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Abstract—A very high-speed wireless access of 100 Mb/s to
1 Gb/s is required for fourth-generation mobile communication
systems. However, for such high-speed data transmissions, the
channel is severely frequency-selective due to the presence of
many interfering paths with different time delays. In this pa-
per we discusses the identification problem of the normalized
channel for 4th generation mobile communication, representing
the indoor scenario ( European Telecommunications Standards
Institute Broadband Radio Access Networks (ETSI BRAN A)
channel model) and outdoor scenario (ETSI BRAN E channel
model). The identification problem is performed using the Least
Mean Squares (LMS) algorithm and the Takagi-Sugueno (TS)
fuzzy system. The comparison between these techniques, for the
channel identification, will be made for different Signal to Noise
Ratios (SNR).

keywords–LMS algorithm; Takagi-Sugeno Fuzzy System;
Selective radio Communication Channels; System identifi-
cation.

I. INTRODUCTION

Wireless or cellular mobile communication systems have
been evolving according to advancements in wireless tech-
nologies and changes in user demands. In fixed and cellular
networks, voice conversation was the dominant service for
a long time. In line with the recent explosive expansion of
Internet traffic in fixed networks, demands for broad ranges
of services are becoming stronger even in mobile communi-
cation networks. A variety of services are now available over
the second generation (2G) mobile communications systems,
including email, Web access, and online services ranging
from bank transactions to entertainment, in addition to voice
conversation. People want to be connected anytime, anywhere
with the networks, not only for voice conversation but also for
data conversation (i.e., downloading/uploading information).
3G systems based on wide band direct sequence code-division
multiple access (DSCDMA) [1], with much higher data rates
of up to 384 kb/s (around 10 Mb/s in the later stage), were
put into service in some countries, and their deployment speed
has since accelerated. However, the capabilities of 3G systems
will sooner or later be insufficient to cope with the increasing
demands for broadband services that will soon be in full
force in fixed networks. Demands for downloading of ever
increasing volumes of information will become higher and
higher. 4G systems that support extremely high-speed packet

services are now expected to emerge [2, 3]. How cellular
systems have evolved from 1G to 3G and will further evolve
into 4G is shown in Fig. 1. 100 Mb/s 1 Gb/s class wireless
packet access may be necessary for 4G systems.

Fig. 1. mobile communications systems evolution

In this paper we focus on the channel identification rep-
resenting the indoor propagation (ETSI BRAN A) and the
outdoor propagation (BRAN E), these channel models are nor-
malized for 4G systems. the propagation channel is introduced
for better understanding of the frequency-selective channel.
The identification problem is performed using the Least Mean
Squares algorithm (LMS) [4] and the Takagi-Sugueno (TS)
fuzzy system [5].

II. CHARACTERIZATION OF SELECTIVE (BROADBAND)
CHANNEL

Between a base station and a mobile station (MS) there
are many obstacles, and also many local scatterers (e.g.,
neighboring buildings) in the vicinity of the MS. Reflection
of the signal by large obstacles creates propagation paths with
different time delays; each path is a cluster of irresolvable mul-
tipaths created by reflection or diffraction, by local scatterers,
of the transmitted signal reaching the surroundings of an MS.
They interfere with each other, producing multipath fading,
and the received signal power changes rapidly in a random
manner with a period of about half-carrier wavelength when
the MS moves. Such a multipath channel can be viewed as a
time varying linear filter of impulse response h(τ) observed



at time t, which can be expressed as [6]

h(τ) =

L−1∑
i=0

ξiδ(τ − τi) (1)

where δ(n) is Dirac function, ξi is the magnitude of the target
i, L = 18 the number of target and τi is the time delay (from
the origin) of target i.

A. ETSI BRAN A Mobile Channel Model

In this paragraph we consider the ETSI BRAN A model
representing the propagation in an indoor case. In the Table I
we have summarized the measured values corresponding the
ETSI BRAN A radio channel impulse response Eq. 1.

TABLE I
DELAY AND MAGNITUDES OF 18 TARGETS OF BRAN A RADIO CHANNEL

delay τi(ns) mag. Ci(dB) delay τi(ns) mag. Ci(dB)
0 0 90 −7.8
10 −0.9 110 −4.7
20 −1.7 140 −7.3
30 −2.6 170 −9.9
40 −3.5 200 −12.5
50 −4.3 240 −13.7
60 −5.2 290 −18
70 −6.1 340 −22.4
80 −6.9 390 −26.7

B. ETSI BRAN E Mobile Channel Model

In this paragraph we consider the ETSI BRAN E model
representing the fading radio channels, where the data corre-
sponding to this model are measured in outdoor environment.
In the table II we represent the values corresponding to the
ETSI BRAN E radio channel impulse response.

TABLE II
DELAY AND MAGNITUDES OF 18 TARGETS OF BRAN E CHANNEL

delay τi(ns) mag. Ci(dB) delay τi(ns) mag. Ci(dB)
0 −4.9 320 0
10 −5.1 430 −1.9
20 −5.2 560 −2.8
40 −0.8 710 −5.4
70 −1.3 880 −7.3
100 −1.9 1070 −10.6
140 −0.3 1280 −13.4
190 −1.2 1510 −17.4
240 −2.1 1760 −20.9

III. CHANNEL IDENTIFICATION USING THE LMS
ALGORITHM AND TS FUZZY SYSTEM

A. Description of the LMS Algorithm

From the method of steepest descent, the weight vector
equation is given by [4],

w(n+ 1) = w(n) +
1

2
µ[−∇(E{e2(n)})] (2)

Where µ is the step-size parameter and controls the conver-
gence characteristics of the LMS algorithm; e2(n) is the mean

square error between the beamformer output y(n) and the
reference signal which is given by,

e2(n) = [d∗(n)− whx(n)]2 (3)

The gradient vector in the above weight update equation can
be computed as

∇w(E{e2(n)}) = −2r + 2Rw(n) (4)

In the method of steepest descent the biggest problem is the
computation involved in finding the values r and R matrices
in real time. The LMS algorithm on the other hand simplifies
this by using the instantaneous values of covariance matrices
r and R instead of their actual values i.e.

R(n) = x(n)xh(n) (5)

r(n) = d∗(n)x(n) (6)

Therefore the weight update can be given by

w(n+ 1) = w(n) + µx(n)[d∗(n)− xh(n)w(n)] (7)
= w(n) + µx(n)e∗(n)

The LMS algorithm is initiated with an arbitrary value w(0)
for the weight vector at n = 0. The successive corrections of
the weight vector eventually leads to the minimum value of
the mean squared error. Therefore the LMS algorithm can be
summarized in the following equations

Output, y(n) = wh(n)x(n) (8)
Error, e(n) = d∗(n)− y(n) (9)
Weight, w(n+ 1) = w(n)− µx(x)e∗(n) (10)

The LMS algorithm initiated with some arbitrary value for the
weight vector is seen to converge and stay stable for

0 < µ < 1/λmax (11)

Where λmax is the largest eigenvalue of the correlation matrix
R. The convergence of the algorithm is inversely proportional
to the eigenvalue spread of the correlation matrix R. When the
eigenvalues of R are widespread, convergence may be slow.
The eigenvalue spread of the correlation matrix is estimated
by computing the ratio of the largest eigenvalue to the smallest
eigenvalue of the matrix. If µ is chosen to be very small
then the algorithm converges very slowly. A large value of
µ may lead to a faster convergence but may be less stable
around the minimum value. The literatures [7,8] also provides
an upper bound for µ based on several approximations as
µ ≤ 1/(3trace(R)).

B. Description of the TS Fuzzy model

The fuzzy model proposed by Takagi and Sugeno [9] is
described by fuzzy IF-THEN rules which represents local
input-output relations of a nonlinear system. The main feature
of a Takagi-Sugeno fuzzy model is to express the local
dynamics of each fuzzy implication (rule) by a linear system
model. The overall fuzzy model of the system is achieved by
fuzzy ”blending” of the linear system models [12, 13].



The fuzzy Takagi-Sugeno model uses the linear functions in
the consequent part. So it can be seen as a combination of
language model [9, 14, 15, 16] and the mathematical regres-
sion model in the sense that the antecedents describe fuzzy
regions in the space of input functions in which consequences
are valid. Such fuzzy models, rule-based, provide a lot of
possibilities for approximating nonlinear systems. In this work,
we use particular fuzzy models of Takagi-Sugeno approach
that allow non-linear systems by a combination of several local
linear models [16, 17]. These models are written as follows

Ri : if xt is Ai Then ŷt,i = α0i + xTt αi (12)
where i = 1, 2, ...c and t = 1, 2, ...N

Ri(i = 1, 2, ..., c) indicates the ith fuzzy rule, xt is the input
variable (xt ∈ Rn), ŷt,i is the output of the rule i relative to
input xi, Ai is the fuzzy set and αi = (α1, α2, ..., αn)

T .
The output ŷt relative to input xt after aggregating of c TS
fuzzy rules, can be written as a weighted sum of the individual
conclusions

ŷt =

c∑
i=1

πi(xt)ŷt,i (13)

with

πi =
µAi

(xt)∑c
j=1 µAj

(xt)
(14)

where µAi
is the membership function related to the fuzzy set

Ai. The identification of the TS fuzzy systems requires two
types of tuning:
- Structural tuning: concerns the determination of the number
of rules c and the fuzzy sets to be used in the fuzzy system,
for that we used the Gustafson-Kessel (GK) fuzzy clustering
algorithm [18] with the following fuzzy validity criterion[19]

S(c) =

N∑
t=1

c∑
i=1

(µkt)
m(‖zt − νi‖2‖νi − z‖2) (15)

Where zt is the tth data point, νi is the centre of the ith

cluster and z is the average of data and m is the fuzzification
exponent. For the functional Eq.15, the two terms inside the
bracket represent the variance of data inside each clusters and
the variance of the clusters themselves, respectively. So the
optimum number of clusters is determined as a minimum of
the fuzzy validity criterion S(c) as c increases.
- Parametric tuning: consists to identify the parameters of
the TS fuzzy model: Generally two methods are used for
the estimation of the linear parameters (αk) [14]. The first
one is the Weighted Least Squares (WLS) algorithm, called
also the local method. The second one is the Global Least
Square (GLS) algorithm called also the global method. The
determination of the best strategy to apply is not clearly
established.
However if we want to construct a most legible system, the
local approach is preferable, since we can separate (interpret)
the contributions of every rule (expert). On the contrary, if
we want to adjust the linear parameters so that the global

model resulting approximate to best the data base, the global
approach is preferable, in this approach, all rules (experts)
act simultaneously and we can not discriminate their action.
The nonlinear parameters are estimated using the Marquardt-
Levenberg (LM) method [19]. In this work, we use the global
least squares approach (GLS).

IV. SIMULATION RESULTS

In this section we show the performance results obtained
by computer simulation for different SNR and assuming that
the input channel is driven by non Gaussian signal x(n). The
output channel y(n) is corrupted by a gaussian noise N(n).

1) ETSI BRAN A Identification using the LMS algorithm:
In Fig. 2 we represent the estimation of the ETSI BRAN A
parameters using the LMS algorithm, for an SNR varying
between 0dB and 40dB the data length is 2048 and for 100
iterations. From the Fig. 2 we observe a very low influence
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Fig. 2. ETSI BRAN A channel identification for different SNR, using the
LMS algorithm

of the noise on the parameters estimation even for a SNR =
0dB, this is due to a slow variance of the impulse response
of the ETSI BRAN A channel.
In order to know the differences between values estimated by
the LMS algorithm and the measured values of the model ETSI
BRAN A, we represent in the Fig. 3 the root-mean-square error
(RMSE).

The Fig. 3 show that the RMSE values decrease approxi-
mately linearly from 0dB to 24dB, but if the SNR > 24dB
we remark that the RMSE values are approximately constant
and have the value ≈ 2.10−3.

2) ETSI BRAN E Identification: In this section we consider
the ETSI BRAN E channel model. The Fig. 4 show the
impulse response estimation for this channel using the LMS
algorithm for different SNR.
From the Fig. 4, we remark a slight influence of the noise

in the impulse response parameters estimation principally if
the SNR < 24dB, but if the SNR > 24dB the estimated
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Fig. 3. RMSE (RMSE values (using the LMS algorithm) as a function of
SNR
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Fig. 4. ETSI BRAN E channel identification for different SNR, using the
LMS algorithm

parameters are very closed to the measured one.
In Fig. 5 we represent the RMSE values for different SNR;
we can conclude the same remark like the RMSE calculated
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Fig. 5. RMSE (BRAN E channel using the LMS algorithm)for different
SNR

for the ETSI BRAN A, i.e the RMSE values for the ETSI
BRAN A channel model are decrease linearly if the SNR
between 0dB and 24dB and slowly varying and take the
values ≈ 2.10−3.

A. Channel Identification Using the TS Fuzzy System

In this section we use Takagi-Sugueno fuzzy system to
identify the impulse response of ETSI BRAN (A and E)
channel model, for different SNR.

1) ETSI BRAN A Identification: The Fig. 6 represent
the impulse response of ETSI BRAN A channel model, for
various SNR.
This figure shows clearly the influence of noise on parameter
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Fig. 6. ETSI BRAN A channel identification for different SNR, using TS
fuzzy system

estimation, principally when the noise is important, i.e.
SNR < 24dB, This is due to any noise filtering is realized in
the TS fuzzy system. Which means if the noise is important,
we observe that the estimated parameters are not closed to
the measured one.

In Fig. 7 we represent the RMSE for different SNR,
the results show that the standard deviation is important
this imply RMSE values are most significant, for example:
RMSE = 2.10−2.

2) ETSI BRAN E Identification: The problem of the noise
filtering is most clear in the impulse response identification of
the ETSI BRAN E channel model using the TS fuzzy system,
i.e. Fig. 8, This figure demonstrates the identification problem
of the ETSI BRAN E impulse response, when we have a rapid
variance of the impulse response and in presence of noise,
using the TS fuzzy system. This problem is clear principally
for the first six values of the ETSI BRAN E impulse response,
where the estimated parameters do not follow those measured.
But, if the impulse response decrease ”slowly”, i.e after the
sixth values we observe that the estimated values are closed
to those measured.
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Fig. 7. RMSE (BRAN A channel using TS Fuzzy system) for different SNR
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Fig. 8. ETSI BRAN E channel identification for different SNR, using TS
fuzzy system
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Fig. 9. RMSE (BRAN E channel using TS fuzzy system) for different SNR

Finely we represent in Fig. 9 the RMSE, for BRAN E impulse
response using TS fuzzy systems, for different SNR.
From the Fig. 9 we remark a slow decrease of the RMSE

values and take the value ≈ 5.10−2 for SNR = 24dB, which
demonstrates that the estimated impulse response values are
very closed to the measured one.

V. CONCLUSION AND PERSPECTIVES

In this paper we have presented two techniques: LMS
algorithm and TS fuzzy system. Both of those techniques are
used to identify the impulse response of the ETSI BRAN (A
and E) selective channel. Through this paper, we have used
the mentioned techniques for different SNR and in order to
show the estimation quality we calculated the RMSE for each
SNR value. From simulation results, we may conclude the
following:
First, the LMS algorithm show their efficiency in the impulse
response channel (ETSI BRAN (A and E)) identification
with high precision (the estimated parameters are very closed
to the measured one) for various SNR, eventually for a
SNR = 0dB.
Second, the TS fuzzy system give good results for the im-
pulse response ETSI BRAN A selective channel, for different
SNR > 16dB. But for ETSI BRAN E selective channel
we have some variance for the sixth values of the impulse
response.
In conclusion the LMS algorithm is very adequate for the
selected application (identification of the values of the impulse
response ETSI BRAN (A and E)) than the TS fuzzy system,
principally in noisy environment, because the LMS algorithm
use a noise filtering in each iteration.
The future work of this paper is the MC-CDMA equalization
using the presented techniques (LMS and TS fuzzy system).
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