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On-line Robot Dynamic Identification Based on Power Model,
Modulating Functions and Causal Jacobi Estimator

Qi GUO!, Wilfrid PERRUQUETTF and Maxime GAUTIER

Abstract— This paper estimates robot dynamic parameters « wavelet differentiation methods [14], [15],
by means of power model associated with modulating functions, « Fourier transform methods [16], [17],
which avoids measuring or calculating the joint acceleration. At . mollification methods [18], [19]
the same time, an advanced causal Jacobi derivative estimator . o ’ .
is applied in order to get on-line robust derivatives from noisy ° lehonqv regularization methods [20], [21],
measurements. In the end simulation results on two degrees e« algebraic methods [22], [23], [24], [25],
of freedom planar robot are presented and comparisons with « differentiation by integration [26], [27], [28].
traditional off-line identification method are drawn. This paper makes use of an advanced algebraic derivative

. INTRODUCTION estimator, which can offer robust derivatives estimatiamf
Accurate dynamic models of robots are required in moerOiSy measurements by tuning its operator parameters. And
[

. . s causal property make the on-line identification possibl
advanced control schemes formulated in recent literatijre [ . . L .
- o For robot on-line dynamic parameter estimation this paper
The precision, performance, stability and robustnesseseh . ) ) . . .
ill consider an energy point of view associated with mod-
schemes depend on, to a large extent, the accuracy of the,. . e :
. . .~ 7 ulating functions. As specified in the literature [5], [6F][
dynamic parameters. Such parameters include inertia, firs ) - . L .
-~ energy model requires only joint velocity and joint positio
moments, masses, friction parameters. In most cases they feasurement and gives a scalar equation which is linear with
estimated off-line, but sometimes it is also necessary ity ca 19 q
T e . respect to dynamic parameters. The drawback of such model
out on-line identification, for example when the payload is

. . . o . comes from the needs of additional data, which is covered
changing during operation. Thus it is important to estimaté

. . up by the varying modulating functions.
robot dynamic parameters on line, This paper is organized as follows: section 2 introduces the
In order to tackle such challenge there exists a huge variet pap 9 )

of methods mainly based on least-square techniques whi oblem formulation, which specifies the energy model, then

can be divided into three classes according to the requiré)(geSents an !ntrod_u0|ng gxample of one joint rok_)ot and the
order of derivation of the joint positions: general case; section 3 gives the precise description astob

. ) algebraic derivative estimator; section 4 presents thaioéd

¢ Models baggd on joint force/torque, acceleration, Velocr'esults about robot dynamic parameters identificationgusin
ity and position [2], [3], [4]; , -an energy model and a group of modulating functions; in

« Models based on joint force/torque, velocity and posigetion 5 simulation is carried out with a two degrees of
tion [5], [6], [7]; . o freedom planar robot model, the simulation result shows

« Models requiring only joint force/torque which is based ot the on-line dynamic parameters estimation has a good

on a closed loop simulation [8], [9]. precision on inertial parameters; and in last section itesm
The mostly used approaches are the two first methods whigh 3 conclusion.

require reconstructing some derivatives of the measured

signals. Unfortunately the obtained measurements are nois [I. PROBLEM FORMULATION
which makes the derivative estimation problem to be ill-
posed in the sense that a small error in measurement R
induce a large error in the computed derivatives, speciatly velocity
high order derivatives. Therefore, various numerical rodh i

have been developed to obtain stable algorithms robust toFOr the rest part consu_jer that joint posmqnand_pmt
o . . . . o torque I’ are measured via sensors. Suppose a rigid robot
additive noise. They mainly fall into eight categories: S .
A which is composed of. links, and the power of the system
« finite difference methods [10], [11], can be described as:

« Savitzky Golay methods [12], [13],

Here robot dynamic parameters identification is based on
energy model in order to eliminate any derivation of
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g; stands for velocity of jointj andj < n, sign() denotes
each sign of element of vectdr,;, F'; are the Coulomb and
viscous friction coefficients of joinf, 7of; = ToftFe; +Toftr;
is an offset parameter which regroups the amplifier offse
Tofr; @and the asymmetrical Coulomb friction coefficient
ToffFc;-

Due to linearity with respect to parameters, (1) reads as

d

= (0(a,@) ©+4"sign(Q)Fe+4" 4Fy +4" Tor = §' T,
3

whereX = [@ F. F, 7o%] € R? is the vector containing

the dynamic parameters to be identified angh,q) is a
vector function ofq, andq. In order to avoid in the estima-
tion of X, integration by part is combined with modulating
functions.

Let! € N*, T € R*, andg be a function satisfying the
following properties:g € C'([0,T]), ¢?(0) = ¢")(T) =
0, fori=0,1,...,1—1, whereC'(]0, T]) refers to the set of
functions being—times continuously differentiable df, T')
with [ € N*. Theng is called!*" order modulating function
on [0,T].

Modulating functions transform a differential expressior
into a sequence of algebraic equations using noisy da
signals [29]. They have low pass filtering property. Thes

features make the modulating functions method interesting
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in several real processes. In recent years many authors have

focused on the choice of different modulating function

éilg 1. Estimation whei is of SNR=40dB, with¢ = 2

L.i=1,2,..200
50
andT = 4s

types such as Hermite functions [30], Fourier modulating

functions [31], Hartley modulating functions [32] and syl
type functions [33].

In continuous time domain, for a given function of time
f (), a modulating functiory(v) and a given time interval
K c R, we will use through out the paper the following
notation

(f) = /K o(0) f(v)do. ()

(5) by g¢(v) and perform an integration by part on interval
[t — ,t] it gives
[t—T,t] [t—T,t]
ZZM&)‘K (9) _FngK (9)

(6)
+ F.MYE " (sign(q)) = ME, (7).

Take X, = [ZZ,F,,F.]* as unknown and it requires at
least 3 equations to solve them. Notice that this relaticm is

The following part gives an introducing example and &calar equation. Thus it need additional data to form multi-
general form method on how to estimate parameters usirguations, which can be realized by repladifyy a sequence

modulating functions.

A. An introducing example

Consider a simple one revolute joint described by:

(®)

where ZZ (kg - m?) is the inertial parametet, (N/(m/s))
and F, (N) are the viscous and Coulomb friction parameter

respectively.

The purpose is to recover in real time the three dynami
parametersZZ, F,, F. described in this model only by
using the measured angular positipand the known applied
torque. At time instant, the estimation make use of the
data from time interva[t — T, t|, whereT is the time win-

ZZ{+ Fpq+ Fesign(q) =,

dow length. Consider a combination of modulating functiorin the next section. Také =

ge(v) = e Itow=tHT) (e=jwo(v=t+T) _1)2 with resolving
frequencywy = 2%, andg,(v) = (v—t+7T)*(v—T)%e o G

sinceg(t—T) = go(t) = ge(t—T) = g¢(t) = 0, multiplying

of N elements off; where/; € R. After setting a sequence
of ¢; the list of equations are expressed as:

A(t,q.4)[ZZ,F,, F.] = B(t,1), ()

where A(t, q,q) is a N x 3 observation matrix and thée
th line of A(t,q,q) is given by A(t,q,4)= [M)""(q),
~MT ), T (sign(q))); and thei-th element of
sectorB(¢,7) is given byB(t,7) = M (7).

This forms the general over-determined linear system
'AX, = B, which can be resolved by least square ap-
proaches. In the simulation a white Gaussian noise is used
with SNR=40dB. The joint velocity is computed numerically
by an advanced causal Jacobi estimator which is presented
&, 4 = 1,2,..200 and
sliding time window lengthT = 4s, a robust estimation
result is shown in figure 1. In conclusion, for one joint
robot case we utilize the measured joint position from a



certain time window to estimate the dynamic parameters. I11. N UMERICAL DIFFERENTIATION

The estimation gives good result with a time window of 4 Tpis paper considers a frame of algebraic methods based
seconds and this makes it possible to do on-line identifn jacobi polynomials. This approach extends the numerical
cation. With a large sequence 6f the estimator forms an gjfferentiation by integration method proposed by Lanczos
over-determined ot_)servatlon matrix and can _be solved _tm [26] and it is originally introduced by Mboup, Fliess and
least square techniques. The drawback of this method liggin in [22]. This method makes advantage of the truncation
on the fact that the estimation is out of precision before igf the Taylor expansion and the mismodelling due to the
acquires enough sampling data, as in figure 1 for the firglyncation is compensated allowing a small time-delay in
4 seconds the estimation is meaningless. After this perioghe derivative estimation. This Jacobi estimator relies on
the inertial paramete Z is well estimated and is robust 4 group of non negative integer parameterg: and has
with respect to noise, but the small paramet€rsand F.  three version of forms: causal, anti-causal and centrahsor
are much disturbed by noise although they can be estimatgg tuning these parameters the errors can be reduced to
around the real values. certain limits. Moreover recently Da-yan Liu, Gibaru and
B. General case Perruquetti extend the parametetg: used in the estimation

The idea of solving this kind of system is to increaséromNto}*l’Jroo[’ which provides more choices for tuning

SR . .. parameters, an analysis can be found in [24].
the order of observed value by partial integration wit . . :
) : Consider a noisy observatiaf,, = x + w, of real valued
modulating functions. For a general system

smooth signak on a finite time open intervdl C RT, where

N w, is the noise component. The aim is to estimate /iHe

Zaifi(evo(l)v “"9(71)) =7 (8)  derivative ofr,,. Assume thatr € C"*1(I), for anyt, €

=0 I, denote thatD,, = t € Rty + Bt € I, where8 = +1.
where N is the number of termsy is the largest order of |f and only if noisew, is integrable, the Jacobi estimator
derivative off, «; are constant parametets?) is i-th order can be applied. Forget the noise for a while, introduce the
of derivative oft) and f; is a general function. Now supposecontinuous time version of*" order derivative Jacobi causal

a family of modulating functiong,(v) satisfying or anti-causal estimator@fj"; 1.4 (BTE + to):
@ — D L on
g, (0)=g,’(t) =0, i <n. 9) D o w(BTE + to) = G /0 Qrppin,ae(T)T(BTT + to)dr, (12)

HD) () (ntD) .
For exampleg,(v) = “—on—— e —. Then multiply g:(v) ~ where T is the length of integration time interval, r €
with the general system formulation and do integration op— 1, +co[ andg € N are tuning parameters impacting the
the interval [0, t]. When the functionf;(9,6(),....4(™) is  estimation error{ is a fixed value on [0,1] which is related
analytically integrable, one can perform integration byt pa © the delay and can be evaluated here as related to the

; o . ; estimation errors [34], and i = —1 denotes causal Jacobi
according to partial integration theory using (9) estimator and3 = 1 denotes anti-causal Jacobi estimator.

t
as T (€] (n) a
/ alggfl(Q,Q 7...79 )d’U QH,M,n,q,E(T):wu,ﬁ(T)ZCm,u,n,ia(lt-'—n’n-'—n)(£)P7(LP_:_’:)(7'),
0 ot (10) =0
_ (1) g[1] (1) (n—1) . . . .
=) i fi(0,0%7, ... 60" )dv, where Q. ,nqc(7) is described by Jacobi polynomial

1 P (7), weight functionw,, ,.(7) and Cy ,,...; which are
where (6,6 ..., 6("=1)) is the analytical form of inte- given below:

gral function of f;(6, 01, ....0(). Croy s = obr2nt 2t DD (et pt 2nrit DD (notich 1)

In a similar way, if f;(9,61),....6(") is k-th order I n DU Dl (tnditl) ’
integrable, the highest order derivativetotan be degraded  P{""(r) =3 (n * M) (n * K) (r—1)""7 79,
to (n — k)-th order, which avoids to use noisy high order =0\ J =y

derivatives. With this method, estimation of the observed wux() = (L - 7)"7", andI"is the gamma function.
part can be numerically more precise and thus gives betterThe causaln™ Jacobi (ti?tlmator has a time delay of
estimation result. Finally in thé-th order integrable case, 7 = T¢ which indicatesD,”, ;. z(T¢ + to) ~ «(™(to —

(10) can be written as a counterpart of 7). Similarly it has for anti-cause Jacobi estimator variant,
: D go(=T¢ +to) ~ 2™ty + 7).
/ igefi (0,0, ... 0 dy = When taking noise into consideration, the Jacobi estima-
L0 (11) tors Dm,m,qx(ﬁTf + to) can deal with a large class of
(_1)k/ Oéigék)fi[k](ﬁ o, ...,0(”*’“>)dv. noises f_or which the mean and covariance are poly_nomial in
0 time, with degree smaller than the order of derivative to be
In the rest of the paper, we will use the following family of€stimated. The noise contribution is investigated in [34] a
Fourrier modulating functionsy,,, (t) = Fe %ot (e=dwot — they can be bounded according to the type of noise.
1)*, where [ is the pulse indexw, = 2% is the pulse In summary the Jacobi estimators are corrupted by three

resolution,n is the order of the system affdis the interval ~sources of errors [24]:
of time for the observation of system. « the noise error contribution? (to; n, k, i, T, €, q),



« the bias term errore? due to the truncation, which Use the following notations:
produces an amplitude error in estimation,

t
» the drift errorcj. M (h(q,q) = / ge-1(m)h" (q, &)dr (15)
Table | shows the influence of causal Jacobi estimator f;T
parameters for each error contribution. By well tuning éhes =T (x,y) = / go(r)xTydr (16)
parameters the estimation results can be optimised. The gt ’ t—T ’

notationsa 1,b " and ¢\, mean that if increase the value
for parametera then the erron increases and the errer
decreases. To verify the precision of causal Jacobi estimat M [\~ (¢, T') = M~ (h(q, ¢))© + M= (&) ror

¢ ge—1 ge—1

+ ML (G, sign(a)Fe + MU (g, 4))Fy.

which transfer (14) into the following equation:

Parameters| ef eg eﬁ
R 7 A % 17
Zi 2 é ; This gives one scalar equation which varies with respect
TF RN to ¢ and depends ong, . In order to identify the

TABLE | dynamic parameterX = [O© F. F, 75|, joint velocity
INFLUENCE ON ERRORS OF CAUSAUACOBI ESTIMATORS PARAMETERs O MUSt be eSt'mat.ed from m(?asured joint position @ta
which can be realized by using the derivatives estimators
presented in section 3; meanwhile select a sequence of
add perturbation of SNR=30 white Gaussian noise to a joift € R and these scalar equations can give an over-
position trajectory then apply the causal Jacobi estirsatordetermined system which is linear with respect to unknown
By well tuning the parameters a good estimation of first ordggarameters, in the form oAX = B, where A; =
derivative is obtained with a delay @1 second and the [M}. " "(h(q,q)), ML " (q,sign(a)), ME " (a, ),

error bound is less tha.05. The following figure 2 shows /[t=7-1 ) B, = (A~ " (¢, T1n)] are known matrix.

the trajectories of reference joint velocity and estimgoeat This kind of problem can be solved by minimizing the
velocity. Euclidian length of the residual vectotin|| AX —B||, which
ref dg and estimated dq gives a unique optimaK as solution. In order to decrease
3 Rt the sensitivity of the least square solution to errorsAn
~ — - Estimated and B, the condition number of the observation matAx

Cond(A), must be close to one before computiXg This
can be done by running exciting trajectories which offer a
good select of noisy samples ¢. Exciting trajectories can
be obtained by non linear optimization of a criterion fuonti

of the condition number of observation matrix [35].

o
T

-5 : ‘ : ‘ V. SIMULATION RESULTS
0 5 10 15 20 _ _ - o
Time (s) The simulation part utilizes a two revolute joints planar
Fig. 2. Reference joint velocity and shifted estimated jaiatocity by robot m_OdeI which mOV?S in a horizontal plane and has
causal Jacobi estimators no gravity effect. According to [3], [36], the energy model

depends on eight minimal dynamic parameters, considering
four friction parameters, where,g is not consideredX =
. . . . [ZZlR 279 MXs MY, FVl FCl FV2 ch], with the
Consider a family of modulating functiong(v) such that regrouped parametefZ, r = Z 7, + M,L?, whereL is the
gv—t+T)=gv—t)=0, (13) length of first link, 77, and ZZ, are drive side moment
of inertial of link 1 and 2 respectivelyM X, MY, are
wheret is the instant time, and’ is the sliding time window. first moment of link 2,Fy;, Fg;, are the viscous and
Applying the following operator/ g,() to robot energy Coulomb friction coefficients of jointj. The simulation
model equation (3) and doing integration in time intervaests are running with valuX which is all in SI Units:
[t —T,t] leads to the following equation: X = [3.9 0.25 0.45 0.1 0.3 0.4 0.15 0.25].
t d t To carry out the estimation, suppose a modulating function
T o LT . . ] R
ge(T)—h"(q,q)dTO + g9¢(T)q" sign(q)drFe+ g (y) = L emitwo(v=t+T) (g=jwo(v=t+T) _ 1) with resolving
t—T t—T

IV. DYNAMIC PARAMETERS ESTIMATION

dt
. . frequencyw, = %’T which is null at both ends of sliding
/ ge(T)qT qdrF,, +/ g(T) QT drrog = time interval [t — T',t]. Choose a sequence 6f= =, i =
t=T t—T 0,1,...,250. Here we use QR factorization method to solve
K T the least square problem. In the following part simulation
ge(7)q" Tpdr. . . )
T runs a random trajectory in order to test the generality of

(14) this method.
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Fig. 3. Estimation with/ = 0 : 0.05 : 10 and time window 12s Fig. 4. Estimation with time windows and ZZ; r changes frons.9 to

4.5 at instantt = 9.4s

A. On-line estimation using modulating functions

In noise free case the estimated values are identichPm ¢ = 9.4s to ¢t = 15s there exists a delay about 5
with reference inertial parameters values when slidingetimseconds before getting the correction estimation. Thiaydel
window length reaches 2 second. When considering noié&necessary because it needs enough data to re-estimate the
component identification becomes difficult as the dynamiéhanged parameters. During this transition period all the
parameters are sensitive to noise. Add white Gaussian no@&limated inertial parameters are varying smoothly to the
of SNR=30 to the joint position and torques trajectoriese Thcorrect value. But the delay is too big for control and more
joint velocities are computed numerically using the causa&tudy should be done to reduce the delay.

Jacobi estimator. From experiments it can be found that
sliding time window should be much larger in order to
decrease the influence of derivative error in joint velocity C. Comparison with off-line identification using explicit-d

An estimation result is given in figure 3 with samplinghamic model
time window lengthl” = 12s. As time moves on, the inertial
parameters update according to the sampling data from th

previous 12 seconds. In the beginning the estimation i . . .
pointless because the observation matrix is rank deficight adré difficult to measure and are usually obtained by numerica

ill-conditioned. When sampling data are enough the inertigliferentiation. Each sampling point can give an equation.

parameter estimation result is robust. But the estimaté%mf"r collectir)g a!l sa_mpling points of the trajectory, an
friction parameters are disturbed and can only be estimat@gtimal solution is given by !east square method.' Th|s
approximately. This is because the friction parametersare method also ne_e_d the observation matrix has rank efficiency
dominant parameters and make relatively weak contributig'd sSmall condition number.

in the model, the noise component will have great influence T0 compare, both identification methods run the same
on these weak parameters. trajectory with noise component of SNR=30 white Gaussian

] o noise and use causal Jacobi estimator to get derivatives.
B. Non stationary inertial parameter The inertial parameters to be estimated &&1R = 3.9,

This part simulates the abrupt change of inertial parametef 72 = 0.25, M X2 = 0.45, and MY2 = 0.1. Simulation
The initial dynamic parameters are set the same as thoserasults are given in table Il with sliding time window length
previous section. At instant = 9.4s, ZZ;r changes from T = 20s. Results show that under the same noise level, on-
3.9 to 4.5. Apply the on-line identification using modulating line identification method is competitive with off-line nietd
functions. The results are shown in figure 4. Notice thaind the estimation results have the same precision.

eThe traditional off-line approach uses robot explicit dy-
amic model and requires extra joint acceleration datahwhic



Parameters| Real Value | off-line | on-line 12
771R 39 3.8959 | 3.8855 (12]
772 0.25 0.2528 | 0.2499
MX2 0.45 0.4441 | 0.4524 13]
MY?2 0.1 0.0967 | 0.0961
Fol 0.3 0.2840 | 0.2917
Fel 0.4 0.4436 | 0.4382 [14]
Fo2 0.15 0.1484 | 0.1472
Fe2 0.25 0.2645 | 0.2623
TABLE I (15]
COMPARISON BETWEEN OFFLINE AND ON-LINE IDENTIFICATION
METHOD WHEN TIME WINDOW LENGTHT' = 20s [16]
[17]
VI. CONCLUSION [18]

This paper discusses within an energy point of view, the
possibility that robot dynamic parameters can be estimatéth]
on-line associated with modulating functions. Joint aexel
tion is useless in this approach so that it can avoid the mcoﬁol
order derivative computation of the joint position. Mearileh [21]
the algebraic way of causal Jacobi estimator offers an 0&-2]
line and robust estimation of the derivatives of joint piosit
Once the joint velocities are well estimated using a catysali
based way, this energy-based method can give a good e&tf!
mation, in large sense, of the inertial parameters, whiée thyy
friction parameters are difficult to estimate because thiey a
sensitive to noise. This can be applied in real applicatibn t[25]
update on-line the inertial parameters during robot motion
the end on-line identification method is compared to ofélin
one and simulation results show that both methods providéf
a good estimation of dynamic parameters. [27]
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