
HAL Id: hal-01063034
https://hal.science/hal-01063034

Submitted on 11 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting the interoperation relationships between
Systems Engineering collaborative processes

Fabien Bouffaron, David Gouyon, Dragos Dobre, Gérard Morel

To cite this version:
Fabien Bouffaron, David Gouyon, Dragos Dobre, Gérard Morel. Revisiting the interoperation re-
lationships between Systems Engineering collaborative processes. 14th IFAC Symposium on In-
formation Control Problems in Manufacturing, INCOM 2012, May 2012, Bucharest, Romania.
�10.3182/20120523-3-RO-2023.00190�. �hal-01063034�

https://hal.science/hal-01063034
https://hal.archives-ouvertes.fr

Revisiting the interoperation relationships between

Systems Engineering collaborative processes

Fabien BOUFFARON, David GOUYON, Dragoş DOBRE, Gérard MOREL

Nancy Research Centre for Automatic Control (CRAN), Lorraine-University, CNRS UMR 7039

Campus Science, BP 70239, 54506 Vandœuvre-lès-Nancy Cedex, France

{fabien.bouffaron; david.gouyon; dragos.dobre; gerard.morel}@univ-lorraine.fr

Abstract:

Systems Engineering (SE) best practices are currently guided by standardized processes which must be

adapted by skill rules in order to specialize domain-dependent SE workflows as well as domain-

independent standardized languages. This paper aims to revisit first the interdisciplinary relationships

within a SE process as specification relationships between Problem Space (PS) and Solution Space (SS)

across collaborative domains. This SE rationale is then applied on a Requirement Specification (RS) work-

flow formalized with high-level Petri nets and verified on a human-robot protection case-study.

Keywords: Systems Engineering, Specification, Domain, Requirement.

1 INTRODUCTION

According to the SEBoK (Pyster et al., 2011), Systems Engi-

neering (SE) is defined as “an interdisciplinary approach and

means to enable the realization of successful systems. It fo-

cuses on holistically and concurrently understanding stake-

holder needs; exploring opportunities; documenting require-

ments; and synthesizing, verifying, validating, and evolving

solutions while considering the complete problem, from sys-

tem concept exploration through system disposal”. These SE

activities are recursively organised according to five views

and iteratively within each view related to “Business”, “Re-

quirement”, “Architecture”, “Integration Verification Valida-

tion Qualification” and “Configuration”. These SE activities

are guided by SE standardized processes as those of

(ISO/IEC 15288, 2008). Overall, SE processes and standard-

ized languages as SysML defined in OMG (2010), are de-

signed as general purpose processes and languages. However

according to Arthurs (2008), “practioners want to solve spe-

cific problems, so the challenge becomes determining what

modelling artefacts to use and how/when to use them effi-

ciently to solve problems”.

Among many mandatory prerequisites such as “system think-

ing” to understand and to apply SE basics, one of the main is

the problem-solution spaces partition which must be formally

defined to become a SE basic construct. This partition means

that any confusion between the roles assigned to any respon-

sible specifying problems and any responsible specifying

solutions would be to the detriment of meeting target system

objectives (AFIS, 2009).

Section 2 states on the iterative and recursive nature of this

problem-solution spaces relationship defined as a specifica-

tion key-artifact for SE right practices. This rationale is ap-

plied in section 3 to propose a generic workflow for the RS

process. This workflow is tested in section 4 on a case-study

related to the protection of human using robot. Section 5,

draws a first assessment of this preliminary approach towards

the transition to the industrial scale.

2 INTEROPERATION RELATIONSHIP WITHIN A

SYSTEMS ENGINEERING PROCESS

This problem-solution spaces basic construct is studied in

software development and automation domains before being

generalized to the SE domain.

2.1 Software development issues

The problem-solution spaces interoperation has been studied

by Berg et al. (2005) for traceability issues across domains

whereas Czarnecki (1998) states that any domain can be

divided into a PS and SS. According to Bjørner (2009), “by a

domain we shall here understand a universe of discourse, an

area of nature subject to laws of physics and study by physi-

cists, or an area of human activity subject to its interfaces

with other domains and to nature”.

This interoperation relationship has been the subject of many

researches in the field of computer science. Hall et al. (2002)

extend the problem frames approach (Jackson, 2001) towards

the Twin Peaks model (Fig.1) in order to define the iterative

nature of the software development process as an iterative

specification between problem and solution structures.

Fig.1. Variation of the Twin Peaks model by

Hall et al. (2002)

Another works within the problem frames approach defined

precisely the nature of a specification (Gunter et al., 2000).

The proposed reference model (Fig.2) gives five artifacts

distributed among the environment domain and the system

domain: the world knowledge W as a description of the rele-

vant environment, the statement of requirements R, the speci-

fication S that mediates between the environment and the

machine, the description of the machine M and the program

P which executed on the machine M implements the specifi-

cation S. In a more general way, the machine M with the

program P represents the system to be constructed. Jackson

(1997) distinguishes two types of description of the environ-

ment: Description optative mood “expresses a condition over

the phenomena of the environment that we wish to make true

by installing the machine” and may be associated with R;

Description indicative mood may be associated with W and

“expresses a condition over the phenomena of the environ-

ment that we know to be true irrespective of the properties

and behaviour of the machine”. The separation between envi-

ronment and system, according to Gunter et al. (2000) allows

the separation of phenomena (states, events, individuals),

owned and controlled by the environment e={ev, eh} or by the

system s={sv, sh} (Fig.2).

Fig.2. A reference model for requirements and specifications

(Gunter et al., 2000)

On the one hand, there are phenomena eh, ev and sv visible to

the environment and used in W and R. On the other hand,

there are phenomena sh, sv and ev visible to the system and

used in P and M. Therefore the specification S is expressed in

the common phenomena sv and ev, and defined by (1):

 , . e s W S R"   (1)

Regarding this with a domain engineering point of view,

Bjørner (2010), expressed that “ Before Software can be

designed we must understand the Requirements, and before

Requirements can be expressed we must understand the Do-

main ” and provides a formalization of the specification S in

Domain D (2), where S R means that S is a model of R:

 ,D S R (2)

2.2 Automation issues

The above-mentioned interoperation relationship has been

also studied in the field of automation in order to revisit the

Fusaoka’s automatic control synthesis condition (3)

(Fusaoka, 1983) arguing that the design of any automation

systems consists in prescribing the (unknown) control rules

of the (known) dynamics of a physical system from the be-

havioural (known) goals to be met:

 D ynam ics U nknow n C ontrol Rules G oal É (3)

This weak prescription É is more broadly interpreted by

Lamboley (2001) as a predicate implemented with a B-

method based process:

 C o n tro l S p ecifica tio n P r o cess S p ecifica tio n
S ystem S p ecifica tio n




 (4)

To ensure the a priori correctness of each term of this auto-

mation predicate and their coherence as a whole, Pétin, et al.

(2006) propose a model-driven specification approach ensur-

ing the predicate:

 C OP P S 

(5)

where the architecture PC  PO of automation PC of a process

PO must satisfy the specification S.

2.3 Systems Engineering issues

Dobre (2010) combines recently these above mentioned

works focusing mainly on specialist engineerings in order to

take into account the interdisciplinary process required to

engineer a system as a whole.

The predicate (5) must be re-formulated according to prob-

lem frames approach as:

 C O
W P P R  

(6)

where W represents the context of the system-of-interest

within the existing SS of the domain-of-interest. This inter-

pretation considers that the domain-of-interest (i) is parti-

tioned in two spaces of problem (Psi) and solution (Ssi) and

generalizes this partition to any domain involved in a collabo-

rative SE process. Each interoperation relationship between a

problem space Psa and a solution space Ssb is considered as a

contractual descriptive / prescriptive specification Sab. The

resulting generalized SE specification process applies this

rationale iteratively between Psa and Ssb, and recursively

(Herzog, 2004) during the whole SE process (Fig.3).

Fig.3. Iterative and recursive specification process

3 ITERATIVE INTEROPERATION RELATIONSHIP

FOR REQUIREMENT SPECIFICATION PROCESS

SE process manipulates objects which are structured in met-

amodels. Among these metamodels, the one proposed by

Holt and Perry (2008) places requirements as key objects for

SE. Considering requirements, this section focuses on the

relationship between system domain (seen as a PS) and SE

domain (seen as a SS). It proposes a workflow, based on the

evolution of requirement types and states that we see as an

artifact of SE process, to aid the process of RS. According to

Caron (2005), a requirement type is defined by a “set of rules

characterizing the relationship that the requirement of this

type must or may have with other engineering data”. Re-

quirement state is defined by the fact that “some of these

links are instantiated or not”.

As the workflow is built upon various objects (presented in

section 3.1) and various structured activities (presented in

section 3.2), the language chosen to model it has to be able to

express such specificities. Among candidates, high level Petri

nets have been chosen because they enable to represent the

variety of objects manipulated using colours and indexes, and

to model structured activities using hierarchy in places. This

workflow has then been formalized with CPN Tools (Jensen

et al., 2007).

3.1 Objects used by the workflow

This section defines the various objects used during RS:

- Stakeholder requirement: expresses the expected system

interactions with its environment;

- Skill: is seen as the indicative mood within the meaning of

Jackson (1997). It represents the known properties of system

environment validated by an expert. Skills are required at

each stage of the specification process, and can be for exam-

ple characteristics of good requirements including character-

istics about syntax or semantics (INCOSE, 2010), domain

skills for transformation...

- Optative requirement: expresses a condition that is to be on

the phenomena of the environment domain (Jackson, 1997).

An initial optative requirement corresponds to the description

of a stakeholder requirement. An optative requirement can be

verified or not verified, according to a verification activity

which is detailed in the next section;

- Transformation: corresponds to the requirement modifica-

tion based on SS skills;

- System requirement: a requirement which has to be satisfied

by the future system, prescribed to PS. A system requirement

can have several states: {Not Prescribed, Not Validated},

{Prescribed, Not Validated} and {Not Prescribed, Validated}.

These states are defined by prescription and validation activi-

ties;

- Specification: the set of all system requirements.

A static view of these objects and their relations, due to defi-

nition, description, transformation, prescription and valida-

tion activities, is formalized as a meta-model presented in

(Fig.4). Packages of meta-model represent different reposito-

ries to ensure traceability throughout the process of require-

ment specification.

Fig.4. Meta-model used by the workflow

3.2 Iterative workflow between problem and solution spaces

The activities of RS, which compose the proposed workflow

and are described below, are modelled by hierarchical transi-

tions in a high level Petri net, while sets of requirements,

including repositories, are modelled by places (Fig.5).

Fig.5. Main structure of the iterative workflow proposed for RS

Requirements and skills are represented using tokens, which

colour depends of their type (stakeholder, optative, system

…). Indexes are used to uniquely identify them. In this paper

only places and transitions related to the workflow are

shown. For readability purposes, places allowing the execu-

tion of the model have been hidden.

We propose in this section to define the different activities

performed during the requirement process specification:

- Stakeholder requirement definition: during this activity, PS

defines its need in the form of several stakeholder require-

ments. The definition of a new requirement produces a new

couple token (Stakeholder_requirement(i), ID_SR(i)) in place

Stakeholders requirements. At this stage, ID_SR(i) is redun-

dant information because it represents the identifier of the

stakeholder requirement, but it ensures traceability between

the stakeholder requirement and the different requirements

resulting from transformations of it. Moreover a couple token

(Stakeholder_requirement(i),ID_SR(i)) is stored in place

Stakeholders requirements repository, which represents a

requirement repository ensuring the traceability of stakehold-

ers requirements;

- Description Optative mood: description transforms a stake-

holder requirement (from PS) into an optative requirement

(into SS), but its content is not altered. This change of re-

quirement type expresses that the requirement is addressed in

another space. During description, a token (Stakehold-

er_requirement(i),ID_SR(i)) becomes a token (Opta-

tive_requirement(i),ID_SR(i)). Traceability between stake-

holder and optative requirements is ensured because they

have the same identifier;

- Transformation: we have identified four transformation

mechanisms: refinement, induction, decomposition and com-

position. For the last two, it is possible to add a suffix (AND,

OR, XOR) to precise the relation between the requirements

which are produced or used. For this reason, the transition

“Transformation” of (Fig.5) can be decomposed as presented

in (Fig.6) and an enumeration of types of transformations is

given (Fig.4).

Fig.6. Types of requirement transformations

All these transformations follow a same pattern, using

(Pre)requirements and skills to generate (Post)requirements

which have to be verified (Fig.7).

Fig.7. Transformation pattern

Let R, PreR, PostR and SK the sets of elements manipulated

during transformations:
- R = {preR1,…,preRn,postR1,…,postRm}, n N,I ,

mN,I , the set of optative requirements;

- PreR = {preR1,…,preRn}, nN,I , the set of optative re-
quirements to transform, PreR  R;
- PostR = {postR1,…,postRm}, mN,I the set of optative
requirements transformed, PostR  R;
- SK = {sk0,sk1,…,ski} the set of domain skills. For each
transformation skill skiSK can have a different role.

Considering these sets, the transformations are defined as:

- Refinement: the requirement « preRn » refined with the skill

« ski » produces the refined requirement « postRm ». The skill

« ski » bridges the gap between « preRn » and « postRm ».

- Induction: the requirement « preRn » with the skill « ski »

induce a new requirement « postRm » while retaining the

requirement « preRn ». « ki » is a skill from which is induced

« postRm »;

- Decomposition: (Decomposition_AND, Decomposition_OR

and Decomposition_XOR) the requirement « preRn » can be

decomposed into a set of requirements {postRm ,postRm+1,…,

postRm+n} where n+1 represents the number of decomposi-

tion, using the skill « ski » to justify the decomposition;

- Composition: (Composition_AND, Composition_OR and

Composition_XOR) the set of requirements {preRn, preRo,...,

preRx}» can be composed into a requirement « postRm »,

using the skill « ski » to justify the composition.

For each transformation, a quadruplet token (PreRequire-

ment, TOT, Skill, PostRequirement) is created. PreRequire-

ment is a List[Optative_requirement(i), ID_SR(i)]. TOT is

the Type Of Transformation completed, Skill is the Skill(i)

that enabled the transformation. PostRequirement is a

List[Optative_requirement(j), ID_SR(j)].

 - Verification: after each transformation, the compliance of

the set PostRequirement with the set PreRequirement is veri-

fied. If it is unverified, the set PreRequirement is returned to

the place Optative requirements. Otherwise if it is verified

the set PostRequirement is returned, and a quadruplet token

(PreRequirement, TOT, Skill, PostRequirement) is stored in

the repository System requirement repository thereby making

the traceability between the requirements of different levels;

- Transformation End: after several transformations, the set

of optative requirements obtained is, according to the skill

(Skill(i)), at a system level. Accordingly a token (Opta-

tive_requirement(i),ID_SR(i)) becomes a token (Sys-

tem_requirement(i),ID_SR(i)). Traceability between optative

and system requirements is ensured because they have same

identifiers;

- Prescription: during this activity, system requirements

issued from a same stakeholder requirement are simultane-

ously prescribed to PS for validation. The statement of re-

quirements remains the same but the requirements change

from state Not Prescribed to Prescribed;

- Validation: during validation, the client validates all sys-

tems requirements issued from a same stakeholder require-

ment, considering the links between them which are stored in

the System requirements repository (Fig.8). This is to ensure

that the SS clearly understands and expresses the stakeholder

requirements, and that the compromises made are acceptable.

If it is not validated, a token (Optative_requirement(i),

ID_SR(i)) is returned in place Optative requirement. This

optative requirement corresponds to the stakeholder -

requirement described (Stakeholder_requirement(i),ID_SR(i))

from which the validation was performed. If it is validated,

the set of system requirements (System_requirement(i),

ID_SR(i)) is sent to the place Specification, and changes from

Not Validated to Validated. Moreover, a couple token

(List[Stakeholder_requirement(i)], List[System_require-

ment(i)]) is stored in Problem requirement repository. This

token links stakeholder requirements described and system

requirements prescribed as answers.

Fig.8. System requirements validation

4 WORKFLOW APPLICATION ON A CASE STUDY

The proposed workflow is illustrated on a case study from the

training center AIP-Primeca Lorraine (http://www.aip-

primeca.net). To be compliant with the French labour code,

the AIPL develops and implements security systems to pre-

vent risky situations. For example, the power supply of the 6-

axis articulated robot should be cut if a door of its protective

enclosure is open.

In the PS, this need can be defined by a stakeholder require-

ment: Stakeholder_requirement(1): “Robot power supply

must be cut if a door of the protective enclosure is open”. A

token (Stakeholder_requirement(1),[ID_SR(1)]) is put in

place Stakeholders requirements and is also stored in the

repository Stakeholders requirements repository.

Fig.9. 6-axis articulated robot with a protective enclosure

Firstly, the PS describes to the SS the couple (Stakehold-

er_requirement(1),[ID_SR(1)]) that becomes the couple

(Optative_requirement(1),[ID_SR(1)]). Secondly, a Skill(1):

“The robot is equipped with a power input board with two

inputs FN1 and FN2 on which is connected a switch installed

on the door. They enable to cut the power supply of the robot

if the switch is open” informs that Optative_requirement(1)

can be refined into a new requirement Opta-

tive_requirement(2) “Security access door enslavement must

be connected with inputs FN1 and FN2 of the power input

board”. Considering the pattern of transformation previously

defined, we have {PreRequirement = [(Opta-

tive_requirement(1), [ID_SR(1)])], TOT = Refinement, skill

= Skill(1), PostRequirement = [(Optative_requirement(2),

[ID_SR(1)])}. This is presented by place “3-

PreRequirement/TOT/Skill/PostRequirement” of (Fig.10), in

which the contained token means that the Opta-

tive_requirement(1), in connection with the stakeholder re-

quirement of index ID_SR(1), can be refined thanks to

Skill(1) to produce a new requirement Optative

_requirement(2) in connection with the stakeholder require-

ment of index ID_SR(1). Once completed the Refinement, the

correctness of the transformation is checked using verifica-

tion rules. Considering that the transformation is correct, a

new Optative_requirement(2) is obtained. Moreover a new

token ([(Optative_requirement(1), [ID_SR(1)])], Refine-

ment,Skill(1),[(Optative_requirement(2), [ID_SR(1)])], [ID_

SR(1)]) is put in place “Solution Requirement Repository”, to

ensure traceability between Optative_requirement(1) and

Optative_requirement(2) according to the Skill(1).

After transformation, a token (Optative_requirement(2),

ID_SR(1)) is in place Optative requirements. A skill, Skill(2):

“Sensors are in the interface between the system to design

and the environment represented by the robot” defines that

this requirement is at system-level, accordingly transfor-

mations can be stopped, and this optative requirement be-

comes a system requirement (System_requirement(2),

ID_SR(1)). Once the SS has defined system requirements to

answer all initial optative requirements, they are prescribed to

the PS for validation. Thus, (System_requirement(2),

ID_SR(1)) is prescribed to PS, and is finally validated with

respect to the stakeholder requirement (Stakehold-

er_requirement(1),ID_SR(1)) from which it comes. Then,

(System_requirement(2), ID_SR(1)) is placed in place “Speci-

fication”. Finally, a couple token ([Stakeholder require-

ment(1)], [(System_requirement(2), ID_SR(1))]) is stored in

place “Problem Requirement Repository” ensuring traceabil-

ity between stakeholder requirement and system requirement.

Fig.10. Refinement of requirement Optative_requirement(1)

from Skill(1)

5 CONCLUSIONS AND PERSPECTIVES

Although these works are preliminary, well formulating basic
SE constructs is of importance for engineering use as well as
for training purposes. As example, SysML, the de-facto do-
main-independent system modelling language defined in
OMG (2010), remains controversial for Model Based Sys-
tems Engineering domain dependent because of its too gen-
eral semantics. Applying our approach leads to improve this
semantics for specification issues by manipulating modelling
objects (dependencies, boundary-box,...) based on defined
constructs as optative-indicative moods, problem-solution
spaces, World/Domain which turn out to be already efficient
in practice within the requirement definition process. Current
work aims to enrich SysML metamodel by stereotyping the
proposed constructs and by developing new system model-
ling objects.

Transition to more operational context is on-going in order to
prove the relevance of the proposed workflow at the industri-
al scale. First application is related to railway embedded
control system, in order to formally control passenger access
through train door. A second application is related to the
formal specification of a computer-aided device to improve
human-based plant operation (Dobre, 2010).

6 REFERENCES

AFIS (2009), Discover and understand systems engineering

(v3), Association Française d’Ingénierie Systèm (in french).

Arthurs, G (2008), Model-Based System Engineering, Ele-

ments for deploying an Efficient Development Environ-

ment, Telelogic White paper, IBM Company.

Berg, K., Bishop, J. (2005). Tracing Software Product Line

Variability – From Problem to Solution Space. 2005 annual

research conference of the South African institute of com-

puter scientists and information technologists on IT re-

search in developing countries, White River, South Africa.

Bjørner, D. (2009). From Domains to Requirements. On a

Triptych of Software Development.

www.complang.tuwien.ac.at/bjorner/book.pdf

 Bjørner, D. (2010). Domain engineering. In Formal Meth-

ods;State of the Art and New Directions, P. Boca, J. P.

Bowen, and J. I. Siddiqi, Eds. Springer-Verlag, London, pp.

1-41, ISBN 978-1848827356.

Caron, F. (2005), Collaborative management of engineering

data system, Génie logiciel, 75, pp. 2–6, (in french).

Czarnecki, K. (1998), Generative programming. Principles

and Techniques of Software Engineering Based on Auto-

mated Configuration and Fragment-Based Component

Models, PhD thesis, Technical University of Ilmenau.

Dobre, D. (2010), Contribution to the modelling of an inter-

active system driving assistance of an industrial process,

PhD thesis (in french), Nancy University.

Fusaoka, A., Saki H., Takahashi, A. (1983). Description and

reasoning of plant controllers in temporal logic. Interna-

tional Joint Conference on Artificial Intelligence. Karlsruhe

8-12/09, pp. 405-408

Gunter, C.A., Gunter, E.L., Jackson, M., Zave, P. (2000), A

reference model for requirements and specifications, IEEE

Software, 17 (3), pp. 37–43.

Hall, J.G., Jackson, M.A., Laney, R.C, Nusbeibeh, B., Ra-

panotti, L. (2002). Relating Software Requirements and Ar-

chitectures using Problem Frames, IEEE RE 2002.
Herzog, E. (2004), An approach to systems engineering tool

data representation and exchange, PhD thesis, Linköping

University.

Holt, J., Perry, S. (2008). SysML for Systems Engineering

Using a Model-Driven Development Approach. White Pa-

per, I_Logix, Andover, MA.

INCOSE (2010), Systems Engineering Handbook : a guide

for system life cycle processes and activities (v 3.2.1), In-

ternational Council on Systems Engineering.

ISO/IEC 15288 (2008). Systems and software engineering –

System life cycle processes. International Organisation for

Standardization.

Jackson, M. (1997), The meaning of requirements, Annals of

Software Engineering, 3 (1), pp. 5–21.

Jackson, M. (2001), Problem Frames: Analysing & Structur-

ing Software Development Problems, ISBN 020159627X

Jensen, K., Kristensen, L.M., Wells, L. (2007), Coloured

Petri Nets and CPN Tools for modelling and validation of

concurrent systems, International Journal on Software

Tools for Technology Transfer, 9(3), pp. 213–254.

Lamboley, P. (2001), Production systems automation formal

method proposal, PhD thesis (in french), Nancy University.

OMG, (2010), OMG Systems Modeling Language (OMG

SysML) (v1.2).

Pétin, J.-F., Morel, G., Panetto, H. (2006), Formal specifica-

tion method for production systems automation, European

Journal of Control 12 (2), pp. 115-130.

Pyster, A., Olwell, D., Squires, A., Hutchison, N., Enck, S.,

Eds. (2011) A Guide to the Systems Engineering Body of

Knowledge (SEBoK). Version 0.5. Stevens Institute of

Technology, Hoboken, NJ, USA.

