.(2002),
Farza et al. (2004). The observer synthesis for triangular
nonlinear systems is related to the notion of uniform ob-
servability, for instance, the authors in Targui et al.(2002),
propose a high-gain observer with constant gain for nonlin-
ear systems having a triangular structure and a single out-
put. In Targui et al. (2001), a generalization for multiple-
output systems is presented. A lot of researchers, such as
Darouach (2001), Hou (2002), Wang et al. (2002), have
extensively investigated the case of observer synthesis for
delayed systems. For instance, in Germani et al. (2002), a
chain of observation algorithms reconstructing the system
state based on delayed measurements of the process output
is proposed. In Ibrir (2009), an adaptive observer for time-

delay nonlinear systems in triangular form is presented.
This paper is organized as follows. Section 2 is devoted
to preliminaries and the problem formulation. Section 3
describes the observer synthesis for a class of nonlinear
systems with a signal variable time-delay. An extension
of this observer for nonlinear systems with multiple and
variable delays is presented in Section 4. In Section 5 nu-
merical simulations are presented in order to evaluate the
observer performance and finally conclusions are discussed
in Section 6.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Consider the following non-linear delayed system:⎧⎨⎩

ẋ1 = f1(u, u� , x1, x1� , x2)
ẋ2 = f2(u, u� , x1, x1� , x2, x2� , x3)
...
ẋi = fi(u, u� , x1, x1� , x2, x2� , . . . , xi, xi� , xi+1)
...
ẋn−1 = fn−1(u, u� , x1, x1� , . . . , xn−1, xn−1� , xn)
ẋn = fn(u, u� , x, x� )
y = x1

(1)

where u(t) ∈ ℝm and y ∈ ℝ are the input and the output

of the system. x(t) =

⎡⎢⎢⎣
x1(t)
x2(t)

...
xn(t)

⎤⎥⎥⎦ ∈ ℝn is the state vector.

Henceforth the next notations are used



x� (t) = x(t− �(t)) =

⎡⎢⎢⎣
x1(t− �(t))
x2(t− �(t))

...
xn(t− �(t))

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x1�
x2�

...
xn�

⎤⎥⎥⎦ ∈ ℝn,

u� (t) = u(t− �(t)),

where �(t) a known variable delay and x(t) = �(t) for
t ≤ � . �(t) is the initial condition belonging to a Banach
space and ∥ ⋅ ∥ represents the Euclidian norm of a vector.
System (1) can be written in the following form:{

ẋ(t) = f(u(t), u� (t), x(t), x� (t))
y(t) = Cx(t)

(2)

where

f =

⎡⎢⎢⎢⎢⎣
f1(u, u� , x1, x1� , x2)

f2(u, u� , x1, x1� , x2, x2� , x3)
...

fn−1(u, u� , x1, x1� , . . . , xn−1, xn−1� , xn)
fn(u, u� , x, x� )

⎤⎥⎥⎥⎥⎦
and C is a (1× n) matrix:

C = [ 1, 0, . . . , 0 ] (3)

The following assumptions are introduced:
Assumption 1 (A1). The functions fi; i = 1, . . . , n are
globally Lipschitz w.r.t. x and x� , then ∃ c > 0 and ∀ x(t),
y(t), x(t− �), y(t− �) ∈ ℝn such that:

∣∣f(u, u� , x, x� )−f(u, u� , y, y� )∣∣ ≤ c(∣∣x−y∣∣+ ∣∣x� −y� ∣∣)
Assumption 2 (A2). Assume that the functions fi(.), i =
1, . . . , n− 1 satisfy.

0 < � < ai =
∂fi
∂xi+1

(u, �) ≤ �;

i = 1, . . . , n− 1,∀� ∈ Rn

(4)

Assumption 3 (A3). The variable delay �(t) is bounded,
e.g. 0 < �(t) ≤ �max, it is differentiable and satisfies
�̇(t) ≤ � < 1.
The following notations are employed:

∙ A is a (n× n) matrix having the following form:

A =

⎛⎜⎜⎜⎜⎜⎝
0 a1 0 . . . 0

0 0 a2
...

...
. . . 0

0 . . . 0 an−1
0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎠ (5)

where the functions ai; i = 1, . . . , n − 1 are defined in
Equation (4) and each one satisfies Assumption (A2).

∙ S is a (n × n) constant symmetric positive-definite
matrix having the form:

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

s11 s1 0 0

s1 s22
. . . 0

0
. . .

...
...

. . . sn−1
0 . . . 0 sn−1 snn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(6)

where sii > 0 and sj < 0; i = 1, . . . , n; j = 1, . . . , n− 1.

∙ Define the (n× n) diagonal matrix Λ� as

Λ� = diag
[
�, �2, . . . , �n

]
(7)

where � is a strictly positive real number.

Lemma. (Targui et al.(2002)). There exist an n × n
constant symmetric positive definite matrix S having the
form given in Equation (6) and a strictly positive real
number � > 0, such that

AT (t)S + SA− 2CTC ≤ −�I; ∀t ≥ 0 (8)

where A is given by Equation (5) and I is the (n × n)
identity matrix. The elements of S, i.e. sii, sj , i = 1, . . . , n;
j = 1, . . . , n − 1, are given in function of � and � defined
in Equation (4).

3. OBSERVER SYNTHESIS

Consider the following dynamical system:

˙̂x = f(u(t), u� (t), x̂(t), x̂� (t))− Λ�S
−1CT (Cx̂(t)− y(t))

(9)
where S is given by Equation (6) and satisfies the prece-
dent Lemma; C is given by Equation (3);

x̂(t) =

⎡⎢⎢⎣
x̂1
x̂2
...
x̂n

⎤⎥⎥⎦
and

x̂� = x̂(t− �) =

⎡⎢⎢⎣
x̂1�
x̂2�

...
x̂n�

⎤⎥⎥⎦
x̂(t) and x̂� (t) are the estimated state vectors, without
and with delay respectively; u and y are the input and
the output of the nonlinear system (1) respectively. The
matrix Λ� is given in Equation (7).
One now states the following:
Theorem 1. Suppose that system (1) satisfies As-
sumptions (A1)-(A3). Then, for � > �∗ with �∗ =
4− 3�

�(1− �)
c�max(S), system (9) is an asymptotic observer

for system (1). The observation error x̃ = x̂(t) − x(t) is
asymptotically stable for x̂(0), x(0) ∈ ℝn.
Proof. Consider the observation error x̃(t) = x̂(t)−x(t) =⎛⎜⎜⎝
x̃1
x̃2
...
x̃n

⎞⎟⎟⎠ with x̃i = x̂i(t)− xi(t); i = 1, . . . , n.

Let xi =

⎛⎜⎜⎝
x1
x2
...
xi

⎞⎟⎟⎠, xi� =

⎛⎜⎜⎝
x1�
x2�

...
xi�

⎞⎟⎟⎠ ; i = 1, . . . , n − 1, and

△f =

⎛⎜⎜⎝
△f1
△f2

...
△fn

⎞⎟⎟⎠ where,



△fi =

⎧⎨⎩ fi(u, u� , x̂
i, x̂i� , xi+1)− fi(u, u� , xi, xi� , xi+1)

; i = 1, . . . , n− 1
fn(u, u� , x̂, x̂� )− fn(u, u� , x, x� ); i = n

(10)
For i = 1, . . . , n− 1 we have:

fi(u, u� , x̂, x̂� )− fi(u, u� , x, x� ) = fi(u, u� , x̂
i, x̂i� , x̂i+1)

− fi(u, u� , x̂i, x̂i� , xi+1)

+△fi
(11)

By applying the Mean Value Theorem:

fi(u, u� , x̂, x̂� )− fi(u, u� , x, x� ) = aix̃i+1(t) +△fi
; i = 1, . . . , n− 1

(12)

where the functions ai =
∂fi
∂xi+1

(u, u� , x̂
i, x̂i� , �x̃i+1+xi+1);

i = 1, . . . , n − 1 verify (A2) with � ∈ [0, 1] and △fi; i =
1, . . . , n− 1 are given in (10).
The dynamics of the observation error x̃ is deduced from
Equations (2) and (9):

˙̃x = f(u, u� , x̂, x̂� )− f(u, u� , x, x� )− Λ�S
−1CTCx̃ (13)

By combining Equations (10),(11), (12) and (13), the
dynamics of the observation error is:

˙̃x(t) = (A− Λ�S
−1CTC)x̃(t)

+△f(u(t), u� (t), x̂(t), x(t), x̂� (t), x� (t))

(14)

where A is an (n × n) matrix having the form given in
Equation (5).
Let x̄ = Λ−1� x̃. It can be easily verified that Λ−1� AΛ� = �A
and consequently

˙̄x(t) = �(A− S−1CTC)x̄(t) + Λ−1� Δf(u, u� , x̂, x, x̂� , x� )

Consider now the following Lyapunov-Krasovskii func-
tional:

V (x̄) = x̄TSx̄+
c�max(S)

1− �

∫ t

t−�(t)
∣∣x̄(s)∣∣2ds

where c is the Lipschitz constant introduced in Assumption
(A1), �max(S) is the largest eigenvalue of S and � is a
constant introduced in Assumption (A3).
The time derivative of the functional V is:

V̇ = 2�x̄T (SA− CTC)x̄(t)

+
c�max(S)

1− �
∣∣x̄(t)∣∣2 − c�max(S)

1− �
(1− �̇(t))∣∣x̄(t− �)∣∣2

+ 2x̄(t)TSΛ−1� △f(u, x̂(t), x(t), x̂� (t), x� (t))

= �x̄(t)T (SA+ATS − 2CTC)x̄(t)

+
c�max(S)

1− �
∣∣x̄(t)∣∣2 − c�max(S)

1− �
(1− �̇(t))∣∣x̄(t− �)∣∣2

+ 2x̄(t)TSΛ−1� △f(u, x̂(t), x(t), x̂� (t), x� (t))

By taking into account the precedent Lemma, the follow-
ing inequality arises:

V̇ ≤−��∣∣x̄(t)∣∣2

+
c�max(S)

1− �
∣∣x̄(t)∣∣2 − c�max(S)

1− �
(1− �̇(t))∣∣x̄(t− �)∣∣2

+ 2∣∣x̄(t)TS∣∣∣∣Λ−1� △f(u, x̂(t), x(t), x̂� (t), x� (t))∣∣
By using the Lipschitz condition described in Assumption
(A1):

∣∣Λ−1� △f(u, x̂(t), x(t), x̂� (t), x� (t))∣∣ ≤ c∣∣x̄(t)∣∣+c∣∣x̄(t−�)∣∣
it follows that

V̇ ≤−��∣∣x̄(t)∣∣2

+
c�max(S)

1− �
∣∣x̄(t)∣∣2 − c�max(S)

1− �
(1− �̇(t))∣∣x̄(t− �)∣∣2

+ 2c∣∣S∣∣∣∣x̄(t)∣∣2 + 2c∣∣S∣∣∣∣x̄(t)∣∣∣∣x̄(t− �))∣∣
Since ∣∣x̄(t)∣∣∣∣x̄(t− �))∣∣ ≤ 1

2 (∣∣x̄(t)∣∣2 + ∣∣x̄(t− �))∣∣2), then

V̇ ≤−��∣∣x̄(t)∣∣2 +
c�max(S)

1− �
∣∣x̄(t)∣∣2

+ 3c∣∣S∣∣∣∣x̄(t)∣∣2 +
�̇(t)− �

1− �
c∣∣S∣∣∣∣x̄(t− �)∣∣2

It results from Assumption (A3) that
�̇(t)− �

1− �
≤ 0, then

V̇ ≤ (−�� +
4− 3�

1− �
c�max(S))∣∣x̄(t)∣∣2

(15)

Let �∗ =
4− 3�

�(1− �)
c�max(S). If � > �∗ then:

V̇ ≤ −�(�)∣∣x̄(t)∣∣2 (16)

with �(�) = �� − 4− 3�

1− �
c�max(S) and �(�) > 0, which

results in V̇ ≤ 0, that means V (t) ≤ V (0). Because of

�(�)∣∣x̄(t)∣∣2 ≤ −V̇ , it follows that:

�(�) lim
t→+∞

∫ t

0

∣∣x̄(s)∣∣2ds ≤ V (0)− lim
t→+∞

V (t) (17)

It results that lim
t→+∞

x̄(t) → 0, moreover ∣∣x̃(t)∣∣ ≤ �n∣∣x̄∣∣
and in consequence lim

t→+∞
x̃(t)→ 0.

The observation error x̃ = x̂(t) − x(t) is asymptotically
stable for x̂(0), x(0) ∈ ℝn and then, system (9) is an
asymptotic observer for system (1). This completes the
proof.□
Remark : If the time-delay in system (1) is constant, it
corresponds to say that � = 0 and from Theorem 1, it can
be easily deduced the following theorem:
Theorem 2. Suppose that system (1) satisfies Assump-

tions (A1)-(A3), then for � > �∗ with �∗ =
4

�
c�max(S),

system (9) is an asymptotic convergent observer for system
(1). The observation error x̃ = x̂(t)−x(t) is asymptotically
stable for x̂(0), x(0) ∈ ℝn.

4. EXTENSION FOR SYSTEMS WITH MULTIPLE
TIME-DELAY

The observer design for a systems with multiple time-
delays is the same as the above presented strategy. The



only condition to preserve the same design is maintaining
the triangular structure of the system nonlinearity with
respect to each state of different time-delay. Consider the
following triangular system with multiple time-delays:⎧⎨⎩

ẋ1 = f1(x1, x
1� , x2, u, u

� )
ẋ2 = f2(x1, x

1� , x2, x
2� , x3, u, u

� )
...
ẋi = fi(x1, x

1� , x2, x
2� , . . . , xi, x

i� , xi+1, u, u
� )

...

ẋn−1 = fn−1(x1, x
1� , . . . , xn−1, x

(n−1)� , xn, u, u
� )

ẋn = fn(x, x� , u, u� )
y = x1

(18)
where

xi� =

⎛⎜⎜⎝
xi(t− �1)
xi(t− �2)

...
xi(t− �l)

⎞⎟⎟⎠ ; i = 1, . . . , n

x� (t) =

⎛⎜⎜⎜⎝
x1�

x2�

...
xn�

⎞⎟⎟⎟⎠
and

u� (t) =

⎛⎜⎜⎝
u(t− �1)
u(t− �2)

...
u(t− �l)

⎞⎟⎟⎠
where �1(t), �2(t), . . . , �l(t) are l known and bounded vari-
able time-delays, each one satisfies the following assump-
tion:
Assumption 4 (A4). The variable time-delay �i(t);
i = 1, . . . , l is bounded, that means 0 < �i(t) ≤ � imax;
i = 1, . . . , l, it is derivable and satisfies �̇i(t) ≤ �i < 1;
i = 1, . . . , l.
System (18) can be written in the following form:{

ẋ(t) = f(u(t), u� (t), x(t), x� (t))
y(t) = Cx(t)

(19)

where

f =

⎡⎢⎢⎢⎢⎢⎣
f1(x1, x

1� , x2, u, u
� )

f2(x1, x
1� , x2, x

2� , x3, u, u
� )

...

fn−1(x1, x
1� , . . . , xn−1, x

(n−1)� , xn, u, u
� )

fn(x, x� , u, u� )

⎤⎥⎥⎥⎥⎥⎦
and the matrix C is given in Equation (3).
Consider the following dynamical system:

˙̂x = f(u(t), u� (t), x̂(t), x̂� (t))− Λ�S
−1CT (Cx̂(t)− y(t))

(20)
where S is a matrix having the form given in Equation (6)
and satisfies the precedent Lemma, C is the matrix given in

Equation (3), x̂(t) =

⎡⎢⎢⎣
x̂1(t)
x̂2(t)

...
x̂n(t)

⎤⎥⎥⎦ and x̂� x̂(t− �) =

⎡⎢⎢⎢⎣
x̂1�

x̂2�

...
x̂n�

⎤⎥⎥⎥⎦,

are the estimated state vectors, without and with time-
delay respectively, u and y are the input and the output
of system (18) respectively, and finally, the matrix Λ� is
given in Equation (7) with � > 0.
The following theorem is an extension of Theorem 1, for
the case of multiple time-delays.
Theorem 3. Suppose that system (18) satisfies Assump-
tions (A1)-(A4), then for � > �∗

with �∗ = (2 + l+

l∑
i=1

1

1− �i
)
c�max(S)

�
, system (20) is an

asymptotic observer for system (18). The observation error
x̃ = x̂(t)−x(t) is asymptotically stable for x̂(0), x(0) ∈ ℝn.
The proof is deduced by following the same steps of the
proof of the Theorem 1. Define x̃ = x̂− x and x̄ = Λ−1� x̃.
The dynamics of x̄(t) is:

˙̄x(t) = �(A− S−1CTC)x̄(t) + Λ−1� Δf(u, u� , x̂, x, x̂� , x� )

Consider the following Lyapunov-Krasovskii functional:

V (x̄) = x̄TSx̄+ c�max(S)

l∑
i=1

1

1− �i

∫ t

t−�i(t)
∣∣x̄(s)∣∣2ds

where c is the Lipschitz constant introduced in Assumption
(A1), �max(S) is the largest eigenvalue of S and �i;
i = 1, . . . , l is a constant introduced in Assumption (A4).
The time derivative of V is:

V̇ = 2�x̄T (SA− CTC)x̄(t) + c�max(S)∣∣x̄(t)∣∣2
l∑
i=1

1

1− �i

− c�max(S)

l∑
i=1

1− �̇i(t)
1− �i

∣∣x̄(t− �i)∣∣2

+ 2x̄(t)TSΛ−1� �f(u, x̂(t), x(t))

= �x̄(t)T (SA+ATS − 2CTC)x̄(t)

+ c�max(S)∣∣x̄(t)∣∣2
l∑
i=1

1

1− �i

− c�max(S)

l∑
i=1

1− �̇i(t)
1− �i

∣∣x̄(t− �i)∣∣2

+ 2x̄(t)TSΛ−1� �f(u, x̂(t), x(t))

Considering the precedent Lemma, it follows that

V̇ ≤−��∣∣x̄(t)∣∣2 + c�max(S)∣∣x̄(t)∣∣2
l∑
i=1

1

1− �i

− c�max(S)

l∑
i=1

1− �̇i(t)
1− �i

∣∣x̄(t− �i)∣∣2

+ 2∣∣x̄(t)TS∣∣∣∣Λ−1� �f(u, x̂(t), x(t))∣∣

By using the Lipschitz condition described in Assumption
(A1):

∣∣Λ−1� �f(u, x̂(t), x(t))∣∣ ≤ c∣∣x̄(t)∣∣+ c

l∑
i=1

∣∣x̄(t− �i)∣∣

It results



V̇ ≤−��∣∣x̄(t)∣∣2

+ c�max(S)∣∣x̄(t)∣∣2
l∑
i=1

1

1− �i

− c�max(S)

l∑
i=1

1− �̇i(t)
1− �i

∣∣x̄(t− �i)∣∣2

+ 2c∣∣S∣∣∣∣x̄(t)∣∣2 + 2c∣∣S∣∣∣∣x̄(t)∣∣
l∑
i=1

∣∣x̄(t− �i)∣∣

Since

∣∣x̄(t)∣∣
l∑
i=1

∣∣x̄(t− �i)∣∣ ≤
1

2
(l∣∣x̄(t)∣∣2 +

l∑
i=1

∣∣x̄(t− �i))∣∣2)

hence

V̇ ≤−��∣∣x̄(t)∣∣2

+ c�max(S)∣∣x̄(t)∣∣2
l∑
i=1

1

1− �i

− c�max(S)

l∑
i=1

1− �̇i(t)
1− �i

∣∣x̄(t− �i)∣∣2

+ (2 + l)c∣∣S∣∣∣∣x̄(t)∣∣2 + c∣∣S∣∣
l∑
i=1

∣∣x̄(t− �i)∣∣2

It follows that

V̇ ≤−��∣∣x̄(t)∣∣2 + c�max(S)∣∣x̄(t)∣∣2(2 + l +

l∑
i=1

1

1− �i
)

+ c�max(S)

l∑
i=1

�̇i(t)− �i
1− �i

∣∣x̄(t− �i)∣∣2

(21)

From Assumption (A4):
�̇i(t)− �i

1− �i
≤ 0, then

V̇ ≤ (−�� + (2 + l +

l∑
i=1

1

1− �i
)c�max(S))∣∣x̄(t)∣∣2

(22)

Let �∗ = (2 + l +

l∑
i=1

1

1− �i
)
c�max(S)

�
.

For � > �∗ it results:

V̇ ≤ −�(�)∣∣x̄(t)∣∣2 (23)

where �(�) = �� − (2 + l +

l∑
i=1

1

1− �i
)c�max(S) and

�(�) > 0, which results in V̇ ≤ 0, that means V (t) ≤ V (0).

Because of �(�)∣∣x̄(t)∣∣2 ≤ −V̇ , it follows that:

�(�) lim
t→+∞

∫ t

0

∣∣x̄(s)∣∣2ds ≤ V (0)− lim
t→+∞

V (t) (24)

It results that lim
t→+∞

x̄(t) → 0, moreover ∣∣x(t)∣∣ ≤ �n∣∣x̄∣∣
and in consequence lim

t→+∞
x(t)→ 0.

The observation error x̃ = x̂(t) − x(t) is asymptotically
stable for x̂(0), x(0) ∈ ℝn. Hence, system (20) is an
asymptotic observer for system (18). This complete the
proof.□

5. SIMULATION EXAMPLE

Consider the following nonlinear system:⎧⎨⎩
ẋ1 = 2x2(t) + cos(x2(t))− x1(t− �)

1 + x1(t− �)

ẋ2 = − x2(t− �)

1 + x2(t− �)
+ u(t− �)

y = x1

(25)

The time-delay � is considered constant. It can be seen
that system (25) can be written in the form of system (1)

with f1 = 2x2(t) + cos(x2(t))− x1(t− �)

1 + x1(t− �)
,

f2 = − x2(t− �)

1 + x2(t− �)
+ u(t− �) and C = [ 1 0 ].

Before applying Theorem 1, Assumptions (A1)-(A3)
should be verified for system (25). It is easy to check that
functions fi, i = 1, 2 are Lipschitz, then Assumption (A1)
is verified. It remains to verify Assumption (A2).
According to Equation (4):

a1 =
∂f1
∂x2

= 2− sin(x2(t)) (26)

It results that 1 ≤ a1 ≤ 3 then Assumption (A2) is
satisfied with � = 1 and � = 3. The elements of the
matrix S whose dimension is 2 × 2 are deduced from the

precedent Lemma. These elements verify ∣s1∣ >
�2s211

2�
and

s22 >
s21
s11

(see Targui et al. (2002)). By taking s11 = 0, 5,

the other elements can be deduced: s1 = −2 and s22 = 9.
The time-delay is considered constant at � = 1.30. In this
simulation, the input u is given by the following equation

u(t) = 0, 5 + 0, 4sin(0, 2t+ 20).

The observer equations are:⎧⎨⎩

˙̂x1 = 2x̂2(t) + cos(x̂2(t))− x̂1(t− �)

1 + x̂1(t− �)
− 18�(x̂1 − x1)

˙̂x2 = − x̂2(t− �)

1 + x̂2(t− �)
+ u(t− �)

− 4�2(x̂1 − x1)

(27)

The initial conditions of the system (25) and the observer
(27) are:{

x1(t) = 0; x̂1(t) = 0 for t ∈ [−�, 0[
x2(t) = 0; x̂2(t) = 0 for t ∈ [−�, 0[
x1(0) = 5; x̂1(0) = 0; x2(0) = 5; x̂2(0) = 5;

For this simulation, the tuning parameter � is set to 10.
The value of this parameter allows to adjust the conver-
gence time of the observer given in Equation (27).

Figures 1 and 2 show the states x1(t) and x2(t) and
their estimated values x̂1(t), x̂2(t); it can be seen that
after a brief period of time x̂1(t) converge to x1(t). On



Fig. 1. The state x1 (solid line) and its estimated value x̂1
(dashed line).

Fig. 2. The state x2 (solid line) and its estimated value x̂2
(dashed line).

Fig. 3. The error estimation e1 and e2.

the other hand the time profile x2(t) and x̂2(t) are quite
similar. Figure 3 shows the errors estimations e1 and e2,
after a small time e1 and e2 converge to zero. It can be
appreciated that x̂2(t) converges very quickly to x2(t).

6. CONCLUSION

In this work an observer for a class of delayed nonlin-
ear triangular systems was presented. The time-delay is
considered variable and it can be presented as a simple
or multiple time-delay in the states or in the input of
the system. The time-delay is supposed to be known and
bounded. The main feature of the proposed observer with
respect to others in the literature, is its simplicity. This
is because (due to its particular structure) the system is
treated in the original coordinates. Also, the observer gain
is constant and does not require to solve any additional
dynamical system. The observer is evaluated successfully
through a simulation example.
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