





# Efficient Sampling-based Approaches to Optimal Path Planning in Complex Cost Spaces

Didier Devaurs, Thierry Siméon, Juan Cortés

{devaurs, nic, jcortes}@laas.fr
LAAS-CNRS, Toulouse University, France









# Feasible vs. cost-space path planning

- Feasible path planning vs.
   Cost-space path planning
  - configuration space
  - collision-free paths

- - C-space with cost function
  - high-quality paths







# Feasible path planning

- RRT [LaValle and Kuffner, 2001]
  - + produces collision-free paths rapidly
  - not asymptotically optimal





## Cost-space path planning

- Transition-based RRT (T-RRT) [Jaillet et al., 2010]
  - + produces high-quality paths (thanks to its transition test)
    - + cost-based node creation (configuration cost)
    - regular edge creation
  - not asymptotically optimal





#### Optimal path planning

- RRT\* [Karaman and Frazzoli, 2011]
  - + produces near-optimal paths
    - + cost-based edge management (path cost)
    - regular node creation
  - converges slowly in high-dimensional spaces





# Two new algorithms for efficient optimal path planning

- Idea: combine the beneficial concepts underlying RRT\* and T-RRT in two different ways
  - cost-based node creation (configuration cost)
  - cost-based edge management (path cost)
- Two new algorithms
  - Transition-based RRT\* (T-RRT\*)
  - Anytime T-RRT (AT-RRT)
- Theoretical guarantees
  - probabilistic completeness
  - asymptotic optimality



#### Transition-based RRT\* (T-RRT\*)

Idea: apply the transition test of T-RRT





## Anytime T-RRT (AT-RRT)

Idea: add useful cycles to the graph





#### T-RRT\* vs. AT-RRT







#### Experimental results

 T-RRT\* and AT-RRT converge faster than RRT\* on difficult problems

large-scale workspace



space with several homotopic classes



high-dimensional space



**Transport** 

Snake



# Convergence analysis

