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ABSTRACT

This paper investigates the classification of photographic paper tex-

tures using visual descriptors. Such classification is called fine grain

due to the very low inter-class variability. We propose a novel image

representation for photographic paper texture categorization, relying

on the incorporation of a powerful local descriptor into an efficient

higher-order model deviation where texture is represented by com-

puting statistics on the occurrences of specific local visual patterns.

We perform an evaluation on two different challenging datasets of

photographic paper textures and show such advanced methods in-

deed outperforms existing descriptors.

Index Terms— Image texture, Image classification, Image tex-

ture analysis

1. INTRODUCTION

Texture classification is an active research topic in the field of com-

puter vision and image processing, playing a significant role in many

applications such as medical image analysis, remote sensing, ob-

ject recognition, document analysis, environment modeling, content-

based image retrieval and many more. As the demand of such ap-

plications increases, texture classification has received considerable

attention over the last decades and numerous novel methods have

been proposed [1, 2, 3, 4, 5].

Recently, the orderless Bag-of-Words (BoW) approach [6], rep-

resenting texture images statistically as histograms over a discrete

texton dictionary, has proven successful in texture classification

tasks. The strength of the BoW for texture classification comes

from its two complementary components: the powerful local texture

descriptors and global statistical histogram characterization. The

former attempts to extract a set of robust and discriminative features

from local patches to encode local patterns; while the latter relies

on the fact that the texture image is a combination of those local

patterns viewed as a random sampling process.

In this paper, we tackle the identification of photographic pa-

per textures with papers having similar physical properties (same

sheet, same package, same manufacturer, etc). In such context, we

must consider features allowing to discriminate between small lo-

cal differences in textures. To that end, we investigate the recent

advances in BoW approaches, which we argue are able to capture

such tiny local variations. More formally, we aim at incorporat-

ing a recent powerful local descriptor, Patterns of Oriented Edge

Magnitudes (POEM) [7], into an efficient second order model de-

viation method, Vectors of Locally Aggregated Tensors (VLAT) [8],

and then evaluate the gain of such approaches compared to global

descriptors alone. By experiments carried out on two very chal-

lenging photographic paper texture datasets [9] with very low inter-

class variability, we show significant improvements over using the

descriptors alone.

The rest of the paper is organized as follows: in the next sec-

tion we present the related work on texture descriptors and BoW

approaches. We then detail in Section 3 the proposed combination

of descriptors and signatures. In Section 4, we evaluate these ap-

proaches and analyze the results before we conclude.

2. RELATED WORK

Most of earlier work on texture analysis focused on the develop-

ment of filter banks and on characterizing the statistical distributions

of their responses. Davis [10] exploited polarograms and general-

ized co-occurrence matrices to obtain rotation invariant statistical

features. In [11], Duvernoy proposed Fourier based descriptors to

extract texture feature on the frequency domain. In [12] Eichmann

and Kasparis presented texture descriptors based on line structures

extracted by the Hough transform. Although many efforts have been

carried out along this direction, the supremacy of filter bank-based

descriptors for texture analysis has been challenged by several au-

thors [13, 14] who showed that it is possible to discriminate between

textures using the intensities or differences of pixel within small

scale neighborhoods. They demonstrated that despite the global

structure of the textures, very good discrimination could be achieved

by exploiting the distributions of such pixel neighborhoods. Two

particularly important works along these lines are the VZ-Joint clas-

sifier [14] and the Local Binary Pattern (LBP) method [13]. The

efficient texture descriptor LBP may be the preferable choice over

the VZ-Joint classifier due to its simplicity.

Due to its computational efficiency and good discriminative

property, the LBP descriptor [13] has gained considerable atten-

tion, and has already been used in many other applications, e.g., face

recognition [15, 16]. Despite its great success, the conventional LBP

operator comes with limitations, such as small spatial support re-

gions, loss of local textural information, and sensitivities to rotation

and noise. A lot of effort has been devoted to overcome these limita-

tions, and many different LBP like descriptors have been presented

such as the completed LBP model of Guo et al. [17] including both

the magnitudes of local differences and the pixel intensity itself, the

Dominant LBP in [18], the Local Ternary Patterns of Tan and Triggs

[19], the extended LBP model of Liu et al. in [20], the circular

symmetric LBP of Heikkila et al. [21], as well as the Patterns of

Oriented Edge Magnitudes (POEM) features of Vu and Caplier [7].

More recently, several authors proposed a texture model based

on visual dictionaries [6, 22, 14]. In these approaches, texture are

considered to be sampled from a distribution of characteristic visual

patterns or textons (named visual words in this context). This distri-

bution is estimated by computing the histogram of occurrences of the

visual words, hence the name Bag of Words. The similarity between

textures is then measured with standard metric on histograms (e.g.,

χ2 distance or Canberra distance). Robust and discriminative local

texture descriptors and global statistical histogram characterization



(a) Images from the bw dataset.

(b) Images from the inkjet dataset.

Fig. 1: Images extracted from the texture datasets. The first row contains images from the bw dataset, while the second row contains images

from the inkjet dataset. Each image is from a different category.

have supplied complementary components toward the BoW feature

extraction of texture images.

In fact, the BoW approach is originally borrowed from the object

recognition field [23], where local distinctive features are extracted

from regions of interest, quantized in a dictionary (or visual code-

book) of visual words. The histogram of occurrences of the visual

words is then computed and used as a signature. Recently in object

recognition, the BoW approach has been superseded by methods en-

coding more efficiently the statistical information in the set of local

descriptors. In those approaches, the visual codebook is considered

as universal model of the descriptors space, and the images are mod-

eled as deviations from this model. Such methods include the pop-

ular Fisher Vectors [24] that achieve state of the art performances in

object recognition challenges, the first order method [25] as well as

the higher order deviations using a tensor framework [26].

3. PROPOSED METHOD

In this paper, we propose to combine the powerful local descrip-

tor, Patterns of Oriented Edge Magnitudes (POEM) [7], with an

efficient second order model deviation method, Vectors of Locally

Aggregated Tensors (VLAT) [8] for texture classification. For the

sake of completeness, this section details these two components of

the proposed texture classification pipeline.

3.1. POEM feature extraction

The key idea of the POEM algorithm is to characterize object appear-

ance by the relations between the distributions of local gradients of

neighboring patches. The POEM feature extraction process consists

of the three following steps:

(s1) Gradient computation and orientation quantization: let

θ(p) and m(p) denote the gradient orientation and magnitude at

pixel p. The gradient orientation at each pixel is evenly discretized

over 0-π (unsigned) or 0-2π (signed). A pixel feature is repre-

sented as a d-dimensional vector with only one non-null element

(s2) Accumulating

magnitudes within

local regions

(s3) Calculating self-similarity of 

accumulated magnitudes in 

larger regions

c2

c6

c3

c1c4

c5

pp

1

1

0 0

0

0

1 1

1

0

0

1

{001010 = 10, 

010111 = 23,

111010 = 58}

1
0

0
1

11

p

(s1)

Fig. 3: POEM feature extraction for one pixel p. In (s3), the algo-

rithm considers the length of vectors.

[m̂1(p), ..., m̂d(p)] where d is the number of discretized orienta-

tions, the i−th element of this vector takes the original magnitude

(m̂i(p) = m(p)) if the discretized orientation of the current pixel

belongs to this bin, and m̂i(p) = 0 otherwise (see Fig. 3 where only

one non-null vector emits from pixel p).

(s2) Magnitude accumulation: to incorporate information

from neighboring pixels (Fig. 3), a local histogram of orienta-

tions over all pixels within a local image patch (also called “cell”)

is computed. As a result, a pixel conveys now richer informa-

tion, i.e., the distribution of edge direction of a local image struc-

ture. At pixel p, the feature vector is [m̃1(p), ..., m̃d(p)] where

m̃i(p) =
∑

pj∈C
m̂i(pj) and C refers to cell centered on the

considered pixel p.

(s3) Self-similarity calculation: the accumulated magnitudes

are encoded using the self-similarity LBP-based operator within a

more extended image patch (called “block”). The original LBP oper-

ator labels the pixels of an image by thresholding the neighborhood

surrounding the pixel with the intensity value of central pixel, and

considering the sequence of 8 result bits as a number. The similar

procedure is applied on the accumulated magnitudes and across dif-



(a) HOG (b) LBP (c) POEM (d) VLAT+HOG (e) VLAT+LBP (f) VLAT+POEM

(g) HOG (h) LBP (i) POEM (j) VLAT+HOG (k) VLAT+LBP (l) VLAT+POEM

Fig. 2: Distance matrix for the different descriptors and signatures on both datasets: first row for the bw dataset, second row for the inkjet

dataset. Dark colors indicate small distances, while lighter colors indicate greater distances.

ferent directions to build the POEM features. Formally, at pixel p,

for the discretized direction i, the POEM feature is calculated as:

POEM
i
L,w,n(p) =

n
∑

j=1

f(m̃i(p)− m̃i(cj))2
j

(1)

where cj are surrounding pixels; L,w refer to the size of blocks

and cells, respectively; n is number of pixels surrounding the con-

sidered pixel p; and f is defined as: f(x) = 1 if x ≥ τ, f(x) =
0 otherwise where the value τ is slightly larger than zero to provide

some stability in uniform regions. Then, the POEM feature set at that

pixel p is the concatenation of these d unidirectional POEM values:

POEML,w,n(p) = [POEM1, ..., POEMd].

3.2. VLAT Signature

The POEM feature extraction is performed on a dense grid basis,

using several scale of regions (usually in the order of 5% to 15% of

the whole image). The descriptors dri extracted from an image i are

stored in an unordered set Ai = {dri}.

Using a large set of descriptors A = {dri} sampled from the

entire texture collection, we compute a clustering of the descriptors

space using the k-means algorithm. For each cluster k, we compute

the first and second order moments using the partition Ck of A cor-

responding to the descriptors belonging to cluster k:

µk =
1

|Ck|

∑

dri∈Ck

dri (2)

Σk =
1

|Ck|

∑

dri∈Ck

(dri − µk)(dri − µk)
⊤

(3)

µk is thus the mean of all descriptors belonging to cluster k and

Σk is its covariance matrix. The set of (µk,Σk) for all k is a model

of the whole descriptors space. The set of {µk} alone is akin to the

classical visual words dictionary of the BoW approach.

For each texture i, we use the same clusters to compute the par-

titions Cki of its set of descriptors Ai. For each cluster, the VLAT

aggregation corresponds to the deviation between the texture second

order moments centered on µk and the model covariance matrix Σk:

τki =
∑

dkri∈Cki

[

(dkri − µk)(dkri − µk)
⊤ − Σk

]

(4)

The VLAT signature is the flattening and concatenation of matri-

ces τki for all k. We argue this second order deviation is well suited

for fine grain identification, since not only the pattern prototypes are

identified as it would in standard BoW approaches, but also the slight

variations that might differentiate very closely related textures (e.g.,

paper from the same manufacturer, but not from the same sheet).

4. EXPERIMENTS

We evaluate our pipeline on two different photographic paper tex-

ture datasets (bw and inkjet) [9] containing each 120 images of pho-

tographic paper sheets. Each dataset contains 9 categories consist-

ing of ten images with similar but varying physical properties (same

sheet, same package, same manufacturer, etc), and 30 random im-

ages not related to the other categories. Images from both the bw

and inkjet datasets are presented in Figure 1. As we can see, it is

very challenging for non-experts to distinguish the categories.

In our evaluation, we compared three different descriptors,

namely HOG, LBP and POEM, as well as their aggregation us-

ing the VLAT signature model. For each texture, we compute the

euclidean distance between its feature and the ones of every other

texture. In Figure 2, we show the different distance matrices ob-

tained for all the 6 possible combinations. The ideal distance matrix

is block diagonal for the first 9 blocks of 10 rows/columns (each

block corresponding to a category), and random for the last 30

rows/columns (corresponding to the distractors). As we can see, the

bw set is far more difficult than the inkjet, although it is not obvious

simply by looking to the images. Using the VLAT aggregation, we

are able to capture more of the block structure expected in the ideal

distance matrix.

To obtain more quantitative results, we computed the preci-

sion/recall curves associated with these distance matrices. Each



HOG LBP POEM VLAT+HOG VLAT+LBP VLAT+POEM

inkjet 63.8 45.7 66.3 69.7 67.8 73.6

bw 26.9 24.1 26.3 31.0 26.4 31.3

Table 1: mAP for all tested combinations. The first row corresponds to the inkjet dataset, while the second row is for the bw dataset

image acts as a query, and the precision/recall is measured by the

rank of the other 9 images of the same category within the corre-

sponding sorted row of the distance matrix.
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Fig. 4: Precision/Recall curves on the inkjet set.
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Fig. 5: Precision/Recall curves on the BW set.

Figure 4 shows these precision/recall curves for all possible

combinations of descriptors on the inkjet dataset. As we can see,

single descriptors are systematically outperformed by their aggre-

gated counterpart. The precision curve has a very slow decrease,

which means that most categories are almost perfectly sorted. Fig-

ure 5 shows the precision/recall curves for the bw dataset. Contrarily

to the inkjet dataset, the results are much lower, which is consistent

with the observed distance matrices. The aggregation also out-

performs related single descriptors in all tested combinations. It

would be worth noting that on these photographic paper databases,

the texture LBP descriptor surprisingly performs worst than HOG

and POEM. This can be explained by the fact that these images

are of very high resolution whereas LBP has too small spatial sup-

port regions. In other words, LBP cannot capture global enough

information of those images.

To sum up the retrieval performances of each combination, Ta-

ble 1 shows the mean Average Precision (mAp - area under the preci-

sion/recall curve). As we can see, the aggregation allows to boost the

performances of the descriptors by a fair 3% to 6% of mAp, which

is considerable. The VLAT+POEM combination always obtains the

best performance on both datasets, which means that the model by a

distribution of patterns of varying intensity is the best among those

tested.

5. CONCLUSION

In this paper, we evaluated several descriptors and aggregation

model in the case of fine grain texture classification. More specif-

ically, we tackle the identification of photographic paper textures,

where paper with the same physical properties have to be retrieved

among a collection of many paper textures. Unlike common global

approaches, we propose to model the texture as a distribution of

specific visual pattern sampled from a dictionary. In that sense, we

proposed to adapt efficient local descriptors with a recent model

deviation based approach from the object classification community

to our texture identification problem. We performed the compari-

son of these descriptors with their aggregated counterparts on two

photographic paper texture datasets, and show that the aggregation

method performs best.
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