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Abstract—In this paper, we study a flexible routing strategy for 

demand protection and a corresponding optimization problem 

for networks that permanently experience fluctuations of the 

capacity available on their links. This is an important and 

novel topic as limited link availability is a fundamental feature 

of wireless networks; yet majority of work in survivable 

network design is restricted to total failures of single links. 

Hence, protection against partial failures of multiple links is 

considered as congestion avoidance. We assume a given finite 

set of network states. Each state is characterized by a vector of 

link availability coefficients specifying, for each link, the 

fraction of its nominal (maximum) capacity available in this 

state, and by a traffic coefficients vector specifying, for each 

demand, the proportion of its nominal traffic to be realized in 

the considered state. Our routing strategy allows for 

adjustment (thinning or thickening) of the reference path-

flows. For a given nominal value x of a path-flow, its 

thickening is limited to x where  is a given constant greater 

than or equal to 1. Thus, in each state, the value of every path-

flow can range from 0 to   times its reference value. It turns 

out that the corresponding link cost minimization problem 

(where link capacities and state-dependant path-flows are 

decision variables) is NP-hard. We present a non-compact 

linear programming formulation of the problem together with 

a solution algorithm based on path generation. We illustrate 

the effectiveness of the introduced routing strategy by 

presenting numerical results for a set of representative 

network examples. 

Keywords-survivable networks; multiple partial link failures; 

multicommodity flow; linear and mixed integer programming; 

path generation. 

I.  INTRODUCTION 

In this paper, we study a routing strategy for demand 

protection called Flow-Adjustment Routing (FAR) together 

with the corresponding network optimization problem. FAR 

aims at protecting traffic demands against Multiple Partial 

Link Failures (MPLF) by appropriate adjustment of the 

reference (nominal) path-flows. Strictly speaking, FAR is 

not a rerouting strategy because no paths can be created to 

restore the affected flows. Instead, the nominal path-flows 

are thinned or thickened according to the current state of the 

links. To account for MPLF, we consider a nominal state 

and a set of link availability states   (containing the nominal 

state) and a finite set A fractional numbers. For each link e ∈ 

E and each availability state  ∈  , the corresponding link 

availability coefficient   
  ∈ A specifies the fraction of the 

nominal capacity of link e that is available in state s 

(    
    . FAR assumes that the nominal path-flows 

(i.e., path-flows defined for the nominal state with all links 

fully available) can be thinned or thickened to adapt to 

capacity fluctuations but not restored on paths not used in 

the nominal state. On top of this, we assume that the 

demand volumes to be realized in the availability states 

different from the nominal state are possibly reduced as 

compared to the nominal traffic. In the following, we use 

the terms availability states and failure states 

interchangeably. 

For the so-specified setting, we study the corresponding 

optimization problem referred to as Flow-Adjustment 

Problem (FAP). FAP aims at minimizing the cost of links 

under the following constraints: (i) the nominal path-flows 

and the state-dependent path-flows satisfy the nominal and 

the state-dependent traffic demand requirement, 

respectively, (ii) path-flows obey the maximum thickening 

assumption of the protection strategy, and (iii) for each link 

and each availability state, the link load does not exceed the 

currently available link capacity. As FAP is NP-hard 

(because a special case of FAP shown to be NP-Hard is 

studied by Tomaszewski et al. [13]), its Linear 

Programming (LP) formulations (see Section III) are 

unavoidably non-compact and require path generation to be 

solved to optimality. For generating paths we need to apply 

a mixed-integer pricing problem—here the difficulty of FAP 

is manifested. 

The introduced model is original. In fact, not much work 

has been done in survivable network optimization under the 

MPLF assumption. To the best of our knowledge, only the 

so called global rerouting (restoring flows from scratch in 

surviving capacity) has been studied in this context [1] – a 

strategy quite impractical in the considered wireless 

framework. It happens that multiple failures have so far 

been considered in survivable network design almost always 

(i.e., besides global rerouting) assuming total link failures 

(  
 ∈ {   }). The work done here is substantial (again, see 

[1][5] and the references therein) but this case is, 

unfortunately, not relevant for our framework.  

The rest of this paper is organized as follows. In the next 

section, we give motivation behind the considered flow-

adjustment strategy. In Section III, we introduce the 

notation and formulate the basic FAP model. Section IV 

describes a path generation algorithm necessary to find 

optimal solutions for FAP. In Section V, we present results 



of a numerical study that illustrates a potential value of the 

considered protection strategy in terms of the cost of the 

resulting network in comparison with global rerouting. In 

Section VI, we present the performance of the restoration 

process using simulations. Finally, in Section VII, we 

present concluding remarks. 

II.  FLOW ADJUSTMENT- A SIMPLE PROTECTION 

STRATEGY FOR MULTIPLE PARTIAL FAILURES 

The flow-adjustment routing strategy for MPLF 

proposed in this paper extends the Flow Thinning Routing 

strategy (FTR) presented in [2][3]. Both FTR and FAR are 

inspired by the idea of Elastic Rerouting (ER) presented in 

[4] and Path Diversity Protection (PDP) [1], [5]. We recall 

that both ER and PDP assume total link failures, i.e., failure 

scenarios which admit only binary vectors   
  characterizing 

the availability states (referred to as the failure states in this 

case) in   (i.e., A = {0,1}), that is, when links fail, then their 

entire capacity is lost. PDP is a protection strategy where in 

a failure state  ∈   path-flows through the failing links are 

simply disconnected, and the surviving path-flows must be 

sufficient to realize the demand volumes, possibly decreased 

with respect to nominal demand volumes. ER allows for 

decreasing the flows of unaffected demands, as well as for 

increasing (to a certain threshold) path-flows of affected 

demands. 

In this paper, we follow the concept of ER, but no 

distinction will be made between unaffected and affected 

demands. Hence, our strategy is allowed to thin or thick the 

nominal path-flow on any routing path. Thus, FAR assumes 

that each demand is in general routed over several paths, not 

necessarily disjoint, with over-dimensioned nominal path-

flows to ensure an assumed level of demand survivability. 

Contrary to conventional end-to-end restoration strategies, 

no flow is rerouted to recover from a failure. In fact, it 

seems that allowing only for thinning makes the resulting 

protection strategy less complicated for network 

implementations. Our strategy is an extension of FTR in 

which the path-flows are allowed only to be decreased. 

Instead, FAR admits both thinning and thickening allowing 

for less costly networks as compared with FTR. Yet, FAR 

and FTR are similar from the mathematical modeling point 

of view, especially the mixed-integer pricing problem. 

To clarify the idea of how FAR works, we wish to 

emphasize a few points. First, note that a common pool of 

link capacities is used for the nominal path-flows and in the 

remaining availability states. Hence, the selected routing 

paths carrying the flows are dimensioned so that the total 

traffic realized by the demand’s path-flows could in general 

be greater than the nominal traffic. The most important 

feature of FAR is handling partial failures without any flow 

rerouting at all. In other words, no paths besides the nominal 

paths are used for handling other availability states. 

Therefore, the proposed approach results in using a sort of 

limited dynamic routing, adapted to the network states. To 

summarize, for each demand there is a fixed set of nominal 

routing paths carrying nominal flows. In an availability state 

in general only a part of the total nominal demand flow will 

be realized on these paths, depending on the available 

capacity and the required demand restoration ratio. 

Consequently, the restoration will be practically done by 

thickening some of the path-flows, and no new (re)routing 

paths are allowed. 

III. FAP: FLOW-ADJUSTMENT PROBLEM  

The basic problem considered in this paper is referred to 

as FAP and is as follows. We minimize the cost of link 

capacity assuming that in the nominal state of network 

operation all demand volumes are realized by means of 

(nominal) path-flows. When the network is subject to a 

failure from a given set of failure states (we assume that a 

failure state consists of partial failures of multiple links) 

then the demand volumes, possibly reduced, are realized for 

the duration of the failure state by appropriate thinning or 

thickening of the nominal flows. The detailed formulation of 

FAP will be given in Subsection III-B. 

A. Notation 

The considered network is modeled using a graph 

 (    , undirected or directed, composed of a set of nodes 

  and a set of links  . In the sequel, we will always 

consider directed graphs unless stated explicitly otherwise. 

Thus, each link  ∈   represents a directed pair (     of 

some nodes    ∈  , and is assigned a non-negative unit 

capacity cost    which is a parameter, and a capacity 

reservation    which is an optimization variable. The cost of 

the network is given by the quantity  ∑    ∈   . The 

demands are represented by the set  . Each demand  ∈   

is associated with a directed pair of nodes (end-nodes of  ) 

(  (  ;  (  ) for some  (    (  ∈  ; a volume   
  (a 

parameter) has to be sent from  (   to  (  (demand 

volumes and link capacities are expressed in the same 

units). Also, each demand   is assigned a set of admissible 

paths    composed of selected elementary paths from  (   

to  (   in graph  . (Recall that an elementary path does not 

traverse any node more than once.) Paths from    are used 

to realize the demand volume   
  by means of path-flows 

   
   ∈   , which are optimization variables. 

The given sets of admissible paths define the link-path 

incidence coefficients       ∈    ∈    ∈   , where 

       if path  ∈    traverses link  ∈   (i.e., if  ∈  , 

treating the paths as subsets of links:   ), and        if 

path  ∈    does not traverse link  . It is important to note 

that the sets of admissible paths     ∈  , are parameters 

in the FAP problem formulation considered in the sequel, 

although in general it assumes that all possible elementary 

paths can potentially be used if this is required to reach the 

optimum. 

Network links are subject to (partial) failures. The 

failure-less state (with all links fully available) is called the 

nominal state and is denoted by 0, and the flows    
   ∈    



are referred to as nominal flows. The set of failure states is 

denoted by   (we call set   the failure scenario). Each 

failure state  ∈   is specified by a vector of link 

availability ratios    (  
   ∈   , where     

    for 

 ∈  . The link capacity available in state   is assumed to be 

equal to   
   . Hence,   

  is the fraction of capacity    that 

survives in state  . Certainly, in state 0 all the ratios   
  are 

equal to 1. In general, in a failure state more than one link 

can have its availability ratio less that 1 so in fact we are 

considering multiple partial failures of the network links. 

When a failure state  ∈   affects the network, in general 

not all the nominal flows    
   ∈    ∈    can be realized 

anymore as the available link capacity is decreased. It is 

assumed that the demand volumes to be realized in state 

 ∈   can be decreased, to values   
   ∈  . The demand 

volumes assumed for a failure state must be realized by 

means of the nominal flows that are appropriately thinned 

(decreased) or thickened (increased) so to fit to the reduced 

link capacity. The thinned nominal flows for state  ∈   are 

denoted by    
   ∈    ∈   . These flows are allocated to 

the admissible paths for the duration of the failure state. The 

state-dependent flows    
   ∈    ∈    ∈    are 

optimization variables. The relation, for each demand  ∈
 , is defined by a given demand-dependent flow control 

factor   , where     . Note that when    = 1, then, the 

reference path-flows of demand   can only be thinned. Still, 

when     , they can be as well thickened, but only up to 

the factor    so that,    
       

   ∈    ∈    ∈   . 

B. Formulation of FAP 

FAP assumes that in each failure state  ∈  , only a part 

  
  of the nominal volume   

  has to be realized for each 

demand  ∈  . This is achieved by thinning or thickening 

the nominal flows    
  to values    

   ( ∈     so that the 

links capacities   
     ∈   available in state   are not 

exceeded. For given sets of admissible paths     ∈  , 

problem FAP can be represented by the following path-flow 

linear programming (LP) formulation involving variables 

   
  ( ∈    ∈    ,    

  ( ∈    ∈    ∈    and 

  ( ∈    : 
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 ∈ 
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In the formulation, the quantities in brackets on the left-

hand sides are dual variables associated with the constraints 

(see Section I.2.2 in [5]). All these variables are, by 

assumption, nonnegative. Objective (1a) minimizes the total 

cost of links. Constraint (1b) makes sure that for each 

demand its paths have jointly sufficient capacity to satisfy 

the demand volume assumed for the nominal state. 

Constraint (1c) does not allow the nominal link loads to 

exceed the nominal link capacities. Next, constraint (1d) 

assures that in each failure state  ∈  , the adjusted flows 

are sufficient to realize the (possibly reduced) volume of 

each demand  ∈  . Then, constraint (1e) makes sure that 

in each state  ∈  , the surviving capacity of each link 

 ∈    is not exceeded. Finally, constraint (1f) relates the 

state-dependent path-flows to the reference flows.  

IV. PATH GENERATION 

Formulation (1) is a link-path LP formulation. It is non-

compact because of exponentially many path-flow variables 

  as we potentially consider all possible paths in the 

admissible path-sets     ∈  .  

Thus, in order to consider all possible routing paths in 

graph  (     in FAP, we need to apply the technique of 

linear programming known as column generation [7], [8], 

called Path Generation (PG) in our context. With PG, 

starting from some initial path-sets     ∈  , we generate 

new paths (corresponding to variables/columns    
   ∈

   ∈    and    
   ∈    ∈    ∈   ), and iteratively 

add them to the path-sets. As discussed below, this is done 

by solving an appropriate pricing problem using, as 

parameters, optimal dual variables associated with 

constraints (1b)-(1f), i.e., an optimal solution          of 

the problem dual to FAP formulated in the next subsection. 

A. Dual LP formulation of FAP 

The problem dual to LP (1) is as follows (see for example 

[1]): 
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Let  (   denote the problem defined by (2) for a given 

set of admissible paths   ⋃    ∈  and let  (   denote 

the (dual) polyhedron defined by constraints (2b)-(2e). 

Essentially, path generation is related to the so called dual 

separation problem. The problem consists in trying to find, 

for each demand  ∈  , a path  (   between  (   and  (   
such that adding the constraints (2c)-(2d) for  (   to 

formulation (2) makes the current optimal solution of  (    
infeasible for  (  { (  }   (see for example [1]). If there 

is no demand for which a path exists, then the current set   

is sufficient to find the optimum of FAP admitting all 



possible admissible paths. The problem of finding paths 

 (    ∈   is called the pricing problem. 

B. Pricing problem 

Suppose       form an optimal solution of the dual 

problem  (   defined by (2). Then, to be sure that   and   

form an optimal solution also for the dual problem with all 

possible paths, we need to check whether for each demand 

 ∈  , and for each path   in graph  (     between the 

nodes  (   and  (  , there exist nonnegative numbers 

    ∈   such that: 

   ∑    

 ∈ 
 | |                          (   

      | |   ∈                           (   

      ∈                           (   

 

 

Above, | |  ∑   
 

 ∈  and | |  ∑   
 

 ∈   ∈   

denote the state-dependent dual length of path   (note that 

to simplify the notation we do not use the link-path 

incidence coefficients     here). 

Certainly, for all paths  ∈    the above inequalities 

fulfilled by       
  are a part of the considered optimal 

solution of (2). So the question now is how to find a path q 

outside the assumed set   , if any, for which inequalities (3) 

are infeasible with respect to variables     ∈  . In fact, in 

path generation it is advantageous (to speed up the PG 

algorithm, see Subsection III-D) to find, for each  ∈  , not 

only a path (if any) in  ̂  that just separates the current dual 

solution    , but rather a path  ∈  ̂  for which the dual 

constraints (2c) and (2d) are maximally violated by the 

considered dual solution     (see [7], [8], [9]). This is 

especially true when finding such a path is not substantially 

more complex than finding an arbitrary path that violates the 

dual constraints. In our setting, the (negative) measure of 

violation of the dual constraints corresponding to path   is 

equal to 

‖ ‖  (   | |  ∑ | | 
 ∈  

)  (      ∑   

 ∈  

) (   

provided it is negative. The quantity ‖ ‖, is referred to as 

the generalized dual length of path q. Thus, the pricing 

problem for demand  ∈   can be specified as: 

   
 ∈ ̂ 

‖ ‖                                     (   

The so-formulated pricing problem (6) is difficult because 

of the particular form of the dual length ‖ ‖. Nevertheless, 

the problem can be stated as a binary program using 

formulation (7). In the formulation, binary variables 

    ∈  , specify the path   we are looking for:   
{ ∈       }. Binary variables     ∈    in turn, identify 

the set    corresponding to the so defined path        

 { ∈       }. Besides,   (   and   (   denote the sets 

of all links outgoing from, and all links incoming to, 

respectively, node  ∈  , and   is the originating node of 

the considered demand and   is its terminating node. 
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where   is a “big M” constant. Constraints (7b) and (7c) 

assure that variables    that are equal to 1 form a path from 

  to  . Constraints (7d) force each variable     ∈    to be 

equal to 1 when the length, with respect to   , of the path   

defined by variables   is smaller than   . If we for a while 

assume that also    = 0 when the length, with respect to   , 

of path   is greater than or equal to   , then it is clear that 

the objective function computes the value of the quantity 

‖ ‖     (| |      ∑ (| |      ∈   (see definition 

(5)). The optimal solution       of (7) defines the optimal 

path   { ∈       } we are looking for, with L equal 

to its reduced cost. 

C. Path Generation algorithm 

The path generation algorithm for FAP is as follows: 

Algorithm 1. Flow-adjustment problem 

Step 1:  Initialization 

 Define initial feasible path-sets     ∈  . 

Step 2: Solving 

Solve the dual problem  (   given by (2) to 

obtain dual variables   and  . 

Step 3: Update 

For each  ∈   solve the pricing problem (7). If 

the optimal objective L is negative, then add the 

resulting path q to the path-sets   . If for any 

demand no new path has been added then stop: the 

resulting path-sets are sufficient to solve FAP to 

optimality. Otherwise, go to Step 2. 

End 
Figure 1.  Path generation algorithm for FAP 

V. NUMERICAL RESULTS 

In this section, we present the results of a computational 

study illustrating the performance of FAR. The undirected 

network instances used in our tests and listed in Table 1 are 

taken from SNDlib [10]. 

TABLE I.  NETWORK DESCRIPTION 

Network Nodes Links Demands 

Net_10 (dfn-bwin) 10 45 90 

Net_11 (di-yuan) 11 42 22 

Net_14 (nobel-us) 14 21 91 

Net_17 (nobel-germany) 17 26 121 



In the following subsections, we will compare the 

Global Rerouting strategy (GR), the FTR strategy, and the 

FAR strategy in terms of cost-effectiveness. Recall that in a 

non-nominal link availability state, GR is allowed to restore 

flows for all demands in the available capacity from scratch, 

and that FTR is equivalent to FAR with    . For the 

experiments reported in this section, we assume a uniform 

availability ratio   for all the affected links in a given 

availability state, i.e.,   
    for all  ∈   and  ∈    (where 

   denotes the subset of links affected in state s), and 

   
     ∈    ∈     . Also, we assume the demand 

satisfaction ratio    , i.e.,   
     

    
  for all  ∈   

and  ∈ . In the comparisons,    
  (respectively    

   and 

   
 will denote the optimal value of the network cost for 

FAR (respectively, the network cost for FTR and GR) with 

the availability ratio fixed to  . GapFA (respectively, 

GapGR) gives the relative gain of the cost indicated by    
  

(respectively,    
 ) with respect to    

  for a given 

availability ratio   :       
   
     

 

   
  and       

   
     

 

   
 . 

A. Minimum network cost for single partial link failures 

We first consider the single partial link failures, as a 

reference to compare FAR with other rerouting strategies. 

We assume that each link can fail but one at a time, and 

when it fails its availability ratio is equal to  . Hence, the 

availability states can be identified with the links. In Figures 

2-5, we present GapFA and GapGR as a function of   for 

19 selected cases, varying   from 95% to 5%.  

  
Figure 2.  Relative gap between FAR, FTR and GR strategies for Net_10. 

  
Figure 3.  Relative gap between FAR, FTR and GR strategies for Net_11.  

 
Figure 4.  Relative gap between FAR, FTR and GR strategies for Net_14. 

 
Figure 5.  Relative gap between FAR, FTR and GR strategies for Net_17. 

As illustrated by Figures 2 to 5, the overall cost of the 

network obtained when allowing thickening is substantially 

lower than that obtained using flow-thinning only, and this 

remains true for all considered availability scenarios and all 

networks. 

It turns out that network topology and demand density 

characteristics have a significant impact on the efficiency of 

the flow-adjustment routing strategy. Net_10 and Net_14 

have a high number of demands compared to their number 

of nodes (Net_10 has a full traffic matrix and Net_14 has a 

full undirected traffic matrix). For these networks the link 

cost optimized for FAR is close to the cost optimized for 

GR already for relatively low values of parameter   (1.75 to 

2). In contrast, Net_11 and Net_17 have a limited number of 

demands compared to their number of nodes and the optimal 

network cost for FAR requires a high value of parameter   

to meet the results of GR. We finally notice that for a sparse 

network with a high number of demands (as Net_17), 

allowing path thickening has a limited impact on the 

network cost for    . 

B. Minimum network cost for single partial node failures 

We now consider single partial node failures (each node 

can fail but one at a time). This kind of failures represents a 

local perturbation in a network affecting several links at the 

same time. In this case, the availability states correspond to 

the nodes, and the link capacities in a failure state   are 

given by     if e is incident to the failing node, and to    

otherwise. In Figures 6-9, we present GapFA and GapGR as 
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a function of   for 19 selected cases, varying   from 95% to 

5%. 

We notice that the graphs have similar shapes for all the 

considered networks. Indeed, the gain in the network cost 

using the flow-adjustment strategy increases until a certain 

threshold (which seems not to be dependent on the value of 

 ), and next decreases to 0% for full node failures ( =5%.) 

This shows that the flow-thinning strategy remains efficient 

for node failures for the extreme cases as sufficiently low or 

high perturbation levels. However, the gap between these 

two strategies and the global rerouting strategy is significant 

and reaches 80% to 90%, depending on the network, for a 

low availability ratio  =5%. (Recall that for     , the 

network cost for FAR converges to that of GR.) 

  
Figure 6.  Relative gap between FAR, FTR and GR strategies for Net_10. 

 
Figure 7.  Relative gap between FAR, FTR and GR strategies for Net_11. 

 
Figure 8.  Relative gap between FAR, FTR and GR strategies for Net_14. 

 
Figure 9.  Relative gap between FAR, FTR and GR strategies for Net_17. 

Observe that whereas sparse networks (as Net_14 and 

Net_17) display a decrease of the network cost from 8% to 

10% with     (compared to flow-thinning), dense 

networks (as Net_11) have a limited decrease of the cost 

(maximum 5%). In fully meshed networks (as Net_10), it is 

virtually impossible to improve the network cost—the gain 

is less than 1%. However, further investigations are required 

to analyze this effect. 

C. Range of the perturbation 

Finally, we study the range of the perturbation, i.e., the 

number of paths which have their flow adjusted when a 

failure occurs. 

We have two routing paths update processes: thinning 

and thickening. Figures 10-11 show the average number of 

paths that will have their flow adjusted, for all failure states 

with a fixed capacity availability ratio   set to 50% for 

single link failures (Figure 10) and for single node failures 

(Figure 11). In these figures, the percentage of paths which 

has to be thinned (resp. thickened) is represented in solid 

(resp. dashed) bars.  

The figures show that FAR requires modifying flows on 

almost every path when a failure occurs. The percentage of 

“thickening operations” depends on the value of   and 

exhibits a similar behavior for all networks.  

  

Figure 10.  Fraction of paths to be thinned (solid bar) and thickened (dashed 

bar) with respect to the total number of paths per link failures. 
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Figure 11.  Fraction of paths to be thinned (solid bar) and thickened (dashed 

bar)  with respect to the total number of paths per node failures. 

  
Figure 12.  Average number of distincts paths used by FAR, FTR                  

and GR per single link failures. 

Figure 12 displays the number of distinct paths used by 

the other strategies: FTR and GR. We first notice that FTR 

requires less paths than FAR, and the gap increases with  . 

Now we compare the number of paths used by FAR and 

GR. When   is low, FAR requires less paths than GR. The 

difference decreases for higher values of   , and for    , 

for all networks, GR uses less paths than FAR to achieve an 

optimal solution. This is mainly due to the fact that FAR 

uses paths with very low value in the nominal state to be 

able to increase them in a failure state. In regard to 

scalability and management cost, the above observations 

suggest that FAR should be used with small values of  . 

Another way to limit the number of paths per demand used 

by this scheme is to modify the formulation (1) by adding 

specific constraints restricting the number of routing paths 

per demand, (which would surely have an extra 

computational cost). 

VI. FAILURE RECOVERY PROCESS 

The main interest in the flow-thinning strategy stems 

from the simplicity of the path-flow handling process. 

Indeed, the reaction to a particular availability state 

basically consists in decreasing the flow on (some of) the 

perturbed paths. In the following, we assume that a 

signaling protocol sends a message from the end nodes of a 

link to the source nodes of the paths passing through this 

link when its capacity decreases and reaches a certain 

threshold. Hence, the time required to recover from a failure 

state is equal to the time required for the signaling messages 

to traverse the longest path from the end nodes of the 

perturbed links to the source node of the disturbed demands. 

In the following, we study the FAR restoration process. 

A. Simulation of the FAR flow adjustment process 

The flow adjustment process in FAR is not as simple as 

in FTR. This process is composed of two simultaneous 

stages managed by the source and the destination of the 

traffic demands [12]. The source nodes of the demands will 

first decrease the flow of some concerned paths, in order to 

make room for enlarging the flows on some other paths. 

Next, the destination nodes can increase the flow of the 

latter paths. Finally, we do not ensure full synchronization 

as this can be time consuming; hence, some routing paths 

may need a certain time to become fully operational. This 

will depend on the number of paths to restore, and on the 

quantity of flow required to be added to these paths. 

B. Simulation results 

We study the evolution of the ratio of demands that is 

perturbed when a failure occurs, and the time required for 

complete restoration by doing a basic simulation. This 

simulation is called “basic” for 2 reasons: we first assume 

that the buffer size is not modified by the perturbation 

(which is not correct for TCP where a failure is managed 

using congestion-avoidance algorithm) and we also consider 

that the time to pass through any link is the same, equal to 1 

unit. 

Figure 13 reports the ratio of perturbed demands for a 

fixed link failure as a function of the time, for network 

Net_14 with      . With FAR there are about 20% of 

demands perturbed for this link failure situation. Then, the 

bandwidth of some paths is decreased to allow the 

bandwidth of some other paths to be increased. This leads to 

further demands to be temporarily perturbed with about 

55% of perturbed demands after 3 units of time. 

Nevertheless, the process converges very fast comparing to 

GR which reroutes all demands, perturbed or not.  

  
Figure 13.  Evolution of the ratio of perturbed demands for Net_14 (α=0,5). 

Finally, we notice that the ratio of perturbed demands 

remains too high compared to that with the flow-thinning 

strategy.  
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VII. CONCLUSION AND FUTURE WORK 

In this paper, we have studied flow adjustment routing—

a routing strategy for demand protection which allows for 

limited path-flow thickening on top of a commonly 

understood flow thinning mechanism. FAR is capable of 

handling multiple partial link failures that are observed in 

wireless networks or in upper layers of wired 

communication networks. FAR requires less capacity in the 

network as compared with a pure Flow-Thinning Strategy, 

and is cost-wise very close to Global Rerouting for some 

networks. Our computational results show that FAR 

achieves encouraging results in terms of the investment cost, 

at least for the sets of availability states consisting of partial 

single link failures or single node failures.  
We have noticed that the FAR restoration process affects 

a large number of path flows in the network and may lead to 
additional perturbation at the very beginning of the process if 
thinning and thickening operations are not coordinated. 
Hence, some non-perturbed demands may be affected for a 
short time when some bandwidth needs to be released from 
its paths. Making a distinction between paths of perturbed 
and non-perturbed demands could help to avoid this. On one 
hand, paths of non-perturbed demands should not be allowed 
to decrease their total flow more than their traffic 
requirement. On the other hand, paths of perturbed demands 
should be able to thin or thick their bandwidth. This leads to 
a restricted flow-adjustment routing strategy which is 
nothing else than an extension of the elastic robust rerouting 
strategy [11], with some constraints relaxed, applied to 
multiple partial link failures. Moreover, in its current form, 
FAR and FTR to a less degree, could require significant 
implementation effort as a large volume of paths are 
concerned and an important quantity of information is 
required to maintain all the connections at the routing nodes; 
this may impact the scalability of the strategy. These issues 
need further investigation and will be the subject of future 
work. 
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