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Abstract. Sampling-based algorithms for path planning have achieved
great success during the last 15 years, thanks to their ability to efficiently
solve complex high-dimensional problems. However, standard versions of
these algorithms cannot guarantee optimality or even high-quality for the
produced paths. In recent years, variants of these methods, taking cost
criteria into account during the exploration process, have been proposed
to compute high-quality paths (such as T-RRT), some even guaranteeing
asymptotic optimality (such as RRT*). In this paper, we propose two
new sampling-based approaches that combine the underlying principles
of RRT* and T-RRT. These algorithms, called T-RRT* and AT-RRT,
offer probabilistic completeness and asymptotic optimality guarantees.
Results presented on several classes of problems show that they converge
faster than RRT* toward the optimal path, especially when the topology
of the search space is complex and/or when its dimensionality is high.

Keywords: optimal path planning · anytime path planning · cost space
path planning · sampling-based path planning

1 Introduction

Robot path-planning methods have traditionally focused on solving the feasible
path planning problem, i.e. on finding a collision-free path for a robot moving
in a complex environment. This relies on a classical framework abstracting the
workspace of a robot system into a configuration space. In many application
fields, however, generating feasible solution paths might not be sufficient. It may
be required to obtain a high-quality solution path with respect to a given cost
criterion, i.e. a low-cost path. One might even be looking for the optimal solution
path with respect to this cost criterion, i.e. the path minimizing the cost. This
amounts to solving an optimal path planning problem.

The first cost criterion to be considered was path length [4],[10, 11],[14, 15].
More interesting problems can be addressed with more sophisticated criteria,
based on the definition of a cost function over the configuration space, which
is then referred to as a cost space. Early work in cost-space path planning only
involved discrete, coarse-grained cost functions [5],[10]. Our work focuses on
continuous cost functions, which is more challenging. As an example, in outdoor



navigation problems, the cost of a configuration can be the elevation of the posi-
tion of the robot within a 2-D terrain. When high-clearance paths are desirable,
the cost of a configuration can be the inverse of the distance between the robot
and the closest obstacle [2],[8]. Even more complex cost functions can appear in
robotic problems [1],[13] and structural-biology problems [7].

When applied to the optimal path planning problem, classical grid-based
methods, such as A* or D*, can compute resolution-optimal solution paths [16].
However, these methods are limited to problems involving low-dimensional spaces
that can be discretized without leading to a combinatorial explosion. On the
other hand, sampling-based algorithms, such as the Rapidly-exploring Random
Tree (RRT) [12], have been successful at solving complex path-planning problems
in high-dimensional spaces. Besides, they are conceptually simple and achieve
probabilistic completeness. Nevertheless, these algorithms originally targeted
feasible path planning, and usually produce sub-optimal solutions. Smoothing
methods can be used to improve solution paths in a post-processing phase [6],
but they often provide only local improvement, and offer no guarantee of conver-
gence toward the global optimum. With the aim of taking a configuration-cost
function into account during the space exploration, a variant of RRT called the
Transition-based RRT (T-RRT) was proposed [8]. It extends RRT by integrating
a Metropolis-like transition test favoring the exploration of low-cost regions of the
space. It has been successfully applied to diverse robotic problems [1],[2],[8] and
structural-biology problems [7], but it offers no optimality guarantee. Another
variant of RRT, called RRT*, was devised to solve the optimal path planning
problem [10]. RRT* has been shown to guarantee asymptotic optimality, and has
been applied to various robotic problems [9–11]. However, it has been suggested
that RRT* might converge slowly in high-dimensional spaces [2]. Finally, more
recent approaches focus on asymptotic near-optimality [4],[14].

In this paper, we combine two approaches, namely RRT* and T-RRT, to
devise new algorithms inheriting their respective strengths. The first algorithm,
called Transition-based RRT* (T-RRT*), consists of integrating the transition
test of T-RRT into RRT*. The motivation is to favor the exploration of low-
cost regions of the space, while maintaining the asymptotic properties of RRT*.
The second algorithm, called Anytime T-RRT (AT-RRT), consists of enhancing
T-RRT with an anytime behavior enabled by the integration of a procedure
adding useful cycles (based on the path-cost criterion) to the graph built over
the space [15]. The motivation is to quickly obtain a first high-quality solution-
path and, then, carry on the exploration for the solution to continually improve
and converge toward the optimal path.

In what follows, we present a simple formulation of the feasible and optimal
path planning problems (Section 2). Then, we describe T-RRT* and AT-RRT in
greater details (Section 3); we prove that both algorithms are probabilistically
complete and asymptotically optimal (Section 4). Finally, we evaluate T-RRT*
and AT-RRT on several path planning problems, and show that they converge
toward the optimal path faster than RRT* (Section 5). Thanks to the filtering
properties of the transition test they include, T-RRT* and AT-RRT can effi-



ciently solve difficult problems featuring complex cost spaces, on which RRT*
converges very slowly. We present several such examples, illustrating various as-
pects that make a path planning problem difficult to solve. 1) If the problem
features a large-scale workspace, even in low dimension, favoring low-cost regions
avoids wasting time exploring the whole space. 2) If the space features several
homotopic classes between which it is difficult to jump, even in low dimension,
using the transition test can bias the search toward the class containing the
optimal path and avoid being trapped in a sub-optimal class. 3) If the prob-
lem is high-dimensional, it is inherently complex because the search space is
intrinsically large and can potentially contain many homotopic classes.

2 Problem Formulation

2.1 Feasible Path Planning

The classical formulation of the path planning problem relies on abstracting the
workspace of a robotic system into a configuration space C, also called C-space.
A configuration q ∈ C describes the position and volume occupied by the robotic
system in the workspace. The subset of C containing the configurations inducing
collisions with some obstacles in the workspace is denoted Cobst. Assuming that
its complement in C is an open set, we denote by Cfree the set cl(C \ Cobst) of
configurations producing no collision, where cl() denotes the closure of a set.
Given an initial configuration qinit ∈ Cfree and a goal configuration qgoal ∈ Cfree,
a path planning problem can be defined as a triplet (C, qinit, qgoal). A path over
the C-space is a continuous function π : [0, 1] → C. It is said to be collision-free
if for all t ∈ [0, 1], π(t) ∈ Cfree, i.e. π : [0, 1] → Cfree. Let Π denote the set of
all paths over C and Πfree the set of collision-free paths in Π. The feasible path
planning problem is classically defined as follows:

Definition 1 (Feasible path planning). Given a path planning problem
(C, qinit, qgoal), find a path π ∈ Πfree such that π(0) = qinit and π(1) = qgoal,
if one exists, or report failure otherwise.

Let Πfeas denote the set of paths in Πfree satisfying this feasibility condition.
Among the path planning problems having a solution, the analysis we present
requires to focus on problems satisfying the robust feasibility property [10]. Sev-
eral algorithms have been proposed in the robotics community to solve the fea-
sible path planning problem. Among them, sampling-based approaches are not
complete, but satisfy a property called probabilistic completeness, that can be
interpreted as a notion of “almost-sure” success.

Definition 2 (Probabilistic completeness). An algorithm A is probabilisti-
cally complete if, for any robustly feasible path planning problem (C, qinit, qgoal),
the probability that A fails to return a solution when one exists decays to zero as
the running time of A approaches infinity.

The analysis we present in Section 4 is based on the fact that T-RRT and
RRT* have been shown to be probabilistically complete [8, 10].



2.2 Optimal Path Planning

Let c : C → R+ denote a continuous cost function associating to each configura-
tion of the C-space a positive cost value. Being enriched with this function, C is
referred to as a cost space, and we talk about cost-space path planning. When
exploring a cost space, instead of only looking for a feasible solution path, one
might search for a high-quality path with respect to a given path-cost criterion.
Let cp : Πfree → R+ denote this cost criterion, associating to each collision-free
path a positive cost value. It can be defined in several ways, the most common
being to consider the integral of the cost along a path. As a discrete approxi-
mation of the integral of the cost with constant step size δ = 1

n (where n is the
number of subdivisions of the path), the cost of a path π can be defined as

cp (π) =
length(π)
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As an alternative, the mechanical work of a path can be defined as the sum of the
positive cost variations along the path, which can be interpreted as summing the
“forces” acting against the motion. It has been shown that the mechanical work
can assess path quality better than the integral of the cost in many situations [8].
As a discrete approximation of the mechanical work with constant step size
δ = 1

n , the cost of a path π can be defined as
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We could consider other criteria to evaluate path quality, such as the maximal
cost along the path, or the average cost. In the case of feasible planning, path
length could be considered. However, this is not a good choice when planning in a
cost space because this criterion ignores the costs of the configurations along the
path. Which criterion is the most suited depends on the planning problem and
on the characteristics of its expected optimal solution. Comparing cost criteria
is out of the scope of this paper. We use both IC and MW not to limit ourselves
to a single criterion, which could bias the interpretation of the results.

The optimal path planning problem can now be defined as follows:

Definition 3 (Optimal path planning). Given a path planning problem
(C, qinit, qgoal), a continuous configuration-cost function c : C → R+, and a mono-
tonic, bounded path-cost criterion cp : Πfree → R+, find a path π∗ ∈ Πfeas such
that cp(π

∗) = min{cp(π) |π ∈ Πfeas} if one exists, or report failure otherwise.

With these notations, an optimal path planning problem is defined as a
quintuplet (C, qinit, qgoal, c, cp). If it admits a solution π∗, then π∗ is called the
optimal path. Note that the analysis we present requires to focus on optimal path
planning problems admitting a robustly optimal solution [10]. In the context of
optimal path planning, the evaluation of a sampling-based algorithm should
be based not only on probabilistic completeness, but also on the concept of
asymptotic optimality. This property can be interpreted as a notion of “almost-
sure” convergence toward the optimal path, and has been defined as follows [10]:



Definition 4 (Asymptotic optimality). An algorithm A is asymptotically
optimal if, for any optimal path planning problem (C, qinit, qgoal, c, cp) admitting
a robustly optimal solution path with finite cost c∗ ∈ R+, the cost of the solu-
tion path produced by A (this cost being infinite if no solution is available yet)
decreases toward c∗ as the running time of A approaches infinity.

The analysis in Section 4 is based on the asymptotic optimality of RRT* [10].

3 Algorithms

The Rapidly-exploring Random Tree (RRT) [12] is a popular sampling-based
algorithm that can solve the feasible path planning problem. Starting from the
initial configuration qinit, RRT iteratively builds a tree T on the C-space. At
each iteration, a configuration qrand is randomly sampled in C, and an extension
toward qrand is attempted, starting from its nearest neighbor, qnear, in T . If the
extension succeeds, a new configuration qnew is added to T , and connected by
an edge to qnear. The criteria on when to stop the exploration can be reaching
the goal configuration qgoal, a given number of nodes in T , a given number of
iterations, or a given running time.

Several algorithms have been devised as extensions of RRT to explore cost
spaces. Among them, the Transition-based RRT (T-RRT) consists of integrating
in RRT a transition test that favors the exploration of low-cost regions of C [8].
This transition test is used to accept or reject the move from qnear to qnew based
on their respective costs. Even though it yields high-quality (i.e. low-cost) paths
when solving the feasible path planning problem on a cost space, T-RRT offers
no guarantee to solve the optimal path planning problem. The other variant of
RRT we consider here, named RRT*, has been specifically developed to solve the
optimal path planning problem [10]. In RRT*, instead of being linked to qnear,
qnew is linked to the configuration (among its neighbors in C) minimizing the
cost of the path in T between qinit and qnew. Furthermore, if, as a parent in T ,
qnew allows one of its neighbors in C to be connected to qinit via a lower-cost path
than the one currently available, some rewiring is performed in T . By deciding
how to create and remove edges of T based on the costs of the paths between
qinit and every node in T , RRT* enables the cost of the solution extracted from
T to decrease with time. However, despite its asymptotic-optimality guarantees,
RRT* may converge slowly in high-dimensional spaces [2].

In this work, we combine the beneficial concepts underlying these extensions
of RRT: 1) the filtering properties of the transition test in T-RRT, favoring the
creation of new nodes in low-cost regions of C, and 2) the cost-based management
of edges in RRT*, allowing the cost of the solution path to decrease with time.
We do this in two different ways, by proposing an extension to RRT* named
Transition-based RRT* (T-RRT*) and an extension to T-RRT named Anytime
T-RRT (AT-RRT). Both algorithms can solve the optimal path planning prob-
lem and offer asymptotic-optimality guarantees (cf. Section 4). They allow us to
efficiently explore complex cost spaces, yielding high-quality solution paths that
improve with time in an anytime fashion.



Algorithm 1: Transition-based RRT* (T-RRT*)

input : the optimal path planning problem (C, qinit, qgoal, c, cp), the dimension d
of the C-space, and the γ constant derived from the volume of Cfree [10]

output: the graph G
1 G ← initGraph(qinit)
2 while not stoppingCriteria(G) do
3 qrand ← sampleRandomConfiguration(C)
4 qnear ← findNearestNeighbor(G, qrand)
5 qnew ← extend(qnear , qrand)
6 if qnew 6= null and transitionTest(G, c(qnear), c(qnew)) then
7 addNewNode(G, qnew)
8 n← numberOfNodes(G)

9 Qnear ← nearestNeighbors(G, qnew , γ (log(n) / n)1 / d)
10 qpar ← parentMinimizingCostFromInit(qnew , qnear , Qnear , cp)
11 addNewEdge(G, qpar , qnew)
12 foreach qn ∈ Qnear do

13 π ← pathInSpace(qnew , qn)
14 if costFromInit(qnew) + cp(π) < costFromInit(qn) and

isCollisionFree(π) then
15 removeEdge(G, parent(qn), qn)
16 addNewEdge(G, qnew , qn)

17 return G

Algorithm 2: transitionTest (G, ci , cj)

input : the current temperature T and its increase rate Trate

output: true if the transition is accepted, false otherwise
1 if cj ≤ ci then return True
2 if exp(−(cj − ci) / T ) > 0.5 then

3 T ← T / 2(cj−ci) / costRange(G) ; return True

4 else

5 T ← T · 2Trate ; return False

3.1 Transition-based RRT* (T-RRT*)

The pseudo-code of T-RRT* is shown in Algorithm 1. T-RRT* extends RRT*
by integrating the transition test (line 6) originally developed for T-RRT [8].
This transition test is used to accept or reject the move from qnear to qnew based
on their respective costs. If the move is accepted, T-RRT* behaves exactly like
RRT*. First, a new node is created in G to store qnew (line 7). Then, a search
in G is performed to compute the set Qnear of configurations contained in a
neighborhood of qnew of radius γ (log(n) / n)1 / d (line 9). As defined for RRT*,
this radius depends on the dimension d of C, on a constant γ derived from the
volume of Cfree, and on the number n of nodes in G [10]. This dependency on



n ensures that the radius decreases as G grows. The next step of the algorithm
consists of finding the configuration qpar in Qnear ∪ {qnear} to which qnew should
be connected (line 10): the parent of qnew is chosen as the configuration via which
the path between qinit and qnew has minimal cost. This is done by computing, for
all qn ∈ Qnear ∪{qnear}, the cost cp(π

G
n ) + cp(π

C
n), where π

G
n is the path between

qinit and qn in G, and πC
n is the path between qn and qnew in C. Finally, since the

addition of a new node in G potentially leads to the appearance of new paths
having lower costs than those currently in G, some rewiring might be performed
(lines 12–16). For each qn ∈ Qnear, if the cost of the path going from qinit to qn
via qnew is lower than the cost of the current path between qinit and qn in G,
qnew becomes the new parent of qn in G.

The transitionTest involved in the T-RRT* algorithm is presented in Al-
gorithm 2. The transition between two configurations is evaluated on the basis
of their costs ci and cj, ci being the cost of the source configuration and cj the
cost of the target configuration. A downhill move (cj ≤ ci) in the cost landscape
is always accepted. An uphill move is accepted or rejected based on the prob-
ability exp(−(cj − ci) / T ) that decreases exponentially with the cost variation
cj − ci. In that case, the level of selectivity of the transition test is controlled
by the temperature T , which is an adaptive parameter of the algorithm. Low
temperatures limit the expansion to gentle slopes of the cost landscape, and
high temperatures enable it to climb steep slopes. After each accepted uphill
move, T is decreased to avoid over-exploring high-cost regions: it is divided
by 2(cj−ci) / costRange(G), where costRange(G) is the cost difference between the
highest-cost and the lowest-cost configurations stored in the nodes of G. After
each rejected uphill move, T is increased to facilitate the exploration and avoid
being trapped in a local minimum of the cost landscape: it is multiplied by 2Trate ,
where Trate ∈ (0, 1] is the temperature increase rate.

3.2 Anytime Transition-based RRT (AT-RRT)

AT-RRT, whose pseudo-code is presented in Algorithm 3, also features the
transitionTest (line 6), and extends T-RRT by offering an anytime behav-
ior. Before any feasible path is found between qinit and qgoal, AT-RRT behaves
exactly like T-RRT. As opposed to T-RRT, however, after a solution path is
found, the exploration is allowed to continue and a cycle-addition procedure is
activated (lines 9–10). This leads to the creation in G of new paths that can be of
higher quality than the one found so far. This procedure is based on the notion
of useful cycles, as described in [15].

The addUsefulCycles procedure is presented in Algorithm 4. When a new
configuration qnew is added to G, we consider all configurations in G, within a
neighborhood of qnew, as potential candidate targets for new edges. The radius of
this neighborhood depends on the dimension d of C and on a constant γ derived
from the volume of Cfree, as is done for RRT* [10]. This radius also decreases with
the number n of nodes in G. Within the candidate set Qnear, we are interested
in the configurations that are “close” to qnew in C, but “far” from qnew in G,
not in terms of distance but of path cost. For each candidate qn ∈ Qnear, if the



Algorithm 3: Anytime Transition-based RRT (AT-RRT)

input : the optimal path planning problem (C, qinit, qgoal, c, cp)
output: the graph G

1 G ← initGraph(qinit)
2 while not stoppingCriteria(G) do
3 qrand ← sampleRandomConfiguration(C)
4 qnear ← findNearestNeighbor(G, qrand)
5 qnew ← extend(qnear , qrand)
6 if qnew 6= null and transitionTest(G, c(qnear), c(qnew)) then
7 addNewNode(G, qnew)
8 addNewEdge(G, qnear , qnew)
9 if solutionPathExists(G, qinit , qgoal) then

10 addUsefulCycles(G, qnew , cp)

11 return G

Algorithm 4: addUsefulCycles (G, qnew , cp)

input: the dimension d of the C-space
the γ constant derived from the volume of Cfree (as in RRT* [10])

1 n← numberOfNodes(G)

2 Qnear ← nearestNeighbors(G, qnew , γ (log(n) / n)1 / d)
3 foreach qn ∈ Qnear do

4 πg ← pathInGraph(G, qnew , qn)
5 πs ← pathInSpace(qnew , qn)
6 if cp(πs) < cp(πg) and isCollisionFree(πs) then
7 addNewEdge(G, qnew , qn)

cost of the local path πs between qnew and qn in C is less than the cost of the
lowest-cost path πg between qnew and qn in G, and if πs is collision-free, we add
an edge to G between qnew and qn, thus creating a useful cycle.

4 Analysis

We now review the properties of T-RRT* and AT-RRT, in terms of probabilistic
completeness and asymptotic optimality (cf. Section 2). It has already been
proven that T-RRT and RRT* are probabilistically complete [8, 10]. In the case
of T-RRT, this property is directly derived from the probabilistic completeness
of RRT, despite the integration of the transition test. A similar reasoning allows
us to state that T-RRT* is probabilistically complete, thanks to the probabilistic
completeness of RRT*. Furthermore, as AT-RRT behaves like T-RRT before a
solution path is found, it satisfies the same properties.

Theorem 1 (Probabilistic completeness). The T-RRT* and AT-RRT al-
gorithms are probabilistically complete.



Let us assume in the sequel that the γ constant involved in T-RRT* and
AT-RRT, and originally introduced in RRT*, satisfies

γ > 2

(

1 +
1

d

)
1
d

(

µ(Cfree)

ζd

)
1
d

, (1)

where d is the dimension of C, ζd is the volume of the unit ball in the d-
dimensional Euclidean space, and µ() is an operator measuring volumes. Under
this assumption, RRT* has proven to be asymptotically optimal [10].

The only difference between T-RRT* and RRT* is the presence of a transition
test filtering configurations based on their costs. The consequence of applying
such rejection sampling is that the samples cannot be assumed to be drawn
from a uniform distribution on C. Even though the asymptotic optimality of
RRT* was proven under a “uniform distribution” assumption, this result can be
extended to any continuous probability distribution with density bounded away
from zero [10]. As the probability of a sample to be accepted by the transition test
is never zero, the samples drawn by T-RRT* follow such distribution. Therefore,
T-RRT* is also asymptotically optimal.

Let us recall that the interesting properties of RRT* come from its ability
to replace existing edges in G by new edges enabling lower-cost paths to ap-
pear. This allows the cost of the solution path produced by RRT* to decrease
with time. Furthermore, the “almost-sure” convergence toward the optimal so-
lution path is ensured by the fact that the cost-based decisions on connections
are made for configurations within neighborhoods of radii based on a value of
γ satisfying (1). The lower bound on γ expressed in (1) is the minimal value
allowing RRT* to be asymptotically optimal. Keeping in mind that increasing
the value of γ raises the computational cost of an iteration of RRT* (because of
the increased number of neighbors to consider), this lower bound represents the
optimal tradeoff between efficiency and asymptotic optimality.

Clearly, AT-RRT and T-RRT* use the same procedure to create and filter
nodes, based on the extension mechanism of RRT and on the transition test of
T-RRT. The difference between them lies in the management of edges. In AT-
RRT, no edge is removed, thus leading to the creation of cycles, but this has
no impact on the current analysis. The main point is that, in both algorithms,
alternative paths are created based on cost improvement. Where they differ is
on the criterion that an edge has to satisfy to be considered useful in terms of
cost improvement. In T-RRT*, this criterion is based on whether an edge allows
a configuration to be connected to qinit via a path in G having minimal cost. In
AT-RRT, this criterion is based on whether an edge allows two configurations to
be connected via a path in C whose cost is lower than the costs of the existing
paths in G. It is clear that both criteria achieve the same goal: they both allow
the cost of the solution path to decrease with time. Finally, as the cost-based
decisions on the addition of useful cycles happen in neighborhoods of radii based
on a value of γ satisfying (1), AT-RRT is also asymptotically optimal.

Theorem 2 (Asymptotic optimality). The T-RRT* and AT-RRT algorithms
are asymptotically optimal.



Fig. 1. Stones problem: 2-DoFs disk moving among rectangular obstacles, while maxi-
mizing its clearance. Top row: graphs built by AT-RRT (left) and T-RRT* (right) after
a runtime of 0.5 s. Bottom row: solution paths produced by T-RRT* when minimizing
IC (left) or MW (right) after a runtime of 10 s. Paths produced by AT-RRT are similar.

5 Evaluation

5.1 Path Planning Problems

We have evaluated T-RRT* and AT-RRT on several optimal path-planning prob-
lems that differ in terms of C-space dimensionality, geometrical complexity and
configuration-cost function type. The Stones problem (illustrated in Fig. 1) is a
2-degrees-of-freedom (DoFs) example in which a disk has to go through a space
cluttered with rectangular-shaped obstacles. The objective is to maximize clear-
ance, so the cost function c associates to each position of the disk the inverse of
the distance between the disk and the closest obstacle.

The Inspection problem deals with industrial inspection in a dense environ-
ment, and involves an aerial robot, as shown in Fig. 2. The featured quadrotor
is modeled as a 3-DoFs sphere (i.e. a free-flying sphere) representing the secu-
rity zone around it. Assuming that motions are performed quasi-statically, we
restrict the problem to planning in position (controllability issues lie outside the
scope of this paper). For safety reasons, the quadrotor has to move in this envi-
ronment trying to maximize clearance for the security sphere. The specificity of
this problem is its large-scale workspace.

The Transport problem features aerial robots, and deals with the collabora-
tive transport of objects, as shown in Fig. 3. Two quadrotors have to carry an
H-looking object and go through one of two holes in a wall. The robotic system
comprises the quadrotors themselves (and not safety spheres around them), the
3-R planar manipulator arms attached below them, and the carried object. A
configuration of this system is defined by the position and orientation of the
object in space, and the relative positions of the quadrotors with respect to
the object. This problem is restricted to planning in position for the quadrotors



Fig. 2. Inspection problem: quadrotor (whose close-up is shown in yellow) inspecting an
oil-rig (top left). The cost function is based on the clearance of the 3-DoFs safety sphere
around the quadrotor. Right column: paths produced by AT-RRT when minimizing IC
(top) or MW (bottom), after a running time of 10 s. The cost profiles of the two paths
are also shown (bottom left). Paths produced by T-RRT* are similar.

because of the quasi-static assumption made on their motions. We consider a
planar version of the problem, thus disregarding translations along the Y axis
and rotations around the X and Z axes. Besides, the revolute joints of the arms
are passive DoFs in constraints related to the closure of the kinematic chain.
Therefore, the system can be described with 7 DoFs: 3 DoFs for the object (two
translations along the X and Z axes, and a rotation around the Y axis) and
2 DoFs for each quadrotor (two translations along the X and Z axes). In this
example, different cost functions can be defined. The notion of clearance could
be considered, but we will use a cost function based on the notion of “balance”
in our experiments. Assuming the initial configuration is stable, the idea is to
maintain it as much as possible, while allowing a complete freedom of movement
for the object with respect to the translations along theX and Z axes. To achieve
that, the cost of a configuration is defined as the sum of the differences to the
initial values for the rotation of the object and the translations of the quadro-
tors. The specificity of the Transport problem lies in the fact that it features
two very distinct homotopic classes. The two holes in the wall constitute narrow
passages of similar difficulty in terms of purely geometrical planning: despite
being wider, the lower hole is partly obstructed by the second wall. However,
when planning in the cost space with the clearance-based cost function, paths
going through the lower hole are favored because it is larger than the other one.
On the contrary, when planning in the cost space with the balance-based cost
function, paths going through the upper hole are favored because going through
the lower one requires the robotic system to tilt sharply.



Fig. 3. Transport problem: the two quadrotors have to transport an object and go
through one of the holes in the wall, while maintaining the balance of the whole system.
Both images show an intermediate and the final configurations along paths obtained
after 50 s. Left: path produced by T-RRT* when minimizing MW. Paths produced when
minimizing IC, and paths produced by AT-RRT are similar. Right: path produced by
RRT* when minimizing IC. Paths produced when minimizing MW are similar.

The Snake problem (illustrated in Fig. 4) involves a snake-like object con-
stituted of 10 identical cylinders between which 9 revolute joints are defined.
We also consider two translations and a rotation in the planar workspace, which
adds up to 12 DoFs. The cost function is defined as the sum of the absolute
differences between the angular values of consecutive revolute joints, added to
the absolute value of the first revolute joint. The objective is to favor a straight
configuration of the robot, or configurations in which all revolute joints have the
same value, which correspond to a regular coiling of the robot. This problem
enables us to analyze the behavior of the algorithms in higher dimension.

5.2 Settings

Before using T-RRT* and AT-RRT, their parameters have to be set. Follow-
ing [2], Trate is set to 0.1 and T is initialized to 10−6. Finding a good value for
γ happens to be a real issue. As already mentioned, the lower bound for γ ex-
pressed in (1) is the optimal value with respect to the tradeoff between efficiency
and asymptotic optimality. However, computing this value requires to estimate
the volume of Cfree. This is possible in low-dimensional spaces when the robotic
system and the obstacles are represented with simple geometric models, but this
is not realistic otherwise. To ensure that γ satisfies (1), we set:

γ = 2

(

1 +
1

d

)
1
d

(

µ(C)

ζd

)
1
d

. (2)

On the Stones and Inspection problems, since C is an Euclidean space, its volume
can easily be computed using the validity interval of every DoF. However, this is
not straightforward on the Transport and Snake problems because of the revolute
joints. For a DoF corresponding to such joint, its angular range is multiplied by
the length of the associated rigid body.

T-RRT* and AT-RRT have been implemented in the motion planning plat-
form Move3D. To fairly assess them, no smoothing is performed on the solution
paths. Values of IC and MW are averaged over 100 runs. Results have been
obtained on an Intel Core i5 processor at 2.6 GHz with 8 GB of memory.



Fig. 4. Selected configurations along paths produced by AT-RRT when minimizing IC
(left) or MW (right), after a running time of 100 s, on the Snake problem. A snake-
like object has to move among rectangular obstacles. The cost function favors straight
configurations, and regular over irregular coiling. T-RRT* provides similar results.

5.3 Results

T-RRT* and AT-RRT build graphs over C in different ways because they involve
different strategies to create (and potentially remove) edges. This is illustrated
in Fig. 1 on the Stones problem. The upper left figure clearly shows the cycles
created by AT-RRT, and the redundancy in paths. As can been seen in the upper
right figure, the tree built by T-RRT* is much sparser, because high-cost edges
are removed. The numerical results we present show that these differences in
behavior do not create significant differences in performance. Also, the solution
paths produced by the two algorithms usually look very similar.

Differences in solution paths are mainly due to the choice of the cost criterion:
IC or MW. This is clearly visible in Fig. 1 and 2. Minimizing IC tends to favor
shorter paths along which the maximal cost can be quite high (as shown by Fig. 2,
bottom left), and minimizing MW sometimes produces strangely convoluted
paths. Another drawback of MW (not illustrated here) is that, if the cost of qinit
is high, MW can be low even for paths going through high-cost configurations.
A better cost criterion could probably be defined by combining IC and MW, but
this goes beyond the scope of this paper. Note that, on some problems, such as
Transport, the choice of the cost criterion has little impact on the results.

To evaluate the performance of T-RRT* and AT-RRT, we analyze the evolu-
tion over time of the costs of the solution paths they produce. As a reference, we
compare both algorithms to RRT* [10]. To obtain the best results with RRT*,
we use the conditional activation and branch-and-bound heuristics when they
are beneficial. The conditional activation heuristic consists of planning with a
regular RRT until the first solution is found, and only then activating the proce-
dures specific to RRT* [9]. The branch-and-bound heuristic consists of trimming
the nodes in G that cannot allow finding paths with costs lower than that of the
current solution path, which is assessed using a cost-to-go function [11]. Both
heuristics are beneficial on the Transport and Snake problems.

Numerical results obtained on the four path planning problems (each one
being tested with a given pair (qinit, qgoal) of configurations) are reported in
Fig. 5 for IC, and Fig. 6 for MW. They clearly show that T-RRT* and AT-RRT
converge faster than RRT* toward the optimum. Even on a problem as simple as
Stones, if only little time is available, T-RRT* and AT-RRT yield better-quality
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Fig. 5. Evolution over time of the costs (IC) of the solution paths produced by RRT*,
T-RRT* and AT-RRT, on the four path planning problems.

solutions than RRT*. But, given enough time, all algorithms produce paths of
similar quality. When the size of the workspace is larger, as in the Inspection
problem, the dominance of T-RRT* and AT-RRT is even clearer. It appears that
the filtering properties of the transition test help focus the search on the most
relevant (i.e. low-cost) parts of the workspace: graphs produced by RRT* contain
numerous nodes in high-cost regions of the space, contrary to graphs produced
by T-RRT* or AT-RRT (not shown here due to space limitations). When the
problem is even more complex, as is the case of Transport, the weaknesses of
RRT* start to translate into a very low rate of convergence. Thanks to the
transition test, the search performed by T-RRT* or AT-RRT is usually guided
toward the homotopic class containing the optimal path (i.e. the upper hole,
when using the balance-based cost function, as shown by Fig. 3, left). On the
contrary, the first solution produced by RRT* can belong to any of the two
homotopic classes; if it is found in the sub-optimal one (i.e. the lower hole),
RRT* gets stuck in this class and into optimizing a low-quality solution (as
shown by Fig. 3, right). Finally, on high-dimensional problems, such as Snake,
RRT* usually converges very slowly. Looking at Fig. 5 and 6, one may think that
this is also the case for T-RRT* and AT-RRT. To check that, we have let all
algorithms run for 12 hours while minimizing MW. We have obtained solutions of
costs 3.42, 2.41 and 2.24 for RRT*, T-RRT* and AT-RRT respectively. Looking
at Fig. 6, it means that, after 100 s, T-RRT* and AT-RRT are already close to
the optimum, contrary to RRT*.

Finally, to assess whether what we observe is consistent across the domains
corresponding to the four path planning problems, we have evaluated the algo-
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Fig. 6. Evolution over time of the costs (MW) of the solution paths produced by RRT*,
T-RRT* and AT-RRT, on the four path planning problems.

rithms on instances of these problems involving different pairs (qinit, qgoal) of
configurations. The results we have obtained (not presented here due to space
limitations) are similar to what we report above.

6 Conclusion

In this paper, we have proposed two novel sampling-based algorithms to solve
the optimal path planning problem, by combining the underlying principles of
T-RRT and RRT*, the goal being to benefit from their respective strengths while
overcoming their weaknesses. On the positive side, T-RRT can efficiently explore
a cost space thanks to the filtering properties of its transition test, and RRT* is
asymptotically optimal. On the negative side, T-RRT is not asymptotically op-
timal, and RRT* may converge slowly on complex cost spaces. The two hybrid
methods are: 1) the Transition-based RRT* (T-RRT*), which is an extension
of RRT* integrating the transition test of T-RRT, and 2) the Anytime T-RRT
(AT-RRT), which is an extension of T-RRT integrating a useful-cycle addition
procedure. We have proven that T-RRT* and AT-RRT are both probabilisti-
cally complete and asymptotically optimal. We have evaluated them on several
optimal path-planning problems featuring complex cost spaces, and compared
them to RRT*. Results show that they converge faster than RRT* toward the
optimal path, sometimes orders of magnitude faster.

Results tend to show that AT-RRT performs slightly better than T-RRT*. As
future work, it would be interesting to analyze further how the two algorithms
behave, to pinpoint which strategy works best at solving particular classes of



optimal path planning problems. Disregarding computational performance, a
clear advantage of AT-RRT over T-RRT* is that it can easily be extended into
a multiple-tree algorithm, similar to the Multi T-RRT [3]. Another interesting
aspect of AT-RRT is that it builds a graph containing cycles, therefore providing
alternative paths over the space. This could be leveraged when path replanning
is required due to errors in the model or moving obstacles.
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