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Karhunen-Loève’s Series Truncation for Bivariate Functions

M. Azäıez∗ F. Ben Belgacem†

September 11, 2014

Abstract

Karhunen-Loève’s decompositions (KLD) or the proper orthogonal decompositions (POD) of
bivariate functions are revisited in this work. We investigate the truncation error first for regular
functions and try to improve and sharpen bounds found in the literature. However it happens
that (KL)-series expansions are in fact more sensitive to the liability of fields to approximate to
be well represented by a ‘small’ sum of products of separated variables functions. We consider
this very issue for some interesting fields solutions of partial differential equations such as the
transient heat problem and Poisson’s equation. The main tool to state approximation bounds is
linear algebra. We show how the singular value decomposition underlying the (KL)-expansion is
connected to the spectrum of some Gram matrices. Deriving estimates on the truncation error
is thus strongly tied to the spectral properties of these Gram matrices which are structured
matrices with low displacement ranks.
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1 Introduction

Model Reduction methods developed for data analysis and scientific computing are used as en-

hancing numerical material in the treatment of dynamical systems. They are among important

up-to-date factors in deriving fast and reliable solutions to large scale problems (see [21]). In signal

processing for instance, Karhunen-Loève’s expansion (KLE) turns out to be a practical procedure

for a low dimensional representation of spatiotemporal signals (see [20, 11, 25]). Different commu-

nities point at it under different terminologies. It is named the proper orthogonal decomposition

(POD) in mechanical computation (see [5]), referred to as the principal components analysis (PCA)

in statistics (see [27, 16, 17]) and data analysis or called singular value decomposition (SVD) in

linear algebra (see [12]). These are the most known terminologies ; other denominations do ex-

ist. A great amount work has been realized and a wide literature has been elaborated on the

application of these techniques to reduce computational cost in various areas which proves them

tractable to handle many interesting problems. We refer to the papers, manuscripts and lecture

notes [27, 15, 10, 19, 33, 30, 28, 26] and references therein. Of course this, and by far, is not an

exhaustive list of research touching the subject.

In the other hand side, fewer papers can be found that are specifically devoted to the mathematical

analysis of the (KL)-truncation error. We quote for instance [13]. The estimate on the truncation

error provided there is mainly fed by the regularity assumptions on the bivariate field under consid-

eration. That bound tells that the error is expected to decay faster for smoother fields. This result

is beyond doubt useful, at least because it concerns a large and well identified class of functions.

But, the success of a small truncation to produce a good approximation for a given spatiotemporal

(bivariate) field has obviously to do with the possibility for that field to be represented by separated

time and space functions. This is not necessarily linked to any smoothness properties. Proving

error estimates for general functions seems to be out of reach. Stating sharp estimates for some

spatiotemporal fields that are solutions of some common parabolic or elliptic partial differential

equation appears more affordable. This is the main target of the current work. To start with, the

(SVD)-problem underlying the (KL)-expansion is reworded using linear algebra. The advantage is,

at least for spatiotemporal functions we are concerned with, that the underlying eigenvalue problem

is related to some infinite dimensional structured matrices such as Cauchy or Pick matrices. Their

low displacement rank enables one to derive asymptotics for the corresponding eigenvalues, after

which we prove the optimal error estimates we aim at.

The guidelines of the paper are as follows. Section 2 recalls the Karhunen-Loève expansion of

a given bivariate function, obtained from Mercer’s theorem. We point out its salient properties, in

particular its optimality in the sense that it is among all possible expansions the one that capture

the largest fraction of the total energy with a given number of modes. Section 3 is to revisit the
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error estimate, caused by the truncation of the (KL)-expansion, provided in [13] for regular func-

tions. In a simple context we illustrate how to enhance the methodology followed there in order

to improve the final convergence rate. In section 4, we investigate the truncation error for the

solutions of two transient heat equations. In the first one, the temperature field is the one obtained

by the conduction of a given initial state while the second temperature field originates from the

heat equation where the heating source is given by a time space separated functions. Next, in

Section 5 we study the (KL)-approximation of some potential obtained as the solution of Poisson’s

equation. In the Appendix, asymptotics of some useful Pick matrices are exposed.

Notation — Let X ⊂ R
d be a given Lipschitz domain. We denote by L2(X) the space of mea-

surable and square integrable functions on X. The scale of fractional Sobolev spaces Hτ (X), τ > 0

is defined as in [2].
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2 Karhunen-Loève Expansion

Assume that X ⊂ R
d and Y ⊂ R

s are two bounded domains, d and s are integers ≥ 1. Let T be a

given function in the Lebesgue space L2(X × Y ). We are interested in the integral operator with

kernel T . It is expressed by

ϕ 7→ B ϕ, (B ϕ)(y) =

∫

X
T (x, y)ϕ(x) dx. (1)

The operator B maps L2(X) into L2(Y ), is bounded and has an adjoint operator B∗ defined from

L2(Y ) into L2(X). It is also an integral operator and is given by

v 7→ B∗ v, (B∗ v)(x) =

∫

Y
T (x, y)v(y)dy. (2)

B belongs to the class of Hilbert-Schmidt operators and is thus compact. The self-adjoint operator

A = B∗B is also an integral operator, its kernel K is expressed by

K(x, ξ) =

∫

Y
T (x, y)T (ξ, y) dy.

We have that K ∈ L2(X × X); A is of course compact. Applying the Hilbert Schmidt theorem

enables the diagonalization of A. There exists then a Hilbert basis (ϕm)m≥0 in L2(X) where ϕm is

an eigenvector of A related to a non-negative eigenvalue λm, that is

Aϕm = λm ϕm, ∀m ≥ 0. (3)

Assume that the sequence (λm)m≥0 is positive, which means that B is injective. We retain this

option to be focussed on the main ideas we want to expose here while avoiding as much as we

can mathematical technicalities. Extension to the general case is readily checked. Hence, ordered

decreasingly, the sequence (λm)m≥0 necessarily decays toward zero. A straightforward effect of the

diagonalization of the operator A is the following singular value decomposition of the operator B.

Lemma 2.1 There exists a system (ϕm, vm, σm)m≥0 such that (ϕm)m≥0 is an orthonormal basis

in L2(X), (vm)m≥0 an orthonormal system in L2(Y ) and (σm)m≥0 a sequence of nonnegative real

numbers such that

B ϕm = σm vm, B∗ vm = σm ϕm.

The sequence (σm)m≥0 is ordered decreasingly and decays toward zero.

Proof: It is a direct consequence of the spectral decomposition of A. The sequence (σm)m≥0 are

the singular values of B. In particular, we have σm =
√
λm for all m ≥ 0. We refer to [9] for a

detailed proof.

Remark 2.1 The multiplicity of each non vanishing singular value is finite due to the compactness

of the operator B
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The positivity of the operator A makes out of the kernel K a Mercer kernel. Using Mercer’s

theorem yields the following decomposition (see [22])

K(x, ξ) =
∑

m≥0

λmϕm(x)ϕm(ξ), ∀(x, ξ) ∈ X ×X.

A direct result is the Karhunen-Loève expansion, currently used in the analysis of stochastic pro-

cesses (see [3, 34]). It is more commonly known under the Proper Orthogonal Decomposition

terminology and the related acronym is (POD) in the partial differential equations literature.

Corollary 2.2 The following expansion holds

T (x, y) =
∑

m≥0

σm ϕm(x)vm(y), ∀(x, y) ∈ X × Y.

Remark 2.2 Considering the functions wm = σmvm, the Karhunen-Loève decomposition may be

put under the following form

T (x, y) =
∑

m≥0

ϕm(x)wm(y), ∀(x, y) ∈ X × Y.

The system (wm)m≥0 is orthogonal with

wm(y) =

∫

X
T (x, y)ϕm(x) dx, ∀y ∈ Y.

The quality of the function T to be accurately represented by truncated of separated variable functions

is tightly related to the sequence of singular values (σm)m≥0 and in particular to its decreasing rate.

We will use in some places the notation

T =
∑

m≥0

ϕm ⊗ wm.

Remark 2.3 The function TM defined by the truncated sum with a cut-off equal to M is the

Karhunen-Loève approximation (KL-approximation). The orthogonality produces the following es-

timate

‖T − TM‖L2(X×Y )

‖T‖L2(X×Y )
=

√

∑

m≥M+1 λm
∑

m≥0 λm
. (4)

The decaying rate of the eigenvalues (λm)m≥0 determines therefore the quality of the truncation.

Remark 2.4 In many areas and in particular in fluid mechanics where model reduction is highly

recommended for the determination of the coherent characteristics of turbulent flows for instance,

the KL-decomposition is used. When it is applied for the representation of dynamical field T =

T (x, t), the (space-) modes (ϕm)m≥0 are called the coherent structures. They contain spatial features

of the dynamical system (see [24]).

5



3 Truncation error

A brief discussion is conducted here about the approximation error. We focus on some particular

situations to provide the key-ideas for a relevant study of this truncation error. We need beforehand

an important result on Karhunen-Loève’s approximation.

Let (ψm)m≥0 be a Hilbertian basis in L2(X). We set

um(y) =

∫

X
T (x, y)ψm(x) dx, ∀y ∈ Y.

Then, we define

SM =
∑

0≤m≤M

ψm ⊗ um.

The following estimate holds

‖T − TM‖L2(X×Y ) ≤ ‖T − SM‖L2(X×Y ). (5)

We refer for instance to [20, 11, 31] for a detailed proof.

Among all the approximations of the field T by sums similar to the one determining SM , the KL-

approximation is the one that realizes the minimum of the L2-norm of the approximation error.

The abstract bound in (5) suggests that there is a connection between the regularity of the function

T and the approximation error. This issue has been recently addressed in [13]. We noticed that the

result stated there lacks optimality. This is the reason why we expose briefly the way to improve

that proof. Our choice is thus to handle a simple case to give clues to successfully achieve such an

improvement.

Let I =] − 1, 1[ and fix X = I. Then, consider (Lk)k≥0 the Legendre polynomials (see [1]).

Actually, we rather work with the normalized polynomials

L∗
m(x) =

Lm(x)

‖Lm‖L2(I)
=

√

m+
1

2
Lm(x), ∀x ∈ I.

The family (L∗
m)m≥0 is a Hilbert basis in L2(I). Then, the following expansion holds

T (x, y) =
∑

m≥0

L∗
m(x)τm(y), ∀(x, y) ∈ I × Y. (6)

The functions (τk)k≥0 are given by

τm(y) =

∫

I
T (x, y)L∗

m(x) dx, ∀y ∈ Y.

These are preliminaries to state an estimate of the KL-approximation error. Recall that TM stands

for the KL-approximation.
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Proposition 3.1 Assume that T ∈ Hτ (I, L2(Y )) for some real number τ ≥ 0. Then, the following

bound holds

‖T − TM‖L2(I×Y ) ≤ CT M
−τ .

Proof: Consider the function

SM (x, y) =
∑

0≤k≤N

L∗
k(x)τk(y), ∀(x, y) ∈ I × Y,

Calling for the abstract estimate (5), we have that

‖T − TM‖L2(I×Y ) ≤ ‖T − SM‖L2(I×Y ).

Observe that SM (·, y) is obtained by the orthogonal projection of T (·, y) on the space of polynomial

with degree ≤ M . First, let j be an integer. Consider that T ∈ Hj(I, L2(Y )), then by Fubini

theorem we obtain that ∂
(j)
x T ∈ L2(I × Y ). Following the proof developed in [6, Chap. III,

Theorem 1.2] we derive that

‖T (·, y)− SM (·, y)‖L2(I) ≤ C N−j ‖∂(j)x T (·, y)‖L2(I), ∀y ∈ Y.

We emphasize on the fact that C does not depend on y. Switching to the square power and

integrating on the variable y ∈ Y completes the proof for τ = j. The extension to the fractionary

Sobolev spaces Hτ (I, L2(Y )), with τ ∈ R+, is achieved by Hilbertian interpolation in the same way

as [6, Chap. III].

Remark 3.1 The convergence rate given in [13] is not the best one could obtain. Applied to our

case, the bound obtained by [13, Theorem 3.4] would be CT M
1/2−τ . This suffers from a lack of

optimality because of the extra-term M1/2. The proof proposed in there sounds biased somehow

because it relies on the estimates of the singular values of the integral operator B. This is not the

right road to be taken. The proof should be tackled directly, through estimate (5) and using the

tensorized argument exposed in [6, Chap. III, Théorème 2.4] and employed here.

Remark 3.2 The bound obtained in Proposition 3.1 could not be substantially improved for general

functions. To be convinced, consider the case Y = I and let us have a look at the function

T (x, y) =
∑

m≥2

L∗
m(x)τm(y) =

∑

m≥2

1

m2 lnm
L∗
m(x)L∗

m(y), ∀(x, y) ∈ I × I,

It is readily checked that ∂xT belongs to L2(I × I) and T ∈ Hτ (I, L2(I)). Moreover, we have that

T 6∈ H1(I, L2(I)) for τ > 1. The orthogonality of the Legendre polynomial yields that the infinite

sum determining T is precisely the Karhunen-Loève expansion. The KL-approximation is thus the

truncation

TM (x, y) =
∑

2≤m≤M

1

m2 lnm
L∗
m(x)L∗

m(y), ∀(x, y) ∈ I × I.
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Evaluating the approximation error yields the following bound

‖T − TM‖L2(I×I) ≤ CT (M3/2 lnM)−1.

This is close to the worst bound predicted by the proposition which is M−1. Proceeding like in [6,

Chap. III, Remark 1.4]. It would possible to construct an accurate example to illustrate that result

in Proposition 3.1 can not be improved.

The bound exhibited in Proposition 3.1 relies fundamentally on the smoothness assumption

of the function to approximate. However, for some remarkable functions with only moderate

regularity, an effective estimate should account also for the specific contribution of the Karhunen-

Loève expansion. Sometimes, we need in fact to look closely at the singular values (σm)m≥0 of the

operator B or equivalently at the eigenvalues (λm)m≥0 of the operator A. It can be checked out

that these (λm)m≥0 are the eigenvalues of the Gram matrix

G = (gkm))k,m≥0 =
(

(τk, τm)L2(Y )

)

k,m≥0
.

Their magnitude are likely dependent on the size of the entries of G. This has to do with the

smoothness of T . The point we focus on in the subsequent is the influence of the geometry of

the family (τk)k≥0, in particular its orthogonality defect. We expose our study for two important

classes of bivariate functions that arise as solutions of widely spread parabolic and elliptic boundary

value problems (see [8]).

Remark 3.3 Regarding this specific orthogonality point, if for instance the functions (τk)k≥0 are

orthogonal then Gram’s matrix G is diagonal and according to Remark 3.2, the sum (6) is nothing

else than the Karhunen-Loève expansion and the result of Proposition 3.1 can not be improved.
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4 Transient temperature

We investigate two examples picked up from transient heat transfer. Writing down the tempera-

ture field as a Fourier series is as old as the closed expression of the solutions to the heat equation.

The infinite Fourier sum enjoys some separation of both time and space variables. Starting from

this Fourier series expression, our aim is to come up with a new infinite sum representation that

enhances that separation of time and space variables so that a low truncation is liable to preserve

the main features of the temperature field with high accuracy. The purpose is therefore to illustrate

the impact of the orthogonality defect suffered by Fourier expansion of the field T and show how

the Karhunen-Loève decomposition brings a better expression regarding the quality of variables

separation.

4.1 Heat equation with no source term

We try to be in accordance with current notations of the heat model that provides the function we

are working with. We choose therefore to use t instead of y. Assume that I =]0, π[ and J =]0, b[,

t is the time variable and x is the space variable. We are thus interested in the heat model. Since

we are still concerned by an easy presentation of our analysis. We then choose to present the oneD

case although all the subsequent results are readily extended to the higher dimension.

In this example, no heating source is present in the heat problem other than the initial state.

The related value equation consists hence of: finding a temperature field T such that

∂tT − γ ∂2xT + βT = 0, in I × J,

T (0, ·) = T (π, ·) = 0, in J

T (·, 0) = a(·), in I.

The conduction parameter is γ and the heat transfer coefficient is β. They are chosen constant only

for simplicity. As will be seen none of tools used here is specific to the case of constant parameters.

Hence, the whole analysis developed in the subsequent is valid as well for space varying parameters.

The temperature field, solution of this problem can be defined by the infinite Fourier sum

T (x, t) =
∑

m≥1

ame
−rmt sin(mx), ∀(x, t) ∈ I × J. (7)

The sequence (rm)m≥1 is dependent upon γ and β, it is given as rm = γm2 + β. The Fourier

coefficients (am)m≥1 of the function a are square summable (∈ ℓ2(R)). This implies that T ∈
L2(I×J) with a zero mean-value with respect to the variable x. Furthermore, it is easily seen that

‖∂xT‖2L2(I×J) =
∑

m≥1

(am)2(1− e−2rmb)
m2

2rm
<∞.
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There is clearly no more smoothness on T with respect to x unless the decaying rate of the sequence

(am)m≥1 is high. The dependence on t is even less regular. Hence, Proposition 3.1 predicts the

following bound on the KL approximation error

‖T − TM‖L2(I×J) ≤ CaM
−1.

This is far from being satisfactory. The geometry of the system (e−rmt)m≥1 will play an important

role in enhancing the estimate. This system suffers from a high discrepancy to the orthogonality.

It is in fact almost linearly dependent (see [32]). We are going to carry out analytical computations

to find out how to strongly improve that approximation result by taking advantage of the singular

value decomposition. We start by the calculation of the kernel K related to A. It is given by

K(x, ξ) =
∑

k≥1

∑

m≥1

amak

(

∫

(0,b)
e−(rm+rk)t dt

)

sin(kx) sin(mξ)

=
∑

k≥1

∑

m≥1

ak
1− e−(rm+rk)b

rm + rk
am sin(kx) sin(mξ).

Now, we expand the function ϕ as follows

ϕ(x) =
∑

m≥1

fm sin(mx), ∀x ∈ I.

After replacing in the eigenvalue equation (3), there comes out

2

π

∑

k≥1





∑

m≥1

ak
1− e−(rm+rk)b

rm + rk
amfm



 sin(kx) = λ
∑

k≥1

fk sin(kx).

This eigenvalue problem can be thus put under a matrix form, as follows

Gϕ = λϕ. (8)

The Gram matrix is defined as G = ACbA. The entries of different matrices are provided by(1):

for all k,m ≥ 1,

ckm =
1− e−(rm+rk)b

rm + rk
, akm = akδkm, gkm = akckmam.

The coefficients of the vector ϕ are (fm)m≥1. The matrix Cb is symmetric and positive definite.

In turn, the matrix G is non-negative definite. The kernel N(G) coincides with the kernel N(A).

The eigenvalues of such a matrix decay fast towards. We refer to [4] and postpone a detailed study

of this matrix. This analysis is based on several notions for linear algebra such as Cauchy-like

displacement operators, displacement rank, Sylvester-Lyapunov equation, . . . , etc.

1We dropped the factor 2

π
.
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To have an immediate idea about the spectral features of the Gram matrix, one may have a

glance at C∞ (b = ∞) (see [7]). This matrix is of Cauchy type and so are all its principal sub-

matrices. Their determinants can hence be calculated explicitly. According to [7], the principal

sub-determinant with (large) order M∞ of C∞ is given by

detM∞ =

∏

2≤k≤M∞

∏

1≤m≤k−1(rk − rm)2
∏

1≤k≤M∞

∏

1≤m≤M (rk + rm)
.

This determinant decays tremendously fast towards zero for growing M∞. This may be an indica-

tion that the eigenvalues of C∞ decrease rapidly towards zero.

4.2 Influence of a separated source term

We consider the case where a heating source is operating. The shape of the source S is particular.

It is represented by a separated function on t and x so that S = a ⊗ θ. One hopes that the

temperature field shows a strong capacity to be represented by as sum of separated functions. This

expectation is true but proving it is not that easy. This is our purpose here. The heat model to

handle is the following : find a temperature field T such that

∂tT − γ ∂2xT + βT = S, in I × J,

T (0, ·) = T (π, ·) = 0, in J

T (·, 0) = 0, in I.

After carrying out Fourier calculations we come up with the following temperature

T (x, t) =
∑

m≥1

am

(

∫

(0,t)
θ(s)e−rm(t−s) ds

)

sin(mx), ∀(x, t) ∈ I × J.

The sequence (am)m≥1 is for Fourier’s coefficient for f . Straightforward integral computations

yields the following expression for the Mercer kernel K,

K(x, ξ) =

∫

(0,b)
T (x, t)T (ξ, t) dt

=
∑

k≥1

∑

m≥1

akam
rm + rk

(∫

J

∫

J
θ(s)θ(τ)(e−rm|s∧τ−s|e−rk|s∧τ−τ | dsdτ

)

sin(kx) sin(mξ)

+
∑

k≥1

∑

m≥1

akam
rm + rk

(∫

J
θ(s)e−rk(b−s)) ds

)(∫

J
θ(τ)e−rm(b−τ) dτ

)

sin(kx) sin(mξ).
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The notation s ∧ τ is used for max(s, τ). Taking profit from the symmetry of this kernel we may

bring it out to a more convenient form

K(x, ξ) =
1

2

∑

k≥1

∑

m≥1

akam
rm + rk

(∫

J

∫

J
θ(s)θ(τ)(e−rm|τ−s| + e−rk|s−τ |) dsdτ

)

sin(kx) sin(mξ)

+
∑

k≥1

∑

m≥1

akam
rm + rk

(∫

J
θ(s)e−rk(b−s)) ds

)(∫

J
θ(τ)e−rm(b−τ) dτ

)

sin(kx) sin(mξ)

=
∑

k≥1

∑

m≥1

gkm sin(kx) sin(mξ).

That the Mercer kernel is explicited, the next point is the determination of the eigenvalues of

the operator A. Based on the arguments developed in the previous example, we can reword the

eigenvalue problem (3) under an algebraic form similar to (8). We need thus to cope with the

asymptotics of the eigenvalues of the new Gram matrix G = (gkm)k,m≥1. This can be achieved as

in Section 6. It can be checked that G satisfies the Lyapunov equation with the same Cauchy-like

displacement operator that is

RG + GR = aeT + eaT + ddT . (9)

The entries of vectors e and d are given by

em =
am
2

∫

J

∫

J
θ(s)θ(τ)e−rm|τ−s| dsdτ dm = am

∫

J
θ(s)e−rk(b−s) ds.

The displacement rank of equation (9) is low it is equal to three. Reproducing the proof in Section 6

yields the following result

Proposition 4.1 Assume that am = 0, ∀m ≥M for a large integer M . The following estimate on

the singular values of B holds

σ3m ≤ C(a, θ) exp

(

− π2m

2 log(rM )

)

, 1 ≤ m ≤ [(M − 2)/3].

Remark 4.1 Results by Proposition 4.1 predicts that the singular values of the integral operator B

decreases speedily towards zero. In case it is really there, the log term we see in the bound may slow

down the decaying. The decreasing rate of (σm)m≥1 is however almost exponential at least for the

fraction of indices m larger than log(M). Anyhow, our feeling is that the extra log-term is probably

there only because we were not able to produce an efficient technical proof to get rid of it.

4.3 Numerics

To support theoretical findings on the singular values (σm)m≥1 of the operator B as the square

roots of the eigenvalues of the Gram matrix in the first example, we provide numerical results
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obtained within matlab. We fix γ = 1 and β = 0. Then, we have rm = m2, fix am = 0, ∀m > M∞

and

am =
1√

m ln(m+ 1)
, m ≤M∞.

The corresponding function a is depicted in the left panel in Fig. 1. It is in L2(I) and does not

belong to any Sobolev space Hτ (I) for τ > 0. The stiffness of the representative curve of a(·) at

the vicinity of x = 0 suggests that it contains a singularity there.

0 1 2 3
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0 4 8 12 1610
-10
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10
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Figure 1: The initial temperature a (left). Singular values for b = 1, b = 0.1 (right).

The non-vanishing part of the the Gram matrix G is thus the principal block of dimension M∞,

gkm =
1√

k ln(k + 1)

1− e−(k2+m2)b

k2 +m2

1√
m ln(m+ 1)

, 1 ≤ k,m ≤M∞.

All the other entries are zeroes. Apart from the first M∞ eigenvalues (λm)1≤m≤M∞ , the others are

zero. We compute the singular values (σm =
√
λm)1≤m≤M∞ for M∞ = 23. They are represented

in Fig 1, in a semi-logarithmic scale and with different final times b = 1, 0.1. The trend observed

here sounds in accordance with the analysis prediction. The singular values sequence decreases

toward zero speedily. The shape of the first portion of the curve suggests an exponential decaying.

In the next examples, the space and time intervals are fixed to I = (0, 1) and J = (0, 1). We

carry out two simulations where separated source terms are present in the heat equation. They are

given by

S1(t, x) = (θ ⊗ a)(x, t) = et(x− 0.4),

S2(t, x) = (θ ⊗ a)(x, t) = et|x− 0.4|.
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The corresponding solutions are denoted by T1 and T2, respectively. The heat problem is discretized

by an Euler scheme/Gauss-Lobatto-Legendre spectral method see [6]. Computations are run with

the time step equal to δt = 10−2 and the polynomial degree is fixed to N = 64. Then, quadrature

formulas are used to evaluate the matrix representation of the operators B and A. Let us emphasize

on the fact that in the first source term, separated functions θ(·) and a(·) are indefinitely smooth.

For the second source, a(·) enjoys moderate spacial regularity, since a ∈ Hτ (I) with τ does not

exceed 3/2. The aim we pursue is to show that the regularity has not much importance in the

separation aptitude of both temperature fields T1 and T2. Although their smoothness degrees are

deeply different they show the same aptitude to separated representation.

To support these claims, we construct the Gram matrix associated with the integral operator A

and the eigenvalues are computed(2). The related singular values are depicted in Fig. 2 in a semi-

logarithmic scale. The decreasing rate seems to be exponential in both cases as predicted by the

analytical study. With these regards, the L2-errors caused by truncation of the (KL)-expansions

are expected to decrease exponentially fast. This is confirmed in the error curves depicted in Fig. 3.

To figure out the H1-norm behavior of those truncation errors, we plotted also the H1-norm of

those truncation errors. They decrease exponentially fast too. Notice that so-far no theoretical

proofs are available to such a result.
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Figure 2: Singular values for T1 and T2.

In the last example with the transient heat transfer, the source term contains a strong coupling

of both variables t and x. It is defined as

S3(t, x) =
√

|x− t− 0.3|.

We guess that the solution T3 will show a weak ability to be represented by a sum of separated

2The procedure dsyevd from lapack is called.
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Figure 3: Truncation errors versus the cut-off M , for T1 and T2.

functions. Thus, the singular values of the integral B operator are expected to decay slowly, at least

not exponentially. They are plotted in Fig. 4 in a full logarithmic scale. The decaying rate seems

to be polynomial. Indeed, after the eliminating the first singular value, the polynomial regression

tells us that those (σm)m decreases like m−4.9. Now, according the estimate (4), the L2-norm of

the error is expected to behave as

‖T − TM‖L2(I×J) ≤ C

√

∑

m≥M+1

(σm)2 ≈ C

√

∑

m≥M+1

m−9.8 ≈ CM−4.4.

The convergence rate of the L2-truncation error obtained as the slope of the linear regression in

the right diagram in Fig. 3 equals M−4.10. Both expected and evaluated rates are slightly close.

Furthermore, the H1-truncation error is provided in the same diagram. The related convergence

rate is close toM3.19. The temperature field T3 is less inclined than T1 and T2, to be represented by

separated functions. Notice that computations were run after a variational Euler scheme/Legendre

spectral method has been conducted.

5 Potentials from Poisson’s equation

We investigate here the case of some particular potentials considered in [8, Chap. II]. We denote

once again I =]0, π[ and we set X = Y = I. The aim is to study the accuracy of the KL-

approximation of the potential

V (x, y) =
∑

k≥1

∑

m≥1

fkm
k2 +m2

sin(kx) sin(my), ∀(x, y) ∈ I × I. (10)

The doubly indexed sequence of reals (fkm)k,m≥1 is assumed square summable. It may be accounted

for as the Fourier coefficients of a function f ∈ L2(I×I). The potential V ∈ H1(I×I) is solution of
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Figure 4: Singular values for T3 (left). Truncation errors versus M (right).

the Poisson equation set in the square I×I with homogeneous Dirichlet condition and the function

f being the source datum : find a potential field V such that

−∆V = f in I × I,

V = 0 in ∂(I × I).

Analytical computations may be carried out here again to find the kernel K related to the operator

A. Recall that A = B∗B and the kernel of the integral operator B is V . Using (10), and all

calculations achieved, the expression we obtain is

K(x, ξ) =
∑

k≥1

∑

ℓ≥1





∑

m≥1

fkmfℓm
(k2 +m2)(ℓ2 +m2)



 sin(kx) sin(ℓξ).

Resuming the same methodology as above, the eigenvalue equation (3) may be translated into an

algebraic form

Gϕ = (F ◦ C)(F ◦ C)Tϕ = λϕ.

F is the matrix (fkm)k,m≥1 while the entries of C and G are given by : for all k,m, ℓ ≥ 1,

ckm =
1

k2 +m2
, gkℓ =

∑

m≥1

(fkmckm)(fℓmcℓm)

The matrix C is a Cauchy matrix, symmetric and positive definite. The symbol ◦ is for the

Hadamard term-to-term product of matrices. Now, assume the function f = 1, then fkm = akam

with ak = 1−(−1)k

k . The only non vanishing modes are the odd indexed ones. This is because a2k = 0

and a2k+1 = 2
2k+1 . Thus, we retain only the odd indexes for k and m. However, to alleviate the

presentation we accept the notations abuse and we still write k and m instead of 2k+1 or 2m+1.

As a result, the Hadamard product F ◦ C may be expressed under a standard product as follows

F ◦ C = ACA.
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with A = Diag (ak)k≥1. As it is symmetric positive definite its eigenvalues and singular values

coincide. The study detailed in the appendix extends as well here and the sequence of singular

values (σm)m≥1 decreases exponentially fast. To be complete with this particular case, we stress on

the fact that the potential V has a moderate Sobolev regularity because of the corner singularities

(see [14]). Indeed, V ∈ Hτ (I × I) only for τ < 3. Based in this smoothness, Proposition 3.1 fails

to predict the exact behavior of the Karhunen-Loève approximation of the field V . This analysis

is readily extended to any data function f = g ⊗ h (i.e. f(x, y) = g(x)h(y)) or to any linear

combination of such kind of functions.

To check out these findings we conduct some simulations using variational spectral method with

a Gauss-Lobatto grid containing 65× 65 nodes. The singular values and the truncation errors are

provided in Fig 5. A semi-logarithmic scale is adopted. The decaying rate so as the convergence

rates of the errors seem to be at least exponential.
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Figure 5: Singular values for V (left). Truncation errors (right).

To investigate a less favorable example, we turn now to the study of the KL-approximation of

the potential V when the data f is a Dirac distribution supported by the first bisector (the line

x − y = 0). The source f is then defined as f(x, y) = δ(y−x). Of course, it belongs to H−1(I × I)

without being in L2(I × I). Calculating Fourier’s expansion of f is straightforward. We obtain

that

f(x, y) = δ(y−x) =
2

π

∑

m≥1

sin(mx) sin(my).

Inserting Fourier coefficients of f in the expression of the potential V , there comes out that

V (x, y) =
1

π

∑

m≥1

1

m2
sin(mx) sin(my), ∀(x, y) ∈ I × I. (11)

This new potential V has in fact lesser regularity than the first. Indeed, we have that V ∈ Hτ (I×I)
for τ < 3/2. Now, a closer look at the expansion (11) shows that, due to the orthogonality, the
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sum is exactly the Karhunen-Loève decomposition of V . Therefore, the KL-approximation error

turns out to be the truncation error. We derive easily that

M‖V − VM‖L2(I×I) + ‖V − VM‖H1(I×I) ≤ CM−1/2.

The properties of the current potential seem to be in the extreme opposite case to the former

potential. The capacity of the separation of the variable t and x is highly reduced.

By the way, for users who are interested on the singular values of B, let us observe first that the

matrix F is proportional to the identity that is F = π
2I. The Hadamard product reduces therefore

to

(F ◦ C) = π

4
Diag (

1

m2
)m≥1.

The sequence of the singular values (σm)m≥1 coincides with the diagonal coefficients. It decreases

slowly towards zero.

We aim at finding out whether the facts described above are observed when the potential field V

is replace by the approximated solution of the Poisson equation. We use a variational Legendre

spectral method to achieve the discretization. The Gauss-Lobatto grid we choose to compute the

discrete solution is composed of 65 points per direction. Fig. 6 depict the behavior of the singular

values and the truncation errors. The full-logarithmic scale is used for both diagrams. The de-

creasing rate for the singular values is evaluated to 2.04. The convergence rates of the truncation

error are equal to 1.54 and 0.77 for the L2- and H1-norms respectively. This is almost in perfect

accordance with the predictions.
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Figure 6: Singular values for V (left). Truncation errors (right)

18



6 Conclusion

A convergence analysis of the Karhunen-Loève expansion of bivariate functions is developed. We

give analytical bounds of the truncation errors for two types of fields. The firsts arise as solutions

of transient heat equations and the others are potentials fulfilling the Poisson boundary value

problem. The results shown are in accordance with numerical trends observed in many works. The

truncation error decreases exponentially fast with respect to the number of (KL)-modes retained.

The method followed here is mainly algebraic and is based on the asymptotics of the spectra of

some symmetric structured matrices.
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Appendix: Eigenvalues of some Pick matrices.

We pursue the asymptotics of the eigenvalues of the Gram matrix G = (gkm)k,m≥1, numerically

investigated in Section 3. The entries of G are re-transcribed as follows

gkm = ak
1− e−(rk+rm)b

rk + rm
am, ∀k,m ≥ 1.

The matrix G is symmetric and non-negative. It a structured matrix in the class of Pick matrices.

Denote the diagonal matrix R = diag {rk}k≥1 and vectors a = (ak)k≥1 and a′ = (ake
−rkb)k≥1. It

is readily checked that the matrix G satisfies the Lyapunov equation

RG + GR = aaT − (a′)(a′)T . (12)

This equation is related to the notion of displacement operators (see [18]). In fact, G 7→ RG + GR
is called Cauchy-like displacement operator in the specialized literature. The rank of the matrix

aaT − (a′)(a′)T is called the displacement rank of equation (12). It equals two.

To work with finite matrices we assume that the sequence (am) vanishes after a large rank M ,

i.e. am = 0, ∀m > M . All vectors and matrices are therefore truncated in an obvious way

The asymptotic expansion of the eigenvalues of G are strongly connected to the properties of the

displacement operator and by then on the diagonal matrix R and to the displacement rank of (12).

Bounds will be derived after applying results that have been surveyed in [29, 2006]. The following

result holds

Proposition 6.1 We have that

σ1 ≤ ‖a‖ℓ2(R)





∑

m≥1

1

(r1 + rm)2





1/4

. (13)

Proof: The bound on the largest eigenvalue λ1 = (σ1)
2 of G may be established owing to the

Gershgorin-Hadamard circle theorem (see [23, Chapter 8]),

λ1 ≤ max
1≤k≤M

∑

1≤m≤M

akam
1− e−(rk+rm)b

rk + rm
.

We deduce by Cauchy-Schwarz inequality that

λ1 ≤ max
1≤k≤M

|ak|





∑

1≤m≤M

(am)2





1/2



∑

1≤m≤M

1

(r1 + rm)2





1/2

. (14)

We infer that

λ1 ≤ ‖a‖2ℓ2(R) max
1≤k≤M





∑

1≤m≤M

1

(rk + rm)2





1/2

= ‖a‖2ℓ2(R)





∑

1≤m≤M

1

(r1 + rm)2





1/2

.

The bound (13) is established after switching to the square roots.
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Proposition 6.2 Assume M be large enough. The following bound holds

σ2i ≤ C‖a‖2ℓ2(R) exp
(

− π2i

2 log(rM )

)

, 1 ≤ i ≤ [(M − 1)/2].

Proof: Let us observe first that the displacement rank of the Lyapunov equation (12) is two.

Calling for Theorem 2.1.1 of [29, pages 39-40] yields the following bound

λ2i
λ1

≤ C exp

(

− π2i

log(4κ(R))

)

. (15)

The constant C is independent of N . The symbol κ(R) is for the condition number of the matrix

R. Given that κ(R) is easily computed for diagonal matrices, it coincides with the ratio of the

maximal and the minimal diagonal terms (rM/r1). Hence we obtain that

λ2i ≤ Cλ1 exp

(

− π2i

log(4 rM
r1

)

)

.

Using the right bound in (14) we infer that

σ2i ≤ C‖a‖ℓ2(R) exp
(

− π2i

log(rM )− log( r14 )

)

≤ C ′‖a‖ℓ2(R) exp
(

− π2i

2 log(rM )

)

.

The proof is complete.

Remark 6.1 When k ≈ ηM with 0 < η ≤ 1 we have that

σk ≤ C‖a‖ℓ2(R) exp
(

−π
2

2

ηM

log(rM )

)

.

These singular values decrease toward zero exponentially fast for large M (and large k).

Remark 6.2 A perfect estimate would be derived if one gets rid from the log-term log(rM ) in

(15). To our opinion, it should be possible to remove that extra-term by improving the mathematical

techniques to obtain optimal bounds for symmetric Cauchy or Pick matrices.
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