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Introduction

The beautiful theory of cluster tilting in triangulated categories has been developed by Iyama and Yoshino; as an important outcome of this the authors gave in [10, Theorem 1.2 and Theorem 1.3] the classification of rigid indecomposable MCM modules over two Veronese embeddings in P 9 given, respectively, by plane cubics and space quadrics. Another proof, that makes use of Orlov's singularity category, appears in [START_REF] Keller | On two examples by Iyama and Yoshino[END_REF], where the link between power series Veronese rings and the graded rings of the corresponding varieties is also explained. Also, [START_REF] Keller | Acyclic Calabi-Yau categories[END_REF] contains yet another argument.

The goal of this note is to present a simple proof of Iyama-Yoshino's classification of rigid MCM modules over the aforementioned Veronese rings, making use of vector bundles and Beilinson's theorem. This proof works over a field k which is algebraically closed or finite.

Consider the embedding of the projective space P n , with n ≥ 2 given by homogeneous forms of degree d, i.e. the d-fold Veronese variety. A coherent sheaf E on P n is arithmetically Cohen-Macaulay (ACM) with respect to this embedding if and only if E is locally free and has no intermediate cohomology:

(1)

H i (P n , E(dt)) = 0, for all t ∈ Z and all 0 < i < n.

This is equivalent to ask that the module of global sections associated with E is MCM over the corresponding Veronese ring. For d-fold Veronese embeddings of P n in P 9 (i.e. {n, d} = {2, 3}), we are going to classify ACM bundles E which are rigid, i.e. Ext 1 P n (E, E) = 0. We set ℓ = n+1 2 . To state the classification, we define the Fibonacci numbers a ℓ,k by the relations: a ℓ,0 = 0, a ℓ,1 = 1 and a ℓ,k+1 = ℓa ℓ,k -a ℓ,k-1 . For instance (a 3,k ) is given by the odd values of the usual Fibonacci sequence: (2)

a 3,k = 0, 1, 3,
Ω 2 P n (1) b → O P n (-1) a
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ii) If E is rigid, then there is k ≥ 1 such that, up to tensoring with O P n (s), E or E * is the cokernel of an injective map:

Ω 2 P n (1) a ℓ,k-1 → O P n (-1) a ℓ,k
Conversely for any k ≥ 1, there is a unique indecomposable bundle E k fitting into: As for notation, we write small letters for the dimension of a space in capital letter, for instance h i (P n , E) = dim k H i (P n , E). We also write χ(E, F ) = (-1) i ext i P n (E, F ) and χ(E) = χ(O P n , E). The symbol δ i,j is Kronecker's delta.

0 → Ω 2 P n (1) a ℓ,k-1 → O P n (-1) a ℓ,k → E k → 0.
1. Fibonacci bundles 1.1. Representations of the Kronecker quiver. Fix an integer ℓ ≥ 1. Let us write Υ ℓ for the ℓ-th Kronecker quiver, namely the oriented graph with two vertices e 0 and e 1 , and ℓ arrows from e 0 to e 1 . A representation R of Υ ℓ , with dimension vector (a, b) is the choice of ℓ matrices of size a × b.

Υ 3 : e 1 e 2 • • •
We identify a basis of H 0 (P n , Ω P n (2)) with the set of ℓ = n+1 2 arrows of Υ ℓ . Then the derived category of finite-dimensional representations of Υ ℓ embeds into the derived category of O P n -modules by sending R to the cone Φ(R) of the morphism e R associated with R according to this identification:

Φ(R)[-1] → O P n (-1) a eR --→ Ω P n (1) b ,
where we denote by [-1] the shift to the right of complexes. It is clear that for all pairs of representations R, R ′ we have:

(3)

Ext i P n (Φ(R), Φ(R ′ )) ≃ Ext i Υ ℓ (R, R ′ ), for all i.
1.2. Rigid representations and Schur roots. We will use Kac's classification of rigid Υ ℓ -modules as Schur roots (hence the restriction on k), which is also one of the main ingredients in Iyama-Yoshino's proof. By [START_REF] Victor | Infinite root systems, representations of graphs and invariant theory[END_REF]Theorem 4], any non-zero rigid Υ ℓ -module is a direct sum of rigid simple representations of the form R k , for some k ∈ Z, where R k is defined as the unique (up to isomorphism) indecomposable representation of Υ ℓ with dimension vector

(a ℓ,k-1 , a ℓ,k ) for k ≥ 1, or (a ℓ,1-k , a ℓ,-k ) for k ≤ 0.
1.3. Fibonacci bundles and their cohomology.

Set F k = Φ(R k ) for k ≥ 1, and 
F k = Φ(R k )[-1] for k ≤ 0.
It turns out that F k is an exceptional locally free sheaf, called a Fibonacci bundle, cf. [START_REF] Chiara | Cokernel bundles and Fibonacci bundles[END_REF]. We rewrite the defining exact sequences of F k :

0 → O P n (-1) a ℓ,k-1 → Ω P n (1) a ℓ,k → F k → 0, for k ≥ 1, (4) 0 → F k → O P n (-1) a ℓ,1-k → Ω P n (1) a ℓ,-k → 0, for k ≤ 0.
Here is a lemma on the intermediate cohomology of Fibonacci bundles. Its statement should be read with a grain of salt, namely for k = 1 also H n-1 (P n , F 1 (-n)) vanishes.

Lemma 4. For k ≥ 1, the only non-vanishing intermediate cohomology of F k is:

h 1 (P n , F k (-1)) = a ℓ,k h n-1 (P n , F k (-n)) = a ℓ,k-1 .
Proof. All the terminology and results we need on exceptional collections in order to establish this lemma are contained in [START_REF] Bondal | Representations of associative algebras and coherent sheaves[END_REF][START_REF] Helices | representations of quivers and Koszul algebras, Helices and vector bundles[END_REF]. We consider the left and right mutation endofunctors of the derived category of coherent sheaves on P n . These associate with a pair (E, F ) of complexes two complexes, denoted respectively by R F E and L E F , defined as the cones of the natural evaluation maps f E,F and g E,F :

E fE,F ---→ RHom P n (E, F ) * ⊗ F → R F E, L E F → RHom P n (E, F ) ⊗ E gE,F ---→ F.
It is well-known (cf. [START_REF] Chiara | Cokernel bundles and Fibonacci bundles[END_REF]) that the Fibonacci bundles F k can be defined recursively from F 0 = O P n (-1) and F 1 = Ω P n (1) by setting:

F k+1 = R F k F k-1 , for k ≥ 1, (5) 
F k-1 = L F k F k+1 , for k ≤ 0. (6) 
This way, for any k ∈ Z we get a natural exact sequence:

(7) 0 → F k-1 → (F k ) ℓ → F k+1 → 0.
Over P n , we start with the standard collection:

(O P n (1 -n), . . . , O P n (-1), O P n , O P n (1)).
By the mutation

Ω P n (-1) ≃ L O P n O P n (1)
, we replace this with:

(O P n (1 -n), . . . , O P n (-1), Ω P n (1), O P n ),
By (5), we can replace the previous exceptional sequence with:

(O P n (1 -n), . . . , O P n (-1), F k-1 , F k ).
By [3, Theorem 4.1], the iterated mutation of F k through this last full exceptional collection must give back F k ⊗ ω P n , i.e.: (8)

L O P n (1-n) • • • L O P n (-1) L F k-1 F k ≃ F k (-n -1).
Also, since the first sequence we started with is strongly exceptional of vector bundles, and the same happens to its Kozsul dual collection, in view of [START_REF] Helices | representations of quivers and Koszul algebras, Helices and vector bundles[END_REF]Theorem 8.3] we know that all objects obtained by the mutations in the previous display consist of vector bundles. This provides us with integers u 1 , . . . , u n and with a long exact sequence:

(9) 0 → F k (-n -1) → O P n (1 -n) u1 → • • • → O P n (-1) un-1 → F un k-1 → F k → 0,
where each short exact sequence extracted from the long one is given by one mutation in the sequence of mutations [START_REF] Hirschowitz | Fibrés génériques sur le plan projectif[END_REF]. Now by (4) we get:

H i (P n , F k (t)) = 0 for:        2 ≤ i ≤ n -2, ∀t, i = 0, t ≤ 0, i = 1, t = -1, n ≥ 3, and t ≥ 0, n = 2, i = n -1, t ≥ 1 -n, n ≥ 3.
Also, the required non-vanishing cohomology of F k appears again from (4). Summing up, we only have to show H n-1 (P n , F k (t)) = 0 for t ≤ -n -1. For this we use [START_REF] Huybrechts | Fourier-Mukai transforms in algebraic geometry[END_REF]. Indeed, the kernel K of the map [START_REF] Happel | A note on sheaves without self-extensions on the projective n-space[END_REF]. Then, using H 0 (P n , F k-2 (t)) = 0 for t ≤ 0 (which of course holds also for k = 1, 2) and chasing cohomology in [START_REF] Happel | A note on sheaves without self-extensions on the projective n-space[END_REF] we see that H n-1 (P n , F k (t)) = 0 for t ≤ -n -1.

F un k-1 → F k appearing in (9) is L F k-1 F k , so that u n = ℓ and K ≃ F k-2 in view of
1.4. Ext groups among Fibonacci bundles. We would like to compute now the Ext groups between pairs of Fibonacci bundles. Of course when F k and F j are "close", i.e. |k-j| ≤ 1, we already know what happens, as the two Fibonacci bundles then form an exceptional pair. But what if |k -j| ≥ 2? The next lemma gives the answer. Note the second formula holds also for k = j since F k is exceptional. Lemma 5. For any pair of integers j ≥ k + 1 we have: [START_REF] Iyama | Mutation in triangulated categories and rigid Cohen-Macaulay modules[END_REF] ext i P n (F j , F k ) = δ 1,i a ℓ,j-k-1 , ext i P n (F k , F j ) = δ 0,i a ℓ,j-k+1 . Proof. Set Υ = Υ ℓ and a ℓ,j = a j . We easily compute χ(F j , F k ) = -a j-k-1 and χ(F k , F j ) = a j-k+1 by calculating χ of Υ-modules via the Cartan form and using faithfullness of Φ.

Therefore, the second formula is proved once we show Ext i P n (F k , F j ) = 0 for i = 0, and this is of course true for i < 0. For k ≤ 0 and j ≥ 1 we have

F k ≃ Φ(R k )[-1] and thus Ext i P n (F k , F j ) ≃ Ext i+1 Υ (R k , R j ),
which is zero for i = -1, 0 since the category of Υ-representations is hereditary. Further, if j, k ≥ 1 or j, k ≤ 0 then it suffices to prove Ext 1 P n (F k , F j ) = 0. Using [START_REF] Happel | A note on sheaves without self-extensions on the projective n-space[END_REF], this vanishing holds for j if it does for j -1. By induction, it suffices to check Ext 1 P n (F k , F k ) = 0, which in turn is obvious.

Let us now look at the first formula. To prove it, we consider the Auslander-Reiten translate τ ; we refer for instance to [START_REF] Auslander | Representation theory of Artin algebras[END_REF] for the definition and properties of τ . This satisfies:

(11) ext i Υ (R j , τ R k+2 ) = ext 1-i Υ (R k+2 , R j ).
The functor τ operates on dimension vectors via the Coxeter transform, encoded by the matrix:

ℓ 2 -1 ℓ -ℓ -1 .
This means that, if R has dimension vector (a, b), then τ R has dimension vector:

(|(ℓ 2 -1)a -ℓb|, |ℓa -b|).
A straightforward computation involving the recursive definition of a k now says that (a k+1 , a k+2 ) is sent to (a k-1 , a k ). This in turn implies that τ R k+2 ≃ R k . Therefore, the second part of ( 10) follows from the first part, by combining it with (3) and [START_REF] Victor | Infinite root systems, representations of graphs and invariant theory[END_REF].

Remark 6. This lemma holds more generally (with the same proof) for any exceptional pair (F 0 , F 1 ) of objects on a projective k-variety X, with hom X (F 0 , F 1 ) = ℓ, by defining recursively F k for all k ∈ Z by ( 5) and ( 6).

Rigid ACM bundles on the third Veronese surface

We prove here Theorem 1 in case (n, d) = (2, 3).

2.1. The Beilinson complex and the proof of (i). Let us first prove (i). So let E be an indecomposable vector bundle on P 2 satisfying (1). Without loss of generality, we may replace E with G = E(s 0 ), where s 0 is the smallest integer s such that h 0 (P 2 , E(s)) = 0. Define the integers:

α i,j = h i (P 2 , G(-j)).
Since we defined G = E(s 0 ), we have α 0,j = 0 if and only if j ≥ 1. The Beilinson complex F associated with G (see for instance [START_REF] Huybrechts | Fourier-Mukai transforms in algebraic geometry[END_REF]Chapter 8]) reads:

0 → O P 2 (-1) α1,2 d0 -→ O P 2 (-1) α2,2 ⊕ Ω P 2 (1) α1,1 ⊕ O α0,0 P 2 d1 -→ Ω P 2 (1) α2,1 ⊕ O α1,0 P 2 d2 -→ O α2,0 P 2 → 0.
The term consisting of three summands in the above complex sits in degree 0 (we call it middle term), and the cohomology of this complex is G. By condition (1), at least one of the α 1,j is zero, for j = 0, 1, 2.

If α 1,2 = 0, then d 0 = 0. By minimality of the Beilinson complex the restriction of d 1 to the summand O α0,0 P 2 of the middle term is also zero. Therefore O α0,0 P 2 is a direct summand of G, so G ≃ O P 2 by indecomposability of E (and hence of G).

If α 1,1 = 0, then the non-zero component of d 0 is just a map O P 2 (-1) α1,2 → O α0,0 P 2 , and a direct summand of G is the cokernel of this map. By indecomposability of G, in this case G(-1) has a resolution of the desired form with a = α 0,0 and b = α 1,2 .

So in the cases α 1,2 = 0 or α 1,1 = 0, the bundle E has the required resolution up to twist. In the case α 1,0 = 0, we shall see that this holds for E * . We thus call this case the "dual" one.

2.2.

The dual case and the end of the proof of (i). It remains to look at the case α 1,0 = 0, actually α 1,3k = 0 for all integers k. Note that the restriction of d 1 to Ω P 2 (1) α1,1 ⊕ O α0,0 P 2 is zero, which implies that a direct summand of G (hence all of G by indecomposability) has the resolution:

(12) 0 → O P 2 (-1) α1,2 d0 -→ Ω P 2 (1) α1,1 ⊕ O α0,0 P 2 → G → 0
and α 2,j = 0 for j = 0, 1, 2. Recall also α 1,3 = 0, and obviously α 0,3 = 0. We compute χ(G(-3)) = 3α 1,2 -3α 1,1 + α 0,0 , so:

α 2,3 = h 0 (P 2 , G * ) = h 2 (P 2 , G(-3)) = 3α 1,2 -3α 1,1 + α 0,0 .
If this value is positive, then there is a non-trivial morphism g : G → O P 2 , and since α 0,0 = 0 there also exists 0 = f : O P 2 → G. So G (and hence E) has a non-trivial endomorphism factoring through O P 2 , a contradiction. Summing up, we may assume 3α 1,2 -3α 1,1 + α 0,0 = 0, in other words α 2,3 = 0. Therefore, the Beilinson complex associated with G(-1) gives a resolution:

0 → G(-1) → Ω P 2 (1) α1,2 → O α1,1 P 2 → 0.
It it easy to convert this resolution into the form we want by the diagram: 

0 0 0 / / G(
O P 2 (1) α1,2 0 0
From the leftmost column, it follows that G * has a resolution of the desired form, with a = 3α 1,2 -α 1,1 and b = α 1,2 . Claim (i) is thus proved.

2.3. The proof of (ii) and the rigid representation associated with E. The first step to prove (ii) is to associate with a rigid ACM sheaf E (i.e. with G) a rigid representation R of Υ 3 . This is obvious whenever the conclusion of (i) holds, as G is associated with a representation R via Φ, and R is rigid since Φ is fully faithful. However, looking back to the proof of (i), we see that the conclusion of (i) holds if α 1,1 = 0 or α 1,2 = 0, as we did not use the condition on the endomorphisms of E for those cases. So we only have to work out the dual case, and we assume α 1,0 = 0. Consider [START_REF] Keller | On two examples by Iyama and Yoshino[END_REF], let e be the restricted map e : O P 2 (-1) α1,2 → Ω P 2 (1) α1,1 extracted from d 0 and let F be its cone, shifted by 1:

(13) F → O P 2 (-1) α1,2 e -→ Ω P 2 (1) α1,1 .
This is a complex with two terms, and its cohomology is concentrated in degrees zero and one, namely H 0 F ≃ ker(e) and H 1 F ≃ coker(e). From ( 12) we easily see that F fits into a distinguished triangle:

(14) F → O α0,0 P 2 → G.
Also, by [START_REF] Keller | Acyclic Calabi-Yau categories[END_REF] there is a representation R of Υ 3 such that Φ(R) ≃ F [START_REF] Auslander | Representation theory of Artin algebras[END_REF].

Applying Hom P 2 (O P 2 , -) to (13), we get Ext i P 2 (O P 2 , F ) = 0 for all i. So (14) gives:

Ext i P 2 (F, F ) ≃ Ext i P 2 (G, F [1]
), for all i. Also, we have Ext 2 P 2 (G, O P 2 ) ≃ H 0 (P 2 , G(-3)) * = 0, so applying Hom P 2 (G, -) to (14) we get:

Ext 1 P 2 (G, G) → Ext 1 P 2 (G, F [1]) → 0.
Then, using the same trick as in the proof of the previous theorem, we see that G * has the desired resolution, with a = 6α 1,3 -α 1,1 and b = α 1,3 . This proves the first statement. The rest follows by the same path. Drezet's theorem as shortcut for (i) ⇒ (ii) may be replaced by [START_REF] Happel | A note on sheaves without self-extensions on the projective n-space[END_REF].

Remark 8. It should be noted that, in [10, Theorem 1.2 and Theorem 1.3], the ACM bundle E on the given Veronese variety is assumed to have a rigid module of global sections. This implies, respectively, Ext 1 P 2 (E, E(3t)) = 0, or Ext 1 P 3 (E, E(2t)) = 0, for all t ∈ Z. A priori, this is a stronger requirement than just Ext 1

P n (E, E) = 0. However, our proof shows that the two conditions are equivalent for ACM bundles.

Rigid ACM bundles on higher Veronese surfaces

Assume k algebraically closed. The next result shows that, for d ≥ 4, the class of rigid ACM bundles on d-fold Veronese surfaces contains the set of exceptional bundles on P 2 , which is quite a rich class, cf. [START_REF] Drezet | Fibrés stables et fibrés exceptionnels sur P 2[END_REF]. At least if char(k) = 0, the two classes coincide by [START_REF] Drezet | Fibrés exceptionnels et suite spectrale de Beilinson généralisée sur P 2 (C)[END_REF]Corollaire 7].

Theorem 9. Let F be an exceptional bundle on P 2 and fix d ≥ 4. Then there is an integer t such that E = F (t) satisfies (1).

Proof. It is known that F is actually stable by [START_REF] Drezet | Fibrés stables et fibrés exceptionnels sur P 2[END_REF]. This implies that F has natural cohomology by [START_REF] Hirschowitz | Fibrés génériques sur le plan projectif[END_REF], i.e. for all t ∈ Z there is at most one i such that H i (P 2 , F (t)) = 0. Then, H 1 (P 2 , F (t)) = 0 if and only if χ(F (t)) < 0.

Let now r, c 1 , c 2 be the rank and the Chern classes of F . Riemann-Roch shows that χ(F (t)) is a polynomial of degree 2 in t, of dominant term r/2, whose discriminant is: ∆ = c 2 1 (1 -r) + r(2c 2 + r/4) = -χ(F, F ) + 5r 2 /4. So, χ(F, F ) = 1 implies ∆ = -1 + 5r 2 /4. Hence, the roots of χ(F (t)) differ by:

2 √ ∆ r = √ 5r 2 -4 r < 3.
Therefore, there is an integer t 0 such that χ(F (t)) is non-negative except when t takes one of the values t 0 , t 0 + 1, t 0 + 2. Hence only these values of t may give H 1 (P 2 , F (t)) = 0. This means that E = F (t 0 -1) satisfies (1) for any choice of d ≥ 4.
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for k = 0, 1, 2, 3, 4, 5, 6, . . . Theorem 1. Assume {n, d} = {2, 3}, let E be an indecomposable bundle on P n satisfying condition

[START_REF] Auslander | Representation theory of Artin algebras[END_REF]

, namely H i (P n , E(dt)) = 0 for all t ∈ Z and all 0 < i < n.

i) If E has no non-trivial endomorphism factoring through O P n (t), then there are a, b ≥ 0 such that, up to a twist by O P n (s), E or E * is the cokernel of an injective map:

  Finally, both E k and E * k are ACM and exceptional. In the previous statement, it is understood that a bundle E is exceptional if it is rigid, simple (i.e.Hom P n (E, E) ≃ k) and Ext i P n (E, E) = 0 for i ≥ 2.We write Ω p P n = ∧ p Ω 1 P n for the bundle of differential p-forms on P n . The rank of the bundle E k is given by the Fibonacci number between a 3,k-1 and a 3,k in case (n, d) = (2, 3). In this case E 2k (respectively, E 2k+1 ) is the k-th sheafified syzygy occurring in the resolution of O P 2 (1) (respectively, of O P 2 (2)) over the Veronese ring, twisted by O P 2 (3(k -1)).

	Remark 2. Part (i) of Theorem 1 is a version of Iyama-Yoshino's general results on
	Veronese rings [10, Theorem 9.1 and 9.3], to the effect that for {n, d} = {2, 3} the stable category of MCM modules is equivalent to the category of representations of
	a certain Kronecker quiver. Our result is somehow algorithmic, for it provides the
	representation associated with an MCM module by computing a cohomology table
	of the corresponding ACM bundle.
	Remark 3. A similar result holds for
	(n, d) = (3, 2).
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Putting this together, we obtain a surjection: R). We understand now that, if E is rigid, then so is R.

2.4. The 4-term sequence and of the proof of (ii). If R is rigid, then by §1.2, R is a direct sum of rigid simple representations of the form R k . Therefore, the rigid object F is a direct sum of (shifted) copies of the bundles F k obtained from the rigid representations R k . Taking cohomology of (14), we obtain the 4-term exact sequence:

If only R i with i ≤ 0 appear, this sequence says that G is globally generated. Then, whenever

This case being settled, we may assume α 2,3 = h 0 (P 2 , G * ) = 0, so that the end of proof of the dual case §2.2 works and says that G * has a resolution of the form (2) for some integers a, b. Since the representation associated with G * is rigid, we know that there is k ≥ 1 such that a = a 3,k-1 and b = a 3,k .

If some R i appears with i ≥ 1, we call I the (non-zero) image of the middle map in the previous exact sequence, and we show Ext 1 P 2 (F j , I) = 0 for all j ≥ 1, which contradicts G being indecomposable. To check this, note that Hom P 2 (F j , -) gives an exact sequence:

The leftmost term vanishes by Serre duality and Lemma 4. The rightmost term is zero by Lemma 5. Part (ii) is now proved.

Relying on [START_REF] Victor | Infinite root systems, representations of graphs and invariant theory[END_REF]Theorem 4], we see that the last statement of Theorem 1 is clear by Lemma 4 and by exceptionality of Fibonacci bundles. The fact that E * is also ACM is obvious by Serre duality. Remark 7. If k is algebraically closed of characteristic zero, we may apply [START_REF] Drezet | Fibrés exceptionnels et suite spectrale de Beilinson généralisée sur P 2 (C)[END_REF]Corollaire 7], to the effect that a rigid bundle is a direct sum of exceptional bundles. So, at the price of relying on this result, from (i) we may deduce directly (ii) via Kac's theorem.

ACM bundles on the second Veronese threefold

The techniques we have just seen apply to the embedding of P 3 in P 9 by quadratic forms. Again we replace E with the G = E(s 0 ), where s is the smallest integer s such that E(s) has non-zero global sections, and set α i,j = h i (P 3 , G(-j)). If (1) gives α 1,1 = α 2,1 = 0, then G(-1) has the desired resolution. On the other hand, if (1) tells α 1,0 = α 2,0 = α 1,2 = α 2,2 = 0, then we are left with a resolution of the form:

→ G → 0. We also have α i,4 = 0 for i = 0, 1, 2 again by [START_REF] Auslander | Representation theory of Artin algebras[END_REF]. The fact that G has no endomorphism factoring through O P 3 this time gives α 3,4 = h 0 (P 3 , G * ) = 0. So G(-1) has a resolution like: 0 → G(-1) → Ω 2 P 3 (2) α1,3 → O α1,1 P 3 → 0.