On the Confinement of Superluminal Quarks without Applying the Bag Pressure

Mohammad Sharifi

To cite this version:

Mohammad Sharifi. On the Confinement of Superluminal Quarks without Applying the Bag Pressure. 2014. hal-01062904v7

HAL Id: hal-01062904
https://hal.science/hal-01062904v7

Preprint submitted on 3 Dec 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On the Confinement of Superluminal Quarks without Applying the Bag Pressure

Mohammad Sharifi*

Abstract

We explain herein the fatal error or at least an ironic questionable parallel method in formulation of strong interaction (quantum chromodynamics). We postulate that quarks are tachyons and do not obey Yang-Mills theory. By applying this correction to the dynamics of quarks, we can confine quarks in hadrons. We seek to show why quarks do not obey the Pauli exclusion principle and why we cannot observe free quarks. In addition, we obtained the correct sizes of hadrons and derive straightforward formulations of strong interaction. Instead of several discrete QCD methods, we derive a united formulation that enables us to solve the strong interaction for all energy values. Finally we discuss about some experimental evidence such as chiral magnetic effect, scattering angular distribution, cherenkov gluon radiation, hadron mass gap, nucleon spin crisis, $C P$ violation in standard model and possibility of faster than light neutrino anomaly that may result from this assumption.

1 Introduction

In contrast to the observed spin-statistic behavior of quarks, it is a well-established fact that two electrons with identical quantum numbers cannot exist in a hydrogen atom, because each electron is subluminal and its phase velocity is superluminal. When there are two electrons with identical quantum numbers in a hydrogen atom or with identical energy levels in a cubic box, the second electron exists at every location (space-time coordinates) with exactly identical wave function characteristics to those of the first electron. In other words, the two electrons simultaneously exist at an exact point at the same time. This phenomenon is a consequence of the probabilistic characteristics of wave functions and quantum mechanics. Specifically, the wave equation does not provide us with more information about the exact location of each electron. The energy and absolute value of the momentum of each electron are exactly determined, but the electrons do not have specific locations. At a given time, they are ubiquitous at every location where the wave function does not vanish. However, as we know we can have three identical quarks with identical spin states and quantum numbers in baryons. To explain this phenomenon, we propose a strange theorem:

Theorem. Quarks are superluminal particles.
First, let's explain the foundations of quantum mechanics somewhat further. Any specific change in the state of a wave function in its associated Hilbert space will propagate in space-time coordinates with the phase velocity of the wave function in spacetime. Specifically, entangled

[^0]particles communicate with each other at their entangled phase velocity. We postulate that quarks are superluminal. As a result, because each quark is superluminal, its phase velocity must be subluminal; thus, If we change the wave function of the second quark, this change will propagate at less than c to the other space-time locations in the bag. In other words, the first quark is unaware of the spin and characteristics of the second quark, because their phase velocities are subluminal. The phase velocity is not measured in a space-like region and quarks with identical spins can occupy the same energy level in hadrons. Specifically, two quarks with identical energies and momenta are located at different points in the bag. Quantum mechanics postulates that, at a specific time, a subluminal particle with a specific energy-momentum does not have a specific location. In other words, it is ubiquitous in the bag. However, because the phase velocity of a superluminal particle is subluminal, a superluminal particle is no longer ubiquitous. These particles are somehow uncollapsed localized wave functions. Thus, two superluminal particles (quarks) that are confined in a hadron no longer exist at the exact space-time points and obey Fermi-Dirac statistics, so it is not necessary for them to obey the Pauli exclusion principle (they are not ubiquitous). The exclusion principle applies to two identical particles with identical wave function characteristics [1](ubiquitous at some region of the space-time coordinate).

Theoretically, the wave function of a tachyon such as a hypothetical superluminal neutrino cannot collapse, because the phase velocity of collapse is subluminal and obeys causality. Before the wave function collapses, the particle does not have a specific location. We can create its location by performing an experiment and measuring its location. However, after we determine the location of a particle, the particle should not be detected in other locations, even in notably far space-like locations that have no causal relation with the location of the collapsed particle. When $\psi_{\text {space }}$ of a subluminal particle collapses, it communicates at its phase velocity (at infinite velocity in the reference frame of the collapsed wave function) to other locations in spacetime that the wave function should not collapse at other locations of the universe. Thus, a particle cannot be detected in two space-like locations, although the two locations do not have a causal relation with each other. But if the particle is superluminal, its phase velocity is subluminal, and it cannot perform this communication in space-like regions of spacetime. The phase velocity must be superluminal to allow for the collapse of the wave function[2]. Because quarks are superluminal, we never observe free quarks. Note that, although we can identify quarks in hadrons using deep inelastic scattering, before scattering, the wave functions of quarks are confined in hadrons, and it is not necessary for the wave functions to communicate with the entire universe to be able to collapse. The above argument is applicable to free quarks.

We can express weird paragraph in other words. If there exist a particle that travel faster than the speed of light from location a of creator to location b of detector, always there exist a reference frame in which it appears that particle traveled from location b to a thus existence of a superluminal particles contradicts causality and such particle never can send information from location a to b. There exist three candidate that can not be used directly to send informations. Superluminal neutrino never can be in such domain because if they exist we can apply them for sending a signal and this has explicit conflict with relativity. One candidate is virtual particle and mediator other candidate is superluminal tunneling and another one can be quark. I have not heard that any one send a signal by quarks. On the other hand there exist a one to one relationship between detection of a detectable particle and copenhagen interpretation that express before its detection it either exist at every location or has no specific location. And this fact maybe is a clue for exclusion principle.

Unfortunately the physical concepts and descriptions that we offer above do not create a firm justification for two facts about tachyonic quarks. First, why quarks do not obey the exclusion principle and why we have not yet observed a single free quark? These results must
be expressed in the language of mathematics. However, seemingly still there does not exist a satisfactory quantum field theory for interacting tachyons and we do not know the statistical laws of tachyons similar to Bose-Einstein, Fermi-Dirac or Maxwell-Boltzmann, which apply to traditional particles. It takes several decades to undrastand and formulate basic concepts of superluminal quantum mechanics.

2 Tachyonic field theory

The beginnings of tachyonic quantum field theory were introduced in the Feinberg paper in 1967 [3]. Feinberg introduced the term tachyon for particles that move faster than the speed of light. Before special relativity there were some attempts to describe the specifications of such particles [4-7]. Cherenkov radiation was one of the predictions of these authors. After the introduction of special relativity, there was no interest in pursuing these attempts and describing particles that were forbidden to exist until 1962, when the first papers to create a relativistic tachyonic equation and the elimination of its philosophical contradictions with special relativity were published [8]. In that era, in addition to theoretical efforts[9-12], there were also some attempts to detect tachyons by experiment [13-15] which had negative results. In 1985, for the first time, Alan Chodos et al. suggested that an electron neutrino was a tachyon [16]. Later, several experiments to prove that a neutrino mass was imaginary were performed. Yet, the important point about all of the positive results in favor of superluminal neutrinos was that all the conclusions were in the domain of experimental error. Thus, their validity could not be verified. In addition, this fact maybe contradicts well-established neutrino oscillation which considers the real mass for neutrinos. After the Chodos paper appeared, a large number of theoretical papers on the subject began to appear, oriented in such a way that they designed an appropriate tachyon field theory which described superluminal neutrinos. These developments accelerated up until 2011 when CERN reported a neutrino anomaly. Immediately a large number of manuscripts in favor and against that idea were published. Yet, it later become evident that the origin of the anomaly was due to an error in experiment [17-19].

The building block of tachyonic field theory is the reinterpretation principle to accommodate causality problem[3, 8]. By suitable Lorentz transformation a positive energy particle in other reference frame is seen as negative energy particle but since particles are never at rest and in such reference frame direction of motion of particle changes too; that transformation is interpreted as negative energy particle that moves backward in time. Thus it is assumed by reinterpretation principle that electric charge of particles changes depending to reference frame of observer but electric current sign will not change and is a Lorentz invariant.

The main problems for constructing an interacting tachyonic field theory are canonical quantization, microcausality, and the spin-statistics theorem. As we know in normal or tardyonic field theory in order for a microcausality condition to hold for bilinear observables, the field must either commute or anti-commute for a space-like interval. If the Dirac equation is quantized according to commutation relations, the Hamiltonian does not have ground states. If the Klein-Gordon equation is quantized according to anti-commutation relations the microcausality will not be valid for space-like or time-like intervals. To create a tachyonic Klein-Gordon equation or Dirac equation we must quantize the field equation. For preserving Lorentz invariance of tachyonic scalar field under unitary operators transformations, Feinberg assumed a FermiDirac statistic (anti-commutation relation) for the quantization of tachyonic spinless particles! (Ironically quarks which are spin one-half particles do not obey the exclusion principle, but we created the loophole of color to accommodate this fact.) and argued that we do not need connection between spin and statistic because we do not assume microscopic causality. On the other hand, this method created a problem whereby the field vacuum state and particle number
were not Lorentz invariant[3,20]. After the first Feinberg paper, it was clear that the fields with imaginary mass led to instability similar to an unstable equilibrium point in classical mechanics and would lead to tachyonic condensation [21].

3 Wave equation of a hydrogen atom with a superluminal electron

There is a significant difference between an ordinary hydrogen atom and a model with a superluminal electron. In the subluminal model, we have negative potential energy. When we increase the energy of the electron in the subluminal model, the momentum of the electron decreases; thus, the wavelength of the electron increases, and the electron increases its distance from the proton. In the subluminal model, although the energy cannot be less than the mass of the particle, the minimum momentum can be zero.

$$
\begin{equation*}
E^{2}=c^{2} P^{2}+m^{2} c^{4} \tag{1}
\end{equation*}
$$

Thus, the wavelength has no maximum, i.e., according to the Wilson-Sommerfeld rule [22,23] it can approach infinity, which results in the escape of an electron from the hydrogen atom. The minimum principal quantum number for the minimum radius of the hydrogen atom is $n=1$.

However, in the superluminal model, although the minimum amount of relativistic energy is zero, the momentum has a non-zero minimum: It cannot be less than the mass of the electron, namely, $m_{s} c[8,9]$.

$$
\begin{gather*}
c^{2} P^{2}=E^{2}+m_{s}^{2} c^{4} \tag{2}\\
E=\frac{m_{s} c^{2}}{\sqrt{\beta_{s}^{2}-1}} \quad \beta_{s}>1 \tag{3}\\
P=\frac{m_{s} v}{\sqrt{\beta_{s}^{2}-1}} \quad \beta_{s}>1 \tag{4}
\end{gather*}
$$

We see that the electron has a maximum wavelength $\lambda=\hbar / c m_{s}$. Thus, by the WilsonSommerfeld rule, the electron cannot have an infinite wavelength and thus cannot escape the hydrogen atom. This fact sets a limit on the maximum radius of the bag. Thus, the electron in the superluminal model is confined. For the superluminal model, the principal quantum number of the maximum radius of the bag is $n=1$.

$$
\begin{equation*}
\frac{\left(m_{\circ}^{2} c^{4}+E^{2}\right)^{1 / 2}}{h c} 2 \pi r=1 \tag{5}
\end{equation*}
$$

When the electron energy increases, its momentum increases too, but its wavelength decreases; thus, it becomes increasingly confined. The electron falls deeper into the hydrogen atom or bag, which is in contrast to our observation in the subluminal model.

We seek to derive and solve the wave function of a confined superluminal electron in the hydrogen bag. First, we study the radial Dirac equation. The Dirac equation for a subluminal particle with real mass leads to the following [24]

$$
\begin{align*}
& \hbar c \frac{d g(r)}{d r}+(1+\kappa) \hbar c \frac{g(r)}{r}-\left[E+m_{\circ} c^{2}+\frac{Z \alpha}{r}\right] f(r)=0 \tag{6}\\
& \hbar c \frac{d f(r)}{d r}+(1-\kappa) \hbar c f(r) r+\left[E-m_{\circ} c^{2}+\frac{Z \alpha}{r}\right] g(r)=0 \tag{7}
\end{align*}
$$

The normalized solutions are proportional to

$$
\begin{align*}
& f(r) \approx-\frac{1}{\Gamma(2 \gamma+1)}(2 \lambda r)^{\gamma-1} e^{-\lambda r} \times \\
& \left\{\left(\frac{\left(n^{\prime}+\gamma\right) m_{\circ} c^{2}}{E}-\kappa\right) F\left(-n^{\prime}, 2 \gamma+1 ; 2 \lambda r\right)+n^{\prime} F\left(1-n^{\prime}, 2 \gamma+1 ; 2 \lambda r\right)\right\} \tag{8}\\
& g(r) \approx \frac{1}{\Gamma(2 \gamma+1)}(2 \lambda r)^{\gamma-1} e^{-\lambda r} \times \\
& \left\{\left(\frac{\left(n^{\prime}+\gamma\right) m_{\circ} c^{2}}{E}-\kappa\right) F\left(-n^{\prime}, 2 \gamma+1 ; 2 \lambda r\right)-n^{\prime} F\left(1-n^{\prime}, 2 \gamma+1 ; 2 \lambda r\right)\right\} \tag{9}
\end{align*}
$$

For normalizable wave functions, γ should be positive. κ is the Dirac quantum number, and

$$
\begin{gather*}
\lambda=\frac{\left(m_{\circ}^{2} c^{4}-E^{2}\right)^{1 / 2}}{\hbar c} \tag{10}\\
q=2 \lambda r \tag{11}\\
\gamma=+\sqrt{\kappa^{2}-(Z \alpha)^{2}}=+\sqrt{\left(j+\frac{1}{2}\right)^{2}-(Z \alpha)^{2}} \tag{12}
\end{gather*}
$$

To terminate the hypergeometric series, we should discard the negative values of n^{\prime} :

$$
\begin{equation*}
n=n^{\prime}+|\kappa|=n^{\prime}+j+\frac{1}{2} \quad n=1,2,3 \tag{13}
\end{equation*}
$$

The solution for the hydrogen atom is a hypergeometric function, which is an associated Laguerre polynomial and is characteristic of a wave function in the Coulomb potential.

$$
\begin{equation*}
L_{n}^{m}(x)=\frac{(n+m)!}{n!m!} F(-n, m+1, x) \tag{14}
\end{equation*}
$$

where $L_{n}^{m}(x)$ is the associated Laguerre function.
To create a superluminal Dirac equation for quarks, we can use imaginary mass or substitute the following matrix $\beta_{s}=i \beta$ (imaginary mass Dirac equation) to calculate $f(r)$ and $g(r)$.

$$
\begin{equation*}
H \psi=c(\alpha \cdot p) \psi+i \beta m c^{2} \psi \tag{15}
\end{equation*}
$$

However, when we want to construct the Dirac current, we will encounter a problem. The other method is to consider the following non-Hermitian matrices, where $\beta_{s}=\beta \gamma_{5}[16,25]$ (tachyonic Dirac equation)

$$
\begin{gather*}
H \psi=c(\alpha \cdot p) \psi+\beta_{s} m_{s} c^{2} \psi=c(\alpha \cdot p) \psi+\beta \gamma_{5} m_{s} c^{2} \psi \tag{16}\\
\alpha=\left(\begin{array}{cc}
0 & \sigma \\
\sigma & 0
\end{array}\right) \quad \beta_{s}=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right) \tag{17}
\end{gather*}
$$

This method satisfies all of the required properties of the superluminal Dirac equation. However, for the sake of simplicity, we mimic the former procedure for the superluminal model with imaginary mass and obtain

$$
\begin{equation*}
\hbar c \frac{d g(r)}{d r}+(1+\kappa) \hbar c \frac{g(r)}{r}-\left[E+i m_{\circ} c^{2}+\frac{Z \alpha}{r}\right] f(r)=0 \tag{18}
\end{equation*}
$$

Figure 1: Real part of the function $f(x)=\operatorname{Re}\left[e^{-i x} F(1,3,2 i x)\right]$. The function is exactly similar to a spherical Bessel function of the first type.

$$
\begin{equation*}
\hbar c \frac{d f(r)}{d r}+(1-\kappa) \hbar c f(r) r+\left[E-i m_{\circ} c^{2}+\frac{Z \alpha}{r}\right] g(r)=0 \tag{19}
\end{equation*}
$$

We define λ as

$$
\begin{equation*}
\lambda=\frac{\left(m_{\circ}^{2} c^{4}+E^{2}\right)^{1 / 2}}{\hbar c} \tag{20}
\end{equation*}
$$

We solve the above equation and exactly mimic the method provided in the reference for the solution of the Coulomb potential [24]. Finally, we obtain

$$
\begin{align*}
& g(r) \approx(2 \lambda r)^{\gamma-1} e^{-i \lambda r} \times \\
& \left\{\left(\frac{\left(n^{\prime}+\gamma\right) m_{\circ} c^{2}}{E}-\kappa\right) F\left(-n^{\prime}, 2 \gamma+1 ; 2 i \lambda r\right)-n^{\prime} F\left(1-n^{\prime}, 2 \gamma+1 ; 2 i \lambda r\right)\right\} \tag{21}\\
& f(r) \approx-(2 \lambda r)^{\gamma-1} e^{-i \lambda r} \times \\
& \left\{\left(\frac{\left(n^{\prime}+\gamma\right) m_{\circ} c^{2}}{E}-\kappa\right) F\left(-n^{\prime}, 2 \gamma+1 ; 2 i \lambda r\right)+n^{\prime} F\left(1-n^{\prime}, 2 \gamma+1 ; 2 i \lambda r\right)\right\} \tag{22}
\end{align*}
$$

In the above equations, $F\left(-n^{\prime}, 2 \gamma+1 ; 2 i \lambda r\right)$ is normalized for only the negative values of n^{\prime} if

$$
\begin{equation*}
-n^{\prime}<2 \gamma+1 \tag{23}
\end{equation*}
$$

For example, for $j=\frac{1}{2}$ (which gives $\gamma=1$), and $n^{\prime}=-1$ we have a well-behaved wave function (figure 1). For $-n^{\prime}=2 \gamma+1$, the behavior of the wave function $F\left(-n^{\prime}, 2 \gamma+1 ; 2 i \lambda r\right)$ is similar to $\cos (r)$. For negative n^{\prime}, the above hypergeometric equations are similar to the spherical Bessel function of the first type. From (21) and (22), the relation between the hypergeometric series and the Bessel functions is

$$
\begin{equation*}
J_{\nu}(x)=\frac{e^{-i x}}{\nu!}\left(\frac{x}{2}\right)^{\nu} F\left(\nu+\frac{1}{2}, 2 \nu+1,2 i x\right) \tag{24}
\end{equation*}
$$

The spherical Bessel function of the first type is defined as

$$
\begin{equation*}
j_{\nu}(x)=\sqrt{\frac{\pi}{2 x}} J_{\nu+1 / 2}(x) \tag{25}
\end{equation*}
$$

We observed that the solution for the subluminal hydrogen atom is a Laguerre polynomial. However, we see that $f(r)$ and $g(r)$ for a superluminal electron in the Coulomb potential are similar to the spherical Bessel function of the first type. The spherical Bessel functions appear in only two similar cases. The first case is a particle trapped in an infinite three-dimensional radial well potential. The solutions to this problem are spherical Bessel functions of the first type. Similarly, the solutions to the MIT bag model, which postulated the existence of an unknown pressure and the vanishing of the Dirac current outside the bag, are also spherical Bessel functions of the first type [26, 27].
although we assumed a negative $\frac{\alpha}{r}$ potential, the real shape of the strong interaction is unknown and the other potential will lead to confinement. However, even if (maybe) the force among the particles was repulsive in the above equation or its strength with respect to distance did not follow a $\frac{1}{r^{2}}$ law, the factor that determines whether the system is stable and whether the superluminal positron can escape the proton is the energy of the system and not the attractive or repulsive forces among the particles. Most probably the attractive force among superluminal particles is related to tachyonic field theory.

Seemingly, from studying the shape of the inter-quark potential, we can consider the following conjecture:

Conjecture. The strong force is simply the superluminal effect of the electromagnetic force among superluminal particles.

As an objection to the above conjecture we must ask why protons at far distance experience electromagnetic force if we consider it as accumulation of force among individual quarks of each proton.

Another conjecture is that strong force is related to superluminal motion of baryon number etc rather than electric charge. However we finally must be able to unify dynamics of strong field and electromagnetic field. If strong field and nuclear force are related to superluminal motion of only baryon number, can we assume that nucleons necessarily must have superluminal motion in nucleus? Neutron has no electric charge. Answer to this question is not subject of this paper and needs broad discussion to reach a conclusion. We just mention the puzzle that ${ }_{1}^{2} \mathrm{H}$ nuclear charge radius is around 2.1421 fm and ${ }_{3}^{9} \mathrm{Li}$ nuclear charge radius is around 2.2450 fm . If we consider the fact that nucleons are in their quantum orbits or quantum shell, de Brogile wavelength of subluminal nucleons from their binding energy probably contradict size of these quantum orbits in nucleus.

Due to reinterpretation principle, because sign of energy of a particle is not Lorentz invariant, field vacuum state, separation of the field into positive and negative frequency parts and distinction among creation and annihilation operators are not Lorentz invariant too. If we quantize subluminal Dirac equation according to commutation relations we obtain for the energy and charge operators

$$
\begin{align*}
H & =\sum_{r P} E_{P}\left[N_{r}(P)-\bar{N}_{r}(P)\right] \tag{26}\\
P & =\sum_{r P} P\left[N_{r}(P)-\bar{N}_{r}(P)\right] \tag{27}\\
Q & =-e \sum_{r P}\left[N_{r}(P)+\bar{N}_{r}(P)\right] \tag{28}
\end{align*}
$$

Equation (28) indicates that sign of charge of the antiparticles is similar to sign of charge of the particles if we assume commutation relations, similar to the fact that strong interaction
(in the bag) is always attractive. Equation (27) indicates that momenta of particle and anti particle that move in the same direction have different sign. If under reinterpretation principle spin is not a Lorentz invariant quantity, why we should have simple exclusion principle instead of another developed statistics?

4 Quantum Electrodynamics of Superluminal Particles

In this section, we use a heuristic approach for the calculation of cross sections in strong interactions. Because we have not a theory for interacting tachyonic field theory, we seek to gain insight and a qualitative sense of the calculation for the cross section of strong interactions and tachyonic particles. Thus we study both spinless and spin one half behavior.

In the superluminal Klein-Gordon equation, the mass term is imaginary, but all other parameters, including the Klein-Gordon current $\left[j^{\mu}=(\rho, j)\right]$, are similar to the subluminal ones. To compute the cross sections in the subluminal Dirac and Klein-Gordon equations, we use the flux relation:

$$
\begin{equation*}
F=\left|v_{A}-v_{B}\right| \cdot 2 E_{A} \cdot 2 E_{B}=4\left(\left|p_{A}\right| E_{B}+\left|p_{B}\right| E_{A}=4\left(\left(P_{A} \cdot P_{B}\right)^{2}-m_{A}^{2} m_{B}^{2}\right)\right) \tag{29}
\end{equation*}
$$

It can be shown that, if we use the superluminal energy-momentum relation (2) instead of (1), the above flux relation remains valid. Thus, we can conclude that the cross section formulas for superluminal and subluminal particles have similar expressions.

In the center-of-mass frame, the $A B \rightarrow C D$ process for spinless particles, has a differential cross section of

$$
\begin{equation*}
\left.\frac{d \sigma}{d \Omega}\right|_{c m}=\frac{1}{64 \pi^{2}\left(E_{A}+E_{B}\right)\left(E_{C}+E_{D}\right)} \frac{p_{f}}{p_{i}}|\mathcal{M}|^{2} \quad\left(E_{A}+E_{B}=E_{C}+E_{D}\right) \tag{30}
\end{equation*}
$$

where for the amplitude,

$$
\begin{equation*}
\mathcal{M}=\left(i e\left(p_{A}+p_{C}\right)^{\mu}\right)\left(\frac{g_{\mu \nu}}{q^{2}}\right)\left(i e\left(p_{B}+p_{D}\right)^{\nu}\right) \tag{31}
\end{equation*}
$$

In the superluminal quark model, if quarks exist at the boundary of the bag, then their speeds will approach infinity, their energies will approach zero, and their momenta will reach the minimum value $m_{s} c$ (non-relativistic region). In contrast, at the center of the bag, their speeds will approach the speed of light, and their energies and momenta will approach infinity (relativistic region).

In the subluminal model, the energy of the system in the denominator of (30) can never be less than the mass of the interacting particles; thus, the cross section for the minimum initial energy of the interacting particles cannot increase dramatically, but in the superluminal model, if quarks exist at the boundary of the bag (non-relativistic limit and infinite velocity, which in QCD is called a large distance), their cross sections can diverge because the energy in the denominator of the above equation (30) can approach zero. Thus, the cross section diverges at the boundary, and a quark cannot escape from the bag.

From equation (30), for the very-high-energy subluminal spinless electron muon interaction, we have

$$
\begin{equation*}
\left.\frac{d \sigma}{d \Omega}\right|_{c m}=\frac{\alpha^{2}}{4\left(E_{A}+E_{B}\right)\left(E_{C}+E_{D}\right)}\left(\frac{3+\cos \theta}{1-\cos \theta}\right)^{2} \quad e^{-}+\mu^{-} \rightarrow e^{-}+\mu^{-} \tag{32}
\end{equation*}
$$

where θ is the scattering angle. To obtain this formula, we neglect the mass and equate the energy and momentum in (31). For the superluminal model, the technique is similar and
produces a similar result. Thus, equation (32) is applicable to superluminal spinless particles at very high energies too. With this limit, all interactions between the quarks in hadrons, including QCD and QED interactions, are calculated using one superluminal equation (32), which is also related to the subluminal QED formula. Thus, we falsely conclude that, for short distances, the QCD running coupling constant, which is a function of the energy-momentum of the virtual gluons exchanged between quarks $\left(p_{A}-p_{C}\right)^{2}$, disappears. Moreover, the QCD interactions between subluminal particles are negligible, and as a result, we have only the subluminal QED result and not QCD (asymptotic freedom). However, there is no change in the running coupling constant, which can be concluded based on our conjecture.

Now lets see the general form of the cross sections of tachyonic spin one-half particles. The tachyonic Dirac equation can be written as

$$
\begin{equation*}
H_{s} \psi=c(\alpha . p) \psi+\beta_{s} m_{s} c^{2} \psi=c(\alpha . p) \psi+\beta \gamma_{5} m_{s} c^{2} \psi \tag{33}
\end{equation*}
$$

or, in its abbreviated form, as

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}-\gamma^{5} m\right) \psi(x)=0 \tag{34}
\end{equation*}
$$

The tachyonic Lagrangian and Dirac current are

$$
\begin{gather*}
£_{s}=i \bar{\psi} \gamma^{5} \gamma^{\mu}\left(\partial_{\mu} \psi\right)-m \bar{\psi} \psi \tag{35}\\
J^{\mu}=c\left(\bar{\psi} \gamma^{\mu} \gamma^{5} \psi\right) \tag{36}
\end{gather*}
$$

and the tachyonic Hamiltonian is,

$$
\begin{equation*}
H=H_{s}+H_{I} \tag{37}
\end{equation*}
$$

Its interaction Hamiltonian will be

$$
\begin{equation*}
H_{I}=J^{\mu} A_{\mu} \tag{38}
\end{equation*}
$$

Because (36) is different from the subluminal current, the cross section will be different. We cannot continue because we have not a tachyonic field theory. Nevertheless, the tachyonic propagator is written as [28]

$$
\begin{equation*}
S(p)=\frac{1}{\not p-\gamma^{5}(m+i \epsilon)}=\frac{\not p-\gamma^{5} m}{p^{2}+m^{2}+i \epsilon} \tag{39}
\end{equation*}
$$

Therefore, for quark pair production in $\left(e^{+} e^{-}\right)$collisions, we have

$$
\begin{equation*}
e^{+}(p)+e^{-}\left(p^{\prime}\right) \rightarrow q^{+}(k)+q^{-}\left(k^{\prime}\right) \tag{40}
\end{equation*}
$$

Its amplitude will be

$$
\begin{equation*}
\mathcal{M}=i e_{q} e\left[\bar{u}\left(k^{\prime}\right) \gamma_{\alpha} \gamma_{5} v(k)\right]_{(q)} \frac{1}{\left(p+p^{\prime}\right)^{2}}\left[\bar{v}(p) \gamma^{\alpha} u\left(p^{\prime}\right)\right]_{(e)} \tag{41}
\end{equation*}
$$

We have

$$
\begin{equation*}
\sum_{s p i n}\left[\bar{u}\left(p^{\prime}\right) \gamma^{\mu} v(p)\right]\left[\bar{u}\left(p^{\prime}\right) \gamma^{\nu} v(p)\right]^{*}=4\left(p^{\prime \mu} p^{\nu}+p^{\prime \nu} p^{\mu}-\left(p^{\prime} . p+m_{e}^{2}\right) g^{\mu \nu}\right) \tag{42}
\end{equation*}
$$

The following gamma relations are useful:

$$
\begin{equation*}
\left(\gamma^{5}\right)^{2}=1 \quad \gamma^{5 \dagger}=\gamma^{5} \quad \gamma^{5} \gamma^{\mu}=-\gamma^{\mu} \gamma^{5} \tag{43}
\end{equation*}
$$

By using the above gamma relation we obtain:

$$
\begin{equation*}
\sum_{\text {spin }}\left[\bar{u}\left(k^{\prime}\right) \gamma_{\mu} \gamma_{5} v(k)\right]\left[\bar{u}\left(k^{\prime}\right) \gamma_{\nu} \gamma_{5} v(k)\right]^{*}=4\left(k^{\prime \mu} k^{\nu}+k^{\prime \nu} k^{\mu}-\left(k^{\prime} . k-m_{q}^{2}\right) g_{\mu \nu}\right) \tag{44}
\end{equation*}
$$

Therefore, the amplitude will be

$$
\begin{equation*}
\overline{\mathcal{M}}^{2}=\frac{8 e^{2} e_{q}^{2}}{\left(p+p^{\prime}\right)^{4}}\left[\left(k^{\prime} \cdot p^{\prime}\right)(k \cdot p)+\left(k^{\prime} \cdot p\right)\left(k \cdot p^{\prime}\right)+m_{e}^{2} k \cdot k^{\prime}-m_{q}^{2} p^{\prime} \cdot p-2 m_{e}^{2} m_{q}^{2}\right] \tag{45}
\end{equation*}
$$

This result can be compared with subluminal electron muon scattering:

$$
\begin{equation*}
\overline{\mathcal{M}}^{2}=\frac{8 e^{4}}{\left(p+p^{\prime}\right)^{4}}\left[\left(k^{\prime} \cdot p^{\prime}\right)(k \cdot p)+\left(k^{\prime} \cdot p\right)\left(k \cdot p^{\prime}\right)+m_{e}^{2} k \cdot k^{\prime}+m_{\mu}^{2} p^{\prime} \cdot p+2 m_{e}^{2} m_{\mu}^{2}\right] \tag{46}
\end{equation*}
$$

If the quark mass is on the order of electron mass at the extreme relativistic limit, we ignore the masses of electrons and quarks, and the cross section will be similar to the electron muon scattering cross section.

$$
\begin{equation*}
\left.\frac{d \sigma}{d \Omega}\right|_{c m}=\frac{\alpha^{2} e_{q}^{2}}{4\left(E_{A}+E_{B}\right)\left(E_{C}+E_{D}\right) e^{2}} \frac{p_{f}}{p_{i}}\left(1+\cos ^{2} \theta\right) \tag{47}
\end{equation*}
$$

Here, the superluminal model predicts that the total cross section is one third of the value that we obtained from the traditional QCD calculations of electron to quark annihilation, which considers the color factor. The problem can be solved by what we obtain in the next section, i.e., the fact that quarks are more massive than what traditional QCD predicts. If quark mass (up-down) is much greater than electron mass, then in the annihilation of an electron positron to quark-antiquark pair superluminal scattering, we always have $p_{f}=\sqrt{m_{q}^{2}+E^{2}}>$ $\sqrt{-m_{e}^{2}+E^{2}}=p_{i}$ which increases the differential cross section in (47). Other part of the problem is probably related to the Wilson loop potential V_{S} that we will discuss in next sections. Thus we probably have $E_{A}+E_{B}=E_{C}+E_{D}+V_{S}$ that at asymptotic freedom level of cross section approaches to $E_{A}+E_{B}=E_{C}+E_{D}$ however V_{S} has no role in initial flux and number of final states in cross section and smaller value of $E_{C}+E_{D}$ may increase cross section.

5 Wilson loop and confinement

The Wilson loop was designed to prove confinement in Yang-Mills theory [29]. Yet, it is still an open question whether the Wilson loop in Yang-Mills theory at a finite distance offers an infinite result. Here we derive the interquark potential and contrast it with the standard QCD model and proof that both Wilson integration and interquark potential and cross section diverge beyond the hadron border. We begin with the Wilson integration

$$
\begin{equation*}
<e^{-i e_{q} \oint A_{\mu} d x^{\mu}}>=\exp \left[-e_{q}^{2} \oint d x^{\mu} \oint d y^{\nu} \frac{g_{\mu \nu}}{8 \pi^{2} \varepsilon_{0}\left[(x-y)^{2}-i \epsilon\right]}\right] \tag{48}
\end{equation*}
$$

The exponent can be written as

$$
\begin{align*}
& -2 e_{q}^{2} \int_{C 2} d x^{\mu} \int_{C 4} d y^{\nu} \frac{g_{\mu \nu}}{8 \pi^{2} \varepsilon_{0}\left[(x-y)^{2}-i \epsilon\right]} \\
& -2 e_{q}^{2} \int_{C 1} d x^{\mu} \int_{C 3} d y^{\nu} \frac{g_{\mu \nu}}{8 \pi^{2} \varepsilon_{0}\left[(x-y)^{2}-i \epsilon\right]} \\
& =-2 e_{q}^{2} \int_{0}^{T} d x^{0} \int_{T}^{0} d y^{0} \frac{g_{00}}{8 \pi^{2} \varepsilon_{\circ}\left[\left(x^{0}-y^{0}\right)^{2}-r^{2}-i \epsilon\right]} \\
& -2 e_{q}^{2} \int_{0}^{R} d x^{1} \int_{R}^{0} d y^{1} \frac{g_{11}}{8 \pi^{2} \varepsilon_{\circ}\left[\left(x^{0}-y^{0}\right)^{2}-r^{2}-i \epsilon\right]} \\
& \approx-\frac{e_{q}^{2} T}{4 \pi^{2} \varepsilon_{\circ}} \int_{+\infty}^{-\infty} d y^{0} \frac{g_{00}}{\left[\left(x^{0}-y^{0}\right)^{2}-r^{2}-i \epsilon\right]} \\
& -\frac{e_{q}^{2} R}{c 4 \pi^{2} \varepsilon_{\circ}} \int_{+\infty}^{-\infty} d y^{1} \frac{g_{11}}{\left[\left(x^{0}-y^{0}\right)^{2}-r^{2}-i \epsilon\right]} \\
& =i \frac{e_{q}^{2}}{4 \pi \varepsilon_{0} R} T-i \frac{e_{q}^{2}}{4 \pi \varepsilon_{\circ} T c^{2}} R=-i V_{s} T \tag{49}
\end{align*}
$$

where

$$
\begin{equation*}
r=\left(x^{1}-y^{1}\right) \quad g_{00}=1 \quad g_{01}=g_{10}=0 \quad g_{11}=1 \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
T \beta_{s} c=R \tag{51}
\end{equation*}
$$

In addition,from Wilson-Sommerfeld quantization; we have

$$
\begin{equation*}
\frac{R m_{s} c \beta_{s}}{\sqrt{\beta_{s}^{2}-1}}=\hbar \tag{52}
\end{equation*}
$$

so we obtain

$$
\begin{equation*}
V_{S}=\frac{e_{q}^{2}}{4 \pi \varepsilon_{0} R} \frac{\left(\frac{R m c}{\hbar}\right)^{2}}{1-\left(\frac{R m c}{\hbar}\right)^{2}} \tag{53}
\end{equation*}
$$

The above potential indicates a strong force potential among quarks. At the boundary of the bag or hadron, both the Wilson loop integral and interquark potential diverge because in a very small time period, the quark manages to circumvent the bag and create a completely closed loop in the integration which results in confinement. Thus, quarks must be superluminal, as it is the necessary condition for confinement. The absence of a subluminal model and potential creates a true confinement and a divergence of flux and cross section beyond the hadron surface. From equations (32) or (47) and (5), we can plot the total cross section as a function of the interquark distance

$$
\begin{equation*}
\sigma=\frac{\pi}{3} \frac{e^{4}}{16 \pi^{2}} \frac{R^{2}}{\hbar^{2} c^{2}-m^{2} c^{4} R^{2}} \tag{54}
\end{equation*}
$$

which indicates that at the center, both potential and cross section vanish contrary to the Cornell potential, which predicts a coulombic potential at a small distance.

$$
\begin{equation*}
V_{\text {cornell }}=-\frac{e_{q}^{2}}{4 \pi \varepsilon_{0} R}+b R+f(R) \tag{55}
\end{equation*}
$$

Figure 2: The graph of function $f(x)=\frac{x}{1-x^{2}}$. The above graph describes the interquark potential, where in approximately 1 fm (proton border), the string tension approaches infinity.

There are several differences between what we obtained here and what standard QCD predicts. As we know, the QCD coupling constant will predict approximately a Cornell potential that for a small distance behaves as a coulombic potential, but our graph (Figure 2) is different and the interquark potential will never be zero unless in the center of the bag. In addition, in QCD the flux between quarks approximately remains constant, and at a large distance is not related to the interquark distance; but in our model in around the range of the quark Compton wavelength λ_{q}, both the string tension and cross section diverge completely and approaches infinity. If the conjecture that electromagnetic and strong interaction are the same force is true; in the superluminal model, the string tension is a function of the quarks' mass and electric charge and their distance from the center of the hadron; thus, it is different for each hadron. For a lighter quark mass, the string tension would be reduced. Yet, color factor must predict a universal string tension among all types of quarks. Because in our model, the string tension diverges completely at 1 fm , this model predicts confinement. However, in standard QCD at no distance, quarks will be confined completely and the Wilson loop fails to predict the problem of confinement although the problem of quark confinement at finite distance in Yang-Mills theory and resulting mass gap is still an open question [30].

For the hydrogen atom we have a fine structure constant

$$
\begin{equation*}
\alpha=\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar c} \tag{56}
\end{equation*}
$$

The electron reduced Compton wavelength is $\bar{\lambda}_{e}$ and the electron distance from the nucleus is

$$
\begin{equation*}
r_{n}=n^{2} r_{\circ}=n^{2} \frac{\lambda_{e}}{\alpha}=n^{2} \frac{\lambda_{e}}{2 \pi \alpha} \tag{57}
\end{equation*}
$$

where r_{\circ} is the Bohr radius. The electron energy is

$$
\begin{equation*}
E_{n}=\frac{m_{e} c^{2} \alpha^{2}}{2 n^{2}} \tag{58}
\end{equation*}
$$

We want to create a similar equation for quarks. The quark Compton wavelength is λ_{q}. We know that in nucleons (for up and down quarks) the strong interaction strength is approximately $\left(\frac{1}{\alpha}\right)$ times greater than the electromagnetic strength so if in equation (53) we choose

$$
\begin{equation*}
\frac{V_{S}\left(R=R_{\circ}\right)}{V_{E}}=\frac{1}{\alpha} \tag{59}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{E}=\frac{e_{q}^{2}}{4 \pi \varepsilon_{0} R} \tag{60}
\end{equation*}
$$

then we obtain

$$
\begin{equation*}
R_{\circ}=\frac{1}{\sqrt{1+\alpha}} \lambda_{q}=\frac{1}{\sqrt{1+\alpha}} \frac{\hbar}{m_{q} c} \tag{61}
\end{equation*}
$$

and R_{\circ} is a true hadron boundary. if in (53) the quark moves beyond R_{\circ} we have a confinement

$$
\begin{equation*}
V_{S}\left(R=\lambda_{q}=\frac{\hbar}{m_{q} c}\right)=\infty \tag{62}
\end{equation*}
$$

in addition,

$$
\begin{equation*}
V_{S}\left(R=R_{\circ}\right)=\sqrt{\alpha+1} m_{q} c^{2}\left(\frac{e_{q}^{2}}{e^{2}}\right) \tag{63}
\end{equation*}
$$

Because a strong force is actually an electromagnetic force between tachyons, we cannot define the V_{E} between superluminal particles, but we can say

$$
\begin{equation*}
V_{E}\left(R=R_{\circ}\right)=\alpha \sqrt{\alpha+1} m_{q} c^{2}\left(\frac{e_{q}^{2}}{e^{2}}\right) \tag{64}
\end{equation*}
$$

and from (5) we have

$$
\begin{equation*}
E\left(R=R_{\circ}\right)=\sqrt{\alpha} m_{q} c^{2} \approx 0.085 m_{q} c^{2} \tag{65}
\end{equation*}
$$

Thus, the quark momentum is

$$
\begin{equation*}
p\left(R=R_{\circ}\right)=\sqrt{1+\alpha} m_{q} c \tag{66}
\end{equation*}
$$

and its velocity is

$$
\begin{equation*}
v\left(R=R_{\circ}\right)=c \sqrt{1+\frac{1}{\alpha}} \tag{67}
\end{equation*}
$$

Equation (61) indicates that the radius of the bag is approximately the Compton wavelength of the quark. In addition, (65) indicates that the energy of quarks is very small in comparison with their mass. As well, quarks are very heavy particles. This fact and superluminal motion may affect quark magnetic moment (probably $\mu=\frac{e_{q} c^{2} \hbar}{E}$ in Bohr model). There is a strange point in the above derivation. It seems that in equation (63) the V_{S} which is the total energy derived from the strong interaction is proportional to the quark momentum $|\mathrm{p}|$ (equation(66)) and is much greater than the total energy of the quark (65)

$$
\begin{equation*}
V_{S}\left(R=R_{\circ}\right)=\left|p\left(R=R_{\circ}\right)\right| c \frac{e_{q}^{2}}{e^{2}} \gg E\left(R=R_{\circ}\right) \tag{68}
\end{equation*}
$$

It is not clear whether we must consider the mass of the hadron as proportional to its strong interaction potential V_{S} or the quark total energy E and probably both factors contribute to hadron mass. In addition, if we suppose that the mass of the hadrons in first quark generation depends more on V_{S}, we can see that in a stable hadron like any stable system, the quarks have a very small relativistic energy (65) and the quarks' mass (up and down) is much greater than what we obtained from a non-abelian formulation of quantum chromodynamics. Actually, equation (63) indicates that quark mass is on the order of hadron mass (see (54) too).

6 Possible experimental results

Local strong parity violation in heavy-ion collision: Superluminal motion of quarks must be detectable in their interactions with magnetic field. Apart from effect of huge quark mass (up and down) and their superluminal motion on quark magnetic moment, because $v>c$ quarks must interact much stronger than what is expected with magnetic field. The strong magnetic field that may be produced in non-central heavy ion collision leads to chiral magnetic effect [31-33], i.e., creation of electric current of quarks and charge separation which is approximately parallel to created magnetic field and perpendicular to reaction plane. As a result of this magnetic field there will be a parity violation. This asymmetry has been detected by STAR Collaboration and other groups $[34-36]$ however it is estimated that the predicted asymmetry from standard QCD must be several order of magnitude smaller than observed signal in STAR experiment[37].

In QCD, we assume that existence of instanton solution [38-40], will result in imbalance among amount of left handed $J_{L}=J-J_{5}$ and right handed $J_{R}=J+J_{5}$ quarks that leads to for example pionic separation $+\pi$ and $-\pi$ in contrast to reaction plan which is interpreted as P and $C P$ violation and electric charge separation and chiral magnetic effect.

In superluminal model, we must note that similar to story of superluminal neutrino, chirality is considered as an fixed Lorentz invariant quantum numbers. All neutrino are left handed. Can intrinsic chirality of quarks be related to chiral magnetic effect?

In addition in superluminal model because all quarks have imaginary mass, up and down quarks does not move near speed of light as chiral particles and we expect that chiral magnetic effect must be observed in next generation of quarks like strange and charm.

Other interpretation of chiral magnetic effect is to assume that quarks act like magnetic monopole. In other words free quarks either move in the direction of magnetic field or in opposite direction. Our problem in this interpretation is that magnetic field do not work on particles.

We must note to the fact that (subluminal) quarks in fact have no electric charge and it is superluminal motion of quarks that create electric flux that this flux is quantized. On the other hand this superluminal motion create a polar electric field. Unlike electric current, electric charge is not Lorentz invariant for tachyons and in some reference frame one side of proton must have negative charge. A quantum number as electric charge does not exists for superluminal quarks. For maxwell equation we have

$$
\begin{gather*}
\nabla \times B=\mu_{0} \varepsilon_{0} \frac{\partial E}{\partial t} \tag{69}\\
\oint B . d l=\mu_{0} \varepsilon_{0} \frac{d}{d t} \oiint E . d S \tag{70}\\
F=\frac{q_{m}}{\mu_{0}} B=\frac{d P}{d t} \tag{71}\\
\oint P . d l=\varepsilon_{0} q_{m} \oiint E . d S \tag{72}\\
L=n h=q_{m} q_{e} \tag{73}
\end{gather*}
$$

Now contrast this with dirac monopole that is a conclusion on the base of phase of wave function[41]

$$
\begin{equation*}
q_{m} q_{e}=2 \pi \hbar Z \tag{74}
\end{equation*}
$$

This simply means that since always quark angular momentum and quark magnetic charge are quantized, electric field of the bag is constant and quantized too. Remember that equation (36) if truly describe superluminal motion is an axial current and is even under parity transformation. And maybe it justify that why produced electric field must be a polar vector.

In classical electrodynamic, produced magnetic field is function of electric charge and speed of electron. On the other hand for quarks, strong and nuclear force are related to energy (not velocity) of quarks and Wilson-Sommerfeld rule however produced electric field is related to angular momentum of quark. This means that quark mass play role in both produced strong field and produced electric field. By some degree we may interpret angular momentum as curvature in momentum trajectory or maybe as acceleration. In summary there is deeper geometric connection among produced electric field and strong field and spin statistics of quarks that is subject of GUT which means unlike $\mathrm{SU}(3)$ we may control strong field with help of electromagnetic field or potential or geometry. One may interpret produced magnetic field of subliminal particles as change in produced electric field flux and one may interpret it as Biot-Savart law.

Are neutrino tachyon too: We know that in charged weak interaction both up quark and down quarks are left handed. In neutral weak interaction quark has mixed handedness. Some theories predicted right handed W^{\prime} bosons but $W^{ \pm}$bosons only couple to left-handed quarks and lepton and no right handed W^{\prime} bosons has observed $\left(q+\overline{q^{\prime}} \nrightarrow W^{\prime}\right)$. Thus all charged vector bosons like quarks in charged weak interaction and all neutrino are left handed.

Consider π^{+}charged weak decay. If u quark and \bar{d} quark both have positive energy and positive momenta in the direction of their velocity, W^{+}will be superluminal and it is impossible that it decay to two subluminal particles. Thus either neutrino or muon must be tachyon. In adition in this model we have conservation of helicity at both quark and leptonic vertex.

Assume that in some reference frame muon change direction of its velocity. It will have adverse helicity. In that reference frame both W boson and neutrino will change energy sign too but with unchanged helicity.

If u quark has positive energy and positive momentum in direction of its velocity and \bar{d} has negative energy and negative momentum in the direction of its velocity, then W^{+}can be subluminal but with for example positive energy. Paradox is that for \bar{u} and d in feynman diagram we have subluminal W^{-}with negative energy that is impossible. Other problem is that in this model for quark vertex we have not conservation of helicity. Thus if quarks are tachyon, maybe neutrino and W boson must be tachyon too. Note that we considered traditional feynman diagram that related energy of tachyon to energy of tardyon although we cannot certainly express that tachyon gravitational mass is related to its energy or its momentum or its angular momenta. If proton and neutron are tachyon their gravitational mass is more related to their momenta not their binding energy.

Since we must be able to read feynman diagram from both left to right and right to left a virtual particle like W boson must be space like. It cannot be timelike particle because depending how we look at diagram some times it must have negative and some times positive energy. When Z boson is exchanged among leptons this scenario do not create a problem and Z boson is not a tachyon. On the other hand when Z boson get exchanged among quarks, both quark in same vertex cannot have positive energy. u and \bar{d} have positive energy in charged weak interaction but u has positive energy and \bar{u} negative energy in neutral weak interaction.

Angular distribution of two jet events: If quarks (up and down) are extremely massive, we cannot easily apply equation (47) as an approximation. the extended result is

$$
\begin{equation*}
\left.\frac{d \sigma}{d \Omega}\right|_{c m}=\frac{\alpha^{2} e_{q}^{2}}{4\left(E_{A}+E_{B}\right)\left(E_{C}+E_{D}\right) e^{2}} \frac{p_{f}}{p_{i}}\left(1-\frac{m_{q}^{2}}{E^{2}}+\left(1+\frac{m_{q}^{2}}{E^{2}}\right) \cos ^{2} \theta\right) \tag{75}
\end{equation*}
$$

The rates of variation of the above differential cross sections with respect to the scattering angle θ, i.e., $1+\lambda \cos ^{2} \theta$ are different and must affect experimental results of two jet events. At low energy $E_{c m} \leqslant 4.8 \mathrm{Gev}$ there is higher sphericity and less jet like behavior but it seems that λ is very small [42,43]. At $E_{c m}=7.4 \frac{G e v}{c^{2}}$ the observed jet axis indicated $\lambda=0.45$ and $\lambda=0.50$ but SLAC-LBL Collaboration used Monte Carlo simulation to get higher values $\lambda=0.78, \lambda=0.97$ [44, 45]. Even small difference of λ from 1 creates great mass. For $\lambda=0.78$ at $E_{c m}=7.4 \mathrm{Gev}$ we obtain $\left|<m_{q}>\right|=1.3 \mathrm{Gev}$. Justifying two jet events on the base of perturbative standard QCD for massive quarks contradicts asymptotic freedom, however only measurement of λ at different energies can reveal its true nature. PLUTO Collaboration obtained $\lambda=0.76$ and $\lambda=1.63$ at $E_{c m}=7.7$ and upsilon resonance $E_{c m}=9.4$ respectively [46]. The rapid change of λ at upsilon resonance indicates that λ is related to (bottom) quark mass in differential cross section resonance. However at $E_{c m}=13$ and $E_{c m}=17 \mathrm{Gev}$ again the value of $\lambda=1.7$ was suggested by TASSO Collaboration [47]. Finally $\lambda \neq 1$ is observed in drell yan angular distribution too but QCD usually offers more justifications for this anomaly in drell yan process [48]. Usually $\lambda<1$ in drell yan process but at bjorken scalling $x=1$ fast decrese of λ happens. The argument that offered in reference regarding bound state effect or V_{S} can be correct for large bjorken scaling but another reason for $\lambda \neq 1$ is due to huge quark mass. In fact V_{S} has different rule in cross section from amplitude or angular distribution. However at $x=1$ in drell yan process we have an increase in p_{i} of (75) and we expect that cross section fall at $x=1$ in bjorken scaling [49-51].

It seems that naive applying concept of antiparticles for quarks contradicts experimental results $\lambda<1$ of two jet event. Change of sign of m^{2} in (45) is vulnerable to both $m \rightarrow$ $i m$ and $v(k) \rightarrow u(k)$ or $v(k) \rightarrow v(-k)$. Maybe it is related to the fact that we have only attractive strong force and we must be careful in using notation of antiparticle in calculating cross sections. Probably a similar scenario may affect noncentral collision and it tests hybrid of chromomagnetic and magnetic effects simultaneously[52]. Put in other words, for deriving equation (75) from (45) we assumed that electron and positron pair with energy momentum $p=(E, P), p^{\prime}=(E,-P)$ were annihilated to quark anti-quark pair with energy momentum $k=(E, K)$ and $k^{\prime}=(E,-K)$ that move in opposite directions. However from reinterpretation principle anti-quark must have negative energy and also negative momentum in the direction of its velocity. As a result we would have $k=(E, K)$ and $k^{\prime}=(-E, K)$ for quark anti-quark pair respectively. This modification fixes the result $\lambda<1$ of two jet event. But we will lose the conservation of energy momentum in this process unless a third particle i.e., a gluon save it. In fact it is observed that above $E_{c m}=13 \frac{G e v}{c^{2}}$, the result of electron positron annihilation to hadrons is a planar three jet events that consist of a slim and a fat jet not naive two jet events $[53,54]$. The fat jet itself contains two collinear jets. Yet, QCD predicts that such a gluon jet is very difficult to detect if it exist due to the fact that it spread much more and less jetlike than a quark jet[55].

Cherenkov radiation: As we can see Cherenkov radiation increases V_{S} in (53) and seems to be forbidden. In addition due to increase in V_{S} momentum can not decrease below a limit and tachyonic condensation seems to be forbidden too. Nevertheless tachyonic condensation is more related to scalar fields with imaginary mass. Unlike predictions [56, 57], no Cherenkov radiation is observed in hadrons. However at high energy for partons like deep inelastic electron proton scattering we must have gluon radiation. In fact there exist some types of Cherenkov gluons radiation in quark-gluon plasma and heavy ion collisions but nuclear index of refraction and other justifications are assumed to be responsible for observed radiation[58-61]. In superluminal
model $n=1$ Cherenkov angle can be estimated as

$$
\begin{equation*}
\cos \theta \approx \frac{1}{\beta n}=\frac{1}{\sqrt{1+\frac{m_{s}^{2} c^{4}}{E^{2}}}} \tag{76}
\end{equation*}
$$

where m_{s} is parton mass. One can interpret β as index of refraction in subluminal dielectric models. Similar behavior of dispersion relations has obtained in references. However the Cherenkov energy loss rate from dielectric models seems to be in contradiction with experiments.

From relativistic addition of velocity, if two particle move at speeds of $10 c$ and $-10 c$ and boosted at 0.99 speed of light, they will have velocities of $1.008 c$ and $1.012 c$ respectively. We can see how superluminal quarks and gluons at positive or negative velocities in boosted hadrons approximately have same velocity and Cherenkov radiation angle. Thus all random emission of quarks at different angles will be directed at Cherenkov radiation angle.

Hadron mass gap: As another sign in favor of the superluminal model for quarks, we can consider the great difference between the mass of vector mesons and of pseudoscalar mesons. For instance $\pi^{+}(u \bar{d})=140, \rho^{+}(u \bar{d})=775, K^{+}(u \bar{s})=493, K^{*+}(u \bar{s})=892 \frac{M e v}{c^{2}}$. In the subluminal model, spin interaction (fine structure splitting) can be considered a perturbation (order of α^{2}) to the principal Hamiltonian (because electron speed is of order $\frac{v}{c}=\alpha$). Yet the fact that the mass of vector mesons is much greater than that of the pseudoscalar mesons with the same quark contents can be justified only by the superluminal motion of quarks and its effect on the quarks' spin-spin or spin-orbit interaction. In fact spin-spin or spin-orbit coupling energy is of order of strong interaction and greater than electromagnetic potential $\frac{V_{B}}{V_{E}} \approx \frac{v^{2}}{c^{2}}$. Logically, the Thomas precession and subluminal motion of electric charges cannot account for such a great Hamiltonian and the energy difference due to the different quark's spin state in vector and pseudoscalar mesons. Note that for great quark masses which can be concluded from angular distribution of two jet event, Chromomagnetic Mass Splitting fails to predict meson mass gap.

On the other hand for next generation of quarks, the ratio of mass gap to meson mass among pseudoscalar and vector meson is very smaller (for instance $B_{s}^{0}(s \bar{b})=5366, B_{s}^{* 0}(s \bar{b})=5415$, $\frac{\Delta E}{E}=0.01$). Maybe this means that the speed of next generation of quarks in the bag is considerably different (slower) from first generation. Does jump in the angular distribution at upsion resonance indicates that buttom quark has a tiny mass in contrast to upsilon mass? If that guess is true heavy mesons made of next generation quarks have more energetic quarks (thus less stable system apart from effects of CKM matrix) and V_{S} is not the main indicator of their mass. Why we have a large top quark yukawa coupling? It seems that what in non abelian model is called QCD binding energy or gluon binding energy is actually Wilson loop potential V_{S} in the superluminal model and what QCD considers as the mass of quarks is actually relativistic energy of quarks E in the superluminal model (equation (5)).

There is a similar question about meson mass; if quark mass up and down are negligible why we must observe different masses among chiral partners? For example $J^{P C}=1^{--}$has mass of $m_{\rho}=770 \mathrm{Mev}$ while 1^{++}has mass of $m_{a 1}=1260 \mathrm{Mev}$ [62]. In the superluminal model a_{1} has angular momentum of 1 while ρ has angular momentum of 0 and this fact necessarily must affect mass of hadrons composed of tachyonic quarks. Is chiral symmetry breaking a good excuse for explaining huge hadron mass composed of up and down quark?

Effect of superluminal motion on quark helicity, Nucleon spin crisis: In an experiment first conducted by European Muon Collaboration and later by other groups they suggested that quarks spin contribution cannot account for observed proton spin and quarks carry only a small part of the proton spin[63-65]. Approximately one third of proton spin is
assumed to be related to quark spin, one third is related to quark angular momentum and one third to gluon [66].

Tachyons have invariant chirality under lorentz transformation. Assume that in proton, two quarks are right handed and the third is left handed. Thus we conclude that proton like neutrino must always have fixed handedness which is incorrect assumption.

Difference between spin and angular momentum is that under reinterpretation principle sign of spin for tachyons depends on observer reference frame, however angular momentum behave more complicated and act like helicity. It is obvious that sign of momentum unlike energy does not depends on observer reference frame and momentum for tachyons behave like Energy for tardyons [3].

$$
\begin{gather*}
E^{\prime}=\frac{E-c p \cdot \beta}{\sqrt{1-\beta^{2}}} \tag{77}\\
p_{x}^{\prime}=\frac{P_{x}-E \beta_{x} / c}{\sqrt{1-\beta_{x}^{2}}} \quad \beta_{y}=0 \quad \beta_{z}=0 \tag{78}\\
P^{\prime}=P+(\gamma-1) \frac{P \cdot u u}{u^{2}}-\frac{\gamma E u}{c^{2}} \tag{79}\\
\gamma=\left(1-\frac{u^{2}}{c^{2}}\right)^{-1 / 2} \tag{80}
\end{gather*}
$$

Because $r \times u . u=0$, in equation (79) it is clear that second term and third term has no contribution in projection of boosted angular momentum $L^{\prime}=r^{\prime} \times P^{\prime}$ in the direction of boost velocity u.

$$
\begin{gather*}
r=r^{\prime} \tag{81}\\
L^{\prime}(u) \cdot \hat{u}=r^{\prime} \times P^{\prime}(u) . \hat{u}=r \times P . \hat{u}=L . \hat{u} \tag{82}
\end{gather*}
$$

In summary for angular momentum $L=L_{\|}+L_{\perp}$ of tardyons under Lorentz transformation we have

$$
\begin{gather*}
L_{\|}^{\prime}=L_{\|} \tag{83}\\
L_{\perp}^{\prime}=\gamma(u)\left(L_{\perp}+u \times N\right) \tag{84}
\end{gather*}
$$

where N is Dynamic mass moment

$$
\begin{equation*}
N=\frac{E r}{c^{2}}-P t \tag{85}
\end{equation*}
$$

Since energy momentum four vector Lorentz transformation for tachyons is similar to tardyons, above derivations are valid for tachyons too. Thus from (83) sign of projection of angular momentum for both tachyon and tardyons onto the direction of boost velocity u is NOT Lorentz invariant because u can be both positive and negative and sign of $L_{\|}$for tachyons does not act like sign of $S_{\|}$and nature of Helicity under reinterpretation principle. For all value of $u, L_{\|}^{\prime}$ does not change sign however for superluminal particles at some value of $u, S_{\|}^{\prime}$ change sign and Helicity is a conserved quantity. As a result seemingly for superluminal particles sign of projection of angular momentum vector onto the direction of velocity unlike Helicity is not a Lorentz invariant quantity and act like spin.

As we can see tachyonic quarks angular momentum and tardyonic proton spin behave in the same way under Lorentz transformation. However it is completely strange that spin of tachyon change sign under reinterpretation principle but angular momentum of tachyon does not change sign. We see that speaking about quarks angular momentum or gluon Helicity in subluminal model for resolving nucleon spin crisis is not so surprising.
$C P$ violation in standard model: Due to reinterpretation principle, superluminal antiparticles must have negative energy. This means that mesons and baryons that made from tachyonic quarks differ from their antiparticles that has opposite quark contents and $C P$ symmetry is not the exact symmetry of hadrons. If internal energy of quarks affect decay of hadrons then hadrons are not completely similar to their antiparticles and $C P$ violation may be detectable in their decays. Not only an internal energy difference exist among decaying particles from their antiparticles but also it exist among decaying products from their antiparticles and as a result $C P$ violation can be observed in hadrons due to asymmetry in decay[67]. $C P$ violation is observed in all neutral mesons including $K^{0}(d \bar{s})[68], B_{s}^{0}(s \bar{b})[69], D^{0}(c \bar{u})[70,71]$ and $B^{0}(d \bar{b})[72,79]$. Because energy of quarks in contrast to confinement potential is small $C P$ violation must be difficult to detect especially in experiment of baryons that baryon number must be conserved. However due to huge energy of bottom quark, decay asymmetry in baryons made from combination of third generation and first generation of quark must be detectable. $C P$ violation is observed in $\Lambda_{b}^{0}(u d b)[74]$. It has also been observed in $B^{+}(u \bar{b})[75,76]$. Thus we expect that hadrons containing bottom quarks or even charm quarks show higher degree of asymmetry in $C P$ conservation. $C P$ violation has no explanation in standard model except as input parameters of CKM matrix[77]. Unusual $C P$ violation different from CKM matrix prediction in B mesons and D mesons and rare decays are subject of new physics in standard model.

If energy of quarks differs from anti-quarks there must be a mass difference among mesons and their anti particles. Result of $C P T$ invariance is equality of mass and lifetime among particle and anti-particle. No strong evidence for $C P T$ violation exist in hadrons which means that mass of hadrons and their antiparticle are the same with good approximation[78]. This is a paradoxical issue here because although $C P$ is violated in hadrons but $C P T$ has not. At least two scenarios exist.

In first scenario because quark and anti-quark in meson must have opposite velocity thus they must have same sign momentum. A gluon is needed with opposite momentum in contrast to quarks momentum for conservation of momentum in hadron reference frame. Probably this gluon has energy too. If the gluon is space like and it is confined thus it can have negative energy in some Lorentz transformed reference frame and obey reinterpretation principle like all tachyons. When we interchange a hadron with anti hadron and its quark contents with their anti quark reasonably a gluon that has positive (negative) energy must be interchanged with a gluon that has negative (positive) energy. If we assume that mass of hadron is determined from V_{S}, energy of quarks and gluon energy then we can assume that V_{S} for hadron and anti hadron is the same however quarks and gluon energy must reverse sign. Thus mass of a meson and its antiparticle are equal if and only if summation of the energy of the gluon and quarks is zero or very close to zero in such a way that $C P T$ is undetectable in mesons. This is weird because although summation of three momentum is zero but no reason exist that gluon energy be exactly as much as difference between quark and anti quark in a meson such as Kaon $K^{0}(d \bar{s})$. This scenario express that mass of all mesons exactly is determined from V_{S}.

Second scenario says that mass of hadrons made from confined quarks are determined from momentum of quarks not V_{S} and not quarks energies or maybe from quark angular momentum. Although internal quark energies play rule in their decays and $C P$ violation but hadrons have similar mass to their antiparticles. From comparing mass of pseudoscalar with their vector
meson for mesons containing bottom or charm quarks we can see that bottom and charm quarks have speed near the speed of light and these quarks are extremely relativistic. If speed of quarks is near the speed of light then from Wilson loop integration, V_{S} is very small in contrast to quarks mass. It is near zero as can be seen from equation (49). If we assume that meson mass is merely determined from Wilson loop potential V_{S}, that means that bottom and charm quark are extremely much massive than even QCD predicts. This is problematic. On the other hand Energy of bottom or charm quark must be even very greater than quark mass. As a result $C P$ violation in these mesons must be very stronger than what is observed in experiments. If Meson mass is proportional to quark momentum such problems do not exist. A small mass is needed for bottom and charm quarks. Thus maybe this option is better choice although it sounds strange that mass of hadrons is proportional to confined quarks momentum.

We can assume that only the gluon that has positive energy will accompany the anti-quark with negative energy and this scenario do not happens for quarks with positive energy. In addition the both energy and momentum of this gluon always must be twice the energy and momentum of anti-quark in such a way that a meson should have equal mass with its antiparticle. But in this picture the gluon that exist in the specific meson such as Kaon $K^{0}(d \bar{s})$ and probably accompany \bar{s} anti-quark must be different from the gluon that accompany \bar{d} in $\overline{K^{0}}(\bar{d} s)$. Thus we lose the symmetry in this case. Another question is that why gluons accompany an anti baryons made from three anti-quark but no gluon exist in a baryon made from three quarks. In any scenario we must be careful that do not neutralize $C P$ violation while preserve $C P T$ symmetry.

One conclusion from principle of equivalence and particles with negative energy is interesting. It seems that principle of equivalence makes some discrimination among gravitational mass of a particle and its relativistic energy or mass. If principle of equivalence is valid, it means that probably there exist a geometric model of gravitation in such a way that trajectory of test particles is independent of their mass and merely is determined from their direction of motion and magnitude of their velocities in space-time. Thus we expect that geometric model does not discriminate among a quark with positive energy that has a specific trajectory at microscopic level with its anti-quark if it has same trajectory and speed but with negative energy. Thus from a geometric model seemingly anti-quarks must experience attractive (or repulsive) gravitation in the same manner that quarks experience. This picture probably is in contradiction with Newton third law because we expect that anti-quark with negative energy create a gravitational field with negative sign in contrast to gravitational field produced by a quark. Probably tachyonic field theory creates some problems, although merit of these problems is that they appear at fundamental level and issue in nuclear physics and may help to underestimating of problems in other fields.

7 Discussion and conclusion

As we know, lattice gauge theory (Lattice QCD) is the ideal tool for performing precise calculations on a low energy scale in quantum chromodynamics. On the other hand, performing exact calculations with a minimum lattice distance requires supercomputing power, while in the above, we obtained the interquark potential in a simple manner. For larger couplings, smaller spacing and more powerful computers are needed which means computers never manage to solve QCD at singular values. A theory should be perfect (for example contrast Geocentric model with Copernican heliocentrism model or relativity with Aether theories). In other words, intuitively, if a theory is formulated correctly using appropriate and correct assumptions and formulas, that theory should never need the calculational power of such strong machines. If a theory requires such high-caliber equipment, beyond the scope of paper and pencil, this only
means that the formulation of the theory is incorrect and inappropriate. Our formula should provide maximum information but minimum complication regarding our system. If we consider a tachyonic model of strong interactions instead of the traditional non-abelian theory, we obtain the ability to calculate and depict all quark-quark interactions such as interquark potentials with maximum precision. This is similar to the case in quantum electrodynamics where all types of cross sections can be calculated in principle without the help of a computer; thus, we can perform similar calculations for strong interactions.

Some people such as Einstein, Podolsky and Rosen considered quantum mechanics to be an incomplete and raw picture of physics because it did not provide [81] the exact and maximum information that its predecessor, classical mechanics, could provide [82]. In another example, we would point out the large discrepancy in gravitational theory-between what our theory, i.e., general relativity predicts, and what our data indicates, e.g., in rotation galaxy curves and the cosmological constant problem-which seeks to fix the error by introducing hypothetical yet unobserved phenomena such as dark mass and dark energy.

An important point regarding strong interaction is the fact that there is no gluon-gluon interaction term and no non-abelian behavior. Thus, strong interaction is a linear theory in principle and the superluminal motion of quarks creates strange specifications of strong force. Therefore, among the three interactions, only gravitation seemingly has a non-abelian behavior and graviton-graviton interaction. In any theory, a non-abelian characteristic creates a singularity in the theory for which we cannot perform calculations at the singular point. The singularity in QCD is the low energy region of interaction. If we consider the superluminal model, we are able to predict all phenomena at the singular point. A similar point in Einstein's field equations is that they are nonlinear partial differential equations too. Non-linear partial differential equations have non-exact solutions. Furthermore, the theory has singularity in the Schwarzschild radius and we hope the theory of quantum gravity provides a solution at this scale. Most probably in physics, singularities are result of inappropriate formulation of the system and all singular points must be, in principle, calculable at any given precision. Here, another question arises. If we consider quantum mechanics as an inappropriate formulation of reality, is the uncertainty principle (resulted from un commutative relation) its singularity?

Theory	Incalculable singularity
QCD SU(3)	Low energy limit
General Relativity	Schwarzschild radius
Quantum mechanics	Uncertainty principle

Now lets pay attention about many immature aspects and raw formulation of tachyonic dynamics. We saw that unlike the process in the Higgs mechanism that creates real mass from the positive unstable potential term in the Lagrangian, tachyonic condensation is not observed in hadrons and hadrons are stable composites. Is there a theoretical reason for suppression of tachyonic condensation and cherenkov radiation? No cherenkov radiation exists for quarks. Quarks do not obey the Pauli exclusion principle, which is a fact that is not predicted in the tachyonic field theory of spin one-half particles and we do not undrestand its basics. Generally speaking, superluminal particles do not obey the traditional laws of quantum mechanics. We do not know why the electromagnetic field? among superluminal particles is always attractive and as a postulate why the net charge of hadrons must be an integer. Is attractive force related to spin statistic of tachyons? Tacyonic field theory must explain why we do not have a single tachyon. Quantum field theory for superluminal particles needs significant review. If neutrino are not tachyon, appropriate tachyonic field theory must explain the observed phenomena in hadrons not neutrinos. As long as we have not derived appropriate tachyonic field theory,
quarks statistic, and deeper connection among strong and electromagnetic force, we cannot understand and control nuclear force.

As we can see due to specifications of superluminal velocity, velocity of quarks, direction of their motion, negative or positive energy of quarks, their electric charge, spin, chirality and especially quarks statistics that currently is unknown for us, play key roles in quarks interactions. It is interesting that nuclear NN potential has a tensor component with strong repulsive core[83]. Certainly tensor characteristic of nuclear interaction is related to superluminal motion of quarks and nuclear force is a complicated force. For understanding nuclear force we must be able to exactly visualize how superluminal quarks exchanged among nucleons.

Unlike subliminal case, what can be the effect of relative direction of motion of two (adjacent or far) quarks from two nucleon on the attractive or repulsive sign of force among them? Core and mystery of nuclear force and potential is Wilson-Sommerfeld rule.

Returning to problems of tachyonic field theory, in spite of the troublesome nature of tachyonic field theory, the superluminal model offers a united model for strong interaction, but the $\mathrm{SU}(3)$ model does not have this advantage. In other words in standard QCD, we have different models and effective theories to justify a specific result and usually each model offers appropriate predictions for a specific spectrum of experimental results; and in the range of energies where we can simultaneously use other models, we usually face contradictory results which means that the foundations of our models are inappropriate.

For example both QCD sum rules and MIT bag model are among non perturbative tools and MIT bag model is based on the assumptions of both the subluminality of Dirac current and the confinement of this current. Yet, on the other hand, the predicted results and parameters, such as vacuum energy and pressure of hadrons from these two theories, are contradictory to each other. In addition, due to the fact that rigid boundary condition can leads to spurious quark motions, the MIT bag model is not Lorentz invariant[84]. Other nucleon and bag models are not ideal models too. Bulks of these models exist. We offer different models at different energies and seek to close the gap between them, and we are faced with contradiction. The reason is that no subluminal model can create true confinement and an appropriate model of strong interaction. Thus, we logically face several errors in the results derived from these different methods designed to solve the system. Simply speaking nonabelian model and its potential contradict Wilson-Sommerfeld quantization and quantum mechanics because we consider a classical potential for our system without notice. Only coulombic potential agree with the structure of quantum mechanics. We should not use classical justification to express why electrons do not fall into the nucleus. $\mathrm{SU}(3)$ model naively express that at finite distance due to huge potential we have zero kinetic energy and thus zero momentum but this picture contradict quantum mechanics and Wilson-Sommerfeld quantization. Another question about the $\mathrm{SU}(3)$ model is that if this model is the true model of confinement, why has no glue-ball yet been observed? However, we have achieved energies in the range of a hypothetical glue ball and only weak possible candidates exist[85, 86]. Thus, although the $\mathrm{SU}(3)$ model offers some approximations of true strong interactions and mimics the superluminal model, there is no strong experimental evidence to confirm the color concept.

Appropriate theory must culminate to subsequent technologies in few years such as what happened from formulation of Maxwell equations that immediately followed by Heinrich Hertz experiments and also what achieved immediately after subluminal quantum mechanics revolution. Some times instead of fascination by formulation, it is better to ask that does many (seemingly logical and beautiful) theories and formulations ranging from quantum chromodynamics to general relativity have this characteristics and for example how much our ability in controlling of nuclear force after a century has increased from era of Yukawa model of nuclear interaction as first thermonuclear interactions returns to that era. For example explaining
phenomena by General relativity and dark mass and dark energy is one subject and deriving technology from General relativity is another subject. Superluminal model of strong interaction is not merely a model of confinement, it propose superluminal quantum mechanics and many years of new struggles with superluminal quantum mechanics. Note that many theoretical aspects of superluminal quantum mechanics as half of quantum mechanics are unknown for us and probably if we consider this theory as a serious one, we may certainly repeat same struggles (and technological breakthrough) that we had for undrestanding of subluminal quantum mechanics. Such scenario did not repeated for QCD. We do not deal with superluminal quarks as a model of strong interaction, we face superluminal quantum mechanics and a long story and formulation including its philosophical and technical aspects instead of QCD similar to what happened for subluminal quantum mechanics.

It is interesting that we use bulk of corrections in Phenomenology to justify data in QCD while such asymmetries do not exist in QED to adjust experimental results with theory. The fact that first generation quark mass is imaginary and is much greater than what the $\operatorname{SU}(3)$ model predicts must be detectable in all types of scatterings, (rare) decays and cross section formulations (provided we develop a successful interacting tachyonic field theory). Although non abelian and superluminal model resemble each others at high energies but they differ at low energy values. If further experiments on cross sections prove that $\mathrm{SU}(3)$ is inappropriate model for strong interaction, it would seem that we must review other concepts such as the unsolved strong CP problem, axions, and other concepts that QCD and grand unified theories predict such as proton mass decay. Up to this time, no direct evidence for axion and proton mass decay has been observed and possible detections rely on interpreting astronomical observations[87-89]. Even if superluminal quantum mechanics is an incorrect model of strong interaction it is very suspicious that it offers similar results to those of QCD. Why nature is hypocritical? If quarks are really superluminal and we ignore it, physics is doomed to remain in trap of QCD and deadend of unifications for centuries. The problem is not merely quantum mechanics mystery and unification of forces; after so many decades we are still unable to achieve fusion energy.

8 Acknowledgements

Author is under mind control reading, brain and nervous system destruction by alien order, compromise of at least pentagon and $\operatorname{Iran}[90]$ as unified field theory is about identity and consciousness.

9 Appendix

In the appendix, we solve the Dirac equation for the superluminal hydrogen atom. We mimic the method from reference [24]. In this solution of imaginary mass Dirac equation we obtain imaginary value for energy and thus we do not obtain quantized energy levels and merely seek to proof confinement behavior of wave function. Appropriate mathematical solution of tachyonic Dirac equation and quantization of energy value in attractive Coulombic nuclear potential will offer quarks and hadron masses and maybe more insight into many aspects of CKM matrix parameters and $C P$ violation. Deriving quarks and all hadron masses will completely proofs that quarks are superluminal.

For the superluminal hydrogen atom, the electric potential is

$$
\begin{equation*}
V=-\frac{Z e^{2}}{r} \tag{86}
\end{equation*}
$$

The radial Dirac equations are

$$
\begin{align*}
\frac{d G}{d r} & =-\frac{k}{r} G+\left[\frac{E+i m c^{2}}{\hbar c}+\frac{Z \alpha}{r}\right] F(r) \tag{87}\\
\frac{d F}{d r} & =\frac{k}{r} F-\left[\frac{E-i m c^{2}}{\hbar c}+\frac{Z \alpha}{r}\right] G(r) \tag{88}
\end{align*}
$$

where we use $G=r g$ and $F=r f$, and

$$
\begin{equation*}
\alpha=\frac{e^{2}}{\hbar c}=\frac{1}{137} \tag{89}
\end{equation*}
$$

for small r near the origin; $E \pm i m c^{2}$ is omitted. Thus, we have

$$
\begin{align*}
\frac{d G}{d r}+\frac{k}{r} G+-\frac{Z \alpha}{r} F(r) & =0 \tag{90}\\
\frac{d F}{d r}-\frac{k}{r} F+\frac{Z \alpha}{r} G(r) & =0 \tag{91}
\end{align*}
$$

We attempt the ansatz $G=a r^{\gamma} F=b r^{\gamma}$

$$
\begin{align*}
& a \gamma r^{\gamma-1}+\kappa a r^{\gamma-1}-Z \alpha b r^{\gamma-1}=0 \tag{92}\\
& b \gamma r^{\gamma-1}-\kappa b r^{\gamma-1}+Z \alpha a r^{\gamma-1}=0 \tag{93}
\end{align*}
$$

which indicate that

$$
\begin{align*}
& a(\gamma+\kappa)-b Z \alpha=0 \tag{94}\\
& a Z \alpha+b(\gamma-\kappa)=0 \tag{95}
\end{align*}
$$

The determinant of the coefficients must vanish, which yields

$$
\begin{gather*}
\gamma^{2}=\kappa^{2}-(Z \alpha)^{2} \tag{96}\\
\gamma= \pm \sqrt{\kappa^{2}-(Z \alpha)^{2}}= \pm \sqrt{\left(j+\frac{1}{2}\right)^{2}-Z^{2} \alpha^{2}} \tag{97}
\end{gather*}
$$

We choose

$$
\begin{equation*}
q=2 \lambda r \tag{98}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda=\frac{\sqrt{E^{2}+m_{\circ}^{2} c^{4}}}{\hbar c} \tag{99}
\end{equation*}
$$

which results in

$$
\begin{align*}
\frac{d G}{d q} & =\frac{-k G}{q}+\left[\frac{E+i m c^{2}}{2 \lambda \hbar c}+\frac{Z \alpha}{q}\right] F(q) \tag{100}\\
\frac{d F}{d q} & =-\left[\frac{E-i m c^{2}}{2 \lambda \hbar c}+\frac{Z \alpha}{q}\right] G+\frac{k}{q} F(q) \tag{101}
\end{align*}
$$

For $q \rightarrow \infty$, we have

$$
\begin{align*}
\frac{d G}{d q} & =\frac{E+i m c^{2}}{2 \lambda \hbar c} F \tag{102}\\
\frac{d F}{d q} & =-\frac{E-i m c^{2}}{2 \lambda \hbar c} G \tag{103}
\end{align*}
$$

Using (98) and (99), we obtain

$$
\begin{align*}
& \frac{d^{2} G}{d^{2} q}=-\frac{E^{2}+m^{2} c^{2}}{4 \lambda^{2} \hbar^{2} c^{2}} G=-\frac{1}{4} G \tag{104}\\
& \frac{d^{2} F}{d^{2} q}=-\frac{E^{2}+m^{2} c^{2}}{4 \lambda^{2} \hbar^{2} c^{2}} F=-\frac{1}{4} F \tag{105}
\end{align*}
$$

We have $G \approx e^{ \pm} \frac{i q}{2}$, but we choose the negative sign

$$
\begin{align*}
& G=\sqrt{i m c^{2}+E} e^{\frac{-i q}{2}}\left(\phi_{1}+\phi_{2}\right) \tag{106}\\
& F=\sqrt{i m c^{2}-E} e^{\frac{-i q}{2}}\left(\phi_{1}-\phi_{2}\right) \tag{107}
\end{align*}
$$

by substituting into equations (100) and (101), we obtain

$$
\begin{align*}
& \sqrt{i m c^{2}+E} \times e^{\frac{-i q}{2}}\left[\frac{-i}{2}\left(\phi_{1}+\phi_{2}\right)+\left(\phi_{1}^{\prime}+\phi_{2}^{\prime}\right)\right] \\
& =\frac{-k}{q} \sqrt{i m c^{2}+E} e^{\frac{-i q}{2}}\left(\phi_{1}+\phi_{2}\right)+\left[\frac{E+i m c^{2}}{2 \lambda \hbar c}+\frac{Z \alpha}{q}\right]\left[\sqrt{i m c^{2}-E}\right] e^{\frac{-i q}{2}}\left(\phi_{1}-\phi_{2}\right) \tag{108}\\
& \sqrt{i m c^{2}-E} \times e^{\frac{-i q}{2}}\left[\frac{-i}{2}\left(\phi_{1}-\phi_{2}\right)+\left(\phi_{1}^{\prime}-\phi_{2}^{\prime}\right)\right] \\
& =-\left[\frac{E-i m c^{2}}{2 \lambda \hbar c}+\frac{Z \alpha}{q}\right]\left[\sqrt{i m c^{2}+E}\right] e^{\frac{-i q}{2}}\left(\phi_{1}+\phi_{2}\right)+\frac{k}{q} \sqrt{i m c^{2}-E} e^{\frac{-i q}{2}}\left(\phi_{1}-\phi_{2}\right) \tag{109}
\end{align*}
$$

Dividing by $e^{-\frac{i q}{2}}$ and further dividing the first equation by $\left(i m c^{2}+E\right)^{\frac{1}{2}}$ and the second equation by $\left(i m c^{2}-E\right)^{\frac{1}{2}}$, we obtain

$$
\begin{align*}
& {\left[\frac{-i}{2}\left(\phi_{1}+\phi_{2}\right)+\left(\phi_{1}^{\prime}+\phi_{2}^{\prime}\right)\right]} \\
& =\frac{-k}{q}\left(\phi_{1}+\phi_{2}\right)+\left[\frac{E+i m c^{2}}{2 \lambda \hbar c}+\frac{Z \alpha}{q}\right] \frac{\sqrt{i m c^{2}-E}}{\sqrt{i m c^{2}+E}}\left(\phi_{1}-\phi_{2}\right) \tag{110}\\
& {\left[\frac{-i}{2}\left(\phi_{1}-\phi_{2}\right)+\left(\phi_{1}^{\prime}-\phi_{2}^{\prime}\right)\right]} \\
& =-\left[\frac{E-i m c^{2}}{2 \lambda \hbar c}+\frac{Z \alpha}{q}\right] \frac{\sqrt{i m c^{2}+E}}{\sqrt{i m c^{2}-E}}\left(\phi_{1}+\phi_{2}\right)+\frac{k}{q}\left(\phi_{1}-\phi_{2}\right) \tag{111}
\end{align*}
$$

However, we had

$$
\begin{equation*}
\frac{\sqrt{i m c^{2}-E}}{\sqrt{i m c^{2}+E}}=\frac{i m c^{2}-E}{\sqrt{-m^{2} c^{4}-E^{2}}}=\frac{i m c^{2}-E}{i \hbar c \lambda} \tag{112}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sqrt{i m c^{2}+E}}{\sqrt{i m c^{2}-E}}=\frac{i m c^{2}+E}{\sqrt{-m^{2} c^{4}-E^{2}}}=\frac{i m c^{2}+E}{i \hbar c \lambda} \tag{113}
\end{equation*}
$$

Thus,

$$
\begin{align*}
& {\left[\frac{-i}{2}\left(\phi_{1}+\phi_{2}\right)+\left(\phi_{1}^{\prime}+\phi_{2}^{\prime}\right)\right]} \\
& =\frac{-k}{q}\left(\phi_{1}+\phi_{2}\right)+\left[\frac{E+i m c^{2}}{2 \lambda \hbar c}+\frac{Z \alpha}{q}\right] \frac{i m c^{2}-E}{i \hbar c \lambda}\left(\phi_{1}-\phi_{2}\right) \tag{114}\\
& {\left[\frac{-i}{2}\left(\phi_{1}-\phi_{2}\right)+\left(\phi_{1}^{\prime}-\phi_{2}^{\prime}\right)\right]} \\
& =-\left[\frac{E-i m c^{2}}{2 \lambda \hbar c}+\frac{Z \alpha}{q}\right] \frac{i m c^{2}+E}{i \hbar c \lambda}\left(\phi_{1}+\phi_{2}\right)+\frac{k}{q}\left(\phi_{1}-\phi_{2}\right) \tag{115}
\end{align*}
$$

By adding the above two equations,

$$
\begin{align*}
& -i \phi_{1}+2 \phi_{1}^{\prime}=-\frac{2 k}{q} \phi_{2}-\frac{1}{i} \phi_{1}+ \\
& \frac{Z \alpha}{q}\left(\frac{i m c^{2}-E}{h \hbar \lambda c}\right)\left(\phi_{1}-\phi_{2}\right)-\frac{Z \alpha}{q}\left(\frac{i m c^{2}+E}{i \hbar c \lambda}\right)\left(\phi_{1}+\phi_{2}\right) \tag{116}
\end{align*}
$$

By subtracting two equations, we have

$$
\begin{align*}
& -i \phi_{2}+2 \phi_{2}^{\prime}=-\frac{2 k}{q} \phi_{1}+\frac{\phi_{2}}{i}+\frac{Z \alpha}{q} \frac{\left(i m c^{2}-E\right)}{i \hbar c \lambda}\left(\phi_{1}-\phi_{2}\right) \\
& +\frac{Z \alpha}{q} \frac{i m c^{2}+E}{i \hbar c \lambda}\left(\phi_{1}+\phi_{2}\right) \tag{117}
\end{align*}
$$

Summarizing, we obtain

$$
\begin{align*}
\phi_{1}^{\prime} & =\left(i-\frac{Z \alpha E}{q i \hbar c \lambda}\right) \phi_{1}-\left(\frac{k}{q}+\frac{Z \alpha}{q} \frac{m c^{2}}{\hbar c \lambda}\right) \phi_{2} \tag{118}\\
\phi_{2}^{\prime} & =\left(-\frac{k}{q}+Z \alpha \frac{m c^{2}}{\hbar c \lambda q}\right) \phi_{1}+\frac{Z \alpha}{q} \frac{E}{i \hbar c \lambda} \phi_{2} \tag{119}
\end{align*}
$$

We use a power series. We separate a factor q^{γ}, which describes the behavior of the solution for $q \rightarrow 0$

$$
\begin{align*}
& \phi_{1}=q^{\gamma} \sum \alpha_{m} q^{m} \tag{120}\\
& \phi_{2}=q^{\gamma} \sum \beta_{m} q^{m} \tag{121}
\end{align*}
$$

Inserting this equation into equations (118) and (119), we obtain

$$
\begin{align*}
& \sum(m+\gamma) \alpha_{m} q^{m+\gamma-1}=i \sum \alpha_{m} q^{m+\gamma}-\frac{Z \alpha E}{i \hbar c \lambda} \sum \alpha_{m} q^{m+\gamma-1} \\
& -\left(k+\frac{Z \alpha m c^{2}}{\hbar c \lambda}\right) \sum \beta_{m} q^{m+\gamma-1} \tag{122}
\end{align*}
$$

and

$$
\begin{align*}
& \sum \beta_{m}(m+\gamma) q^{m+\gamma-1}=\left(-k+\frac{Z \alpha m c^{2}}{\hbar c \lambda}\right) \sum \alpha_{m} q^{m+\gamma-1} \\
& +\frac{Z \alpha E}{i \hbar c \lambda} \sum \beta_{m} q^{m+\gamma-1} \tag{123}
\end{align*}
$$

By comparing the coefficients, we obtain

$$
\begin{gather*}
\alpha_{m}(m+\gamma)=i \alpha_{m-1}-\frac{Z \alpha E \alpha_{m}}{i \hbar c \lambda}-\left(k+\frac{Z \alpha m c^{2}}{\hbar \lambda c}\right) \beta_{m} \tag{124}\\
\beta_{m}(m+\gamma)=\left(-k+\frac{Z \alpha m c^{2}}{\hbar c \lambda}\right) \alpha_{m}+\frac{Z \alpha E}{i \hbar c \lambda} \beta_{m} \tag{125}
\end{gather*}
$$

From the above equation, we obtain

$$
\begin{gather*}
\frac{\beta_{m}}{\alpha_{m}}=\frac{\left(-k+\frac{Z \alpha m c^{2}}{\hbar c \lambda}\right)}{m+\gamma-\frac{Z \alpha E}{i \hbar c \lambda}}=\frac{\left(k-\frac{Z \alpha m c^{2}}{\hbar c \lambda}\right)}{n^{\prime}-m} \tag{126}\\
n^{\prime}=\frac{Z \alpha E}{i \hbar c \lambda}-\gamma \tag{127}
\end{gather*}
$$

For $m=0$, we obtain

$$
\begin{equation*}
\frac{\beta_{\circ}}{\alpha_{\circ}}=\frac{k-\frac{Z \alpha m c^{2}}{\hbar c \lambda}}{n^{\prime}}=\frac{k-\left(n^{\prime}+\gamma\right) \frac{m c^{2}}{E}}{n^{\prime}} \tag{128}
\end{equation*}
$$

Inserting (126) into (124) and (125), we obtain

$$
\begin{equation*}
\alpha_{m}\left[\left(m+\gamma+\frac{Z \alpha E}{i \hbar c \lambda}\right)\left(n^{\prime}-m\right)+k^{2}-\frac{Z^{2} \alpha^{2} m^{2} c^{4}}{\hbar^{2} c^{2} \lambda^{2}}\right]=i \alpha_{m-1}\left(n^{\prime}-m\right) \tag{129}
\end{equation*}
$$

If we expand the bracket on the left-hand side of the above equation and use equation (127), we obtain

$$
\begin{equation*}
\left(m+\gamma+\frac{Z \alpha E}{i \hbar c \lambda}\right)\left(\frac{Z \alpha E}{i \hbar c \lambda}-\gamma-m\right)=-2 m \gamma-m^{2}-\gamma^{2}-\left(\frac{Z \alpha E}{\hbar c \lambda}\right)^{2} \tag{130}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\alpha_{m}\left[-m(2 \gamma+m)+(Z \alpha)^{2}-\left(\frac{Z \alpha E}{\hbar c \lambda}\right)^{2}-\frac{Z^{2} \alpha^{2} m^{2} c^{4}}{\hbar^{2} c^{2} \lambda^{2}}\right]=i \alpha_{m-1}\left(n^{\prime}-m\right) \tag{131}
\end{equation*}
$$

with

$$
\begin{equation*}
\gamma^{2}=k^{2}-(Z \alpha)^{2} \tag{132}
\end{equation*}
$$

We conclude that

$$
\begin{equation*}
\alpha_{m}\left[-m(2 \gamma+m)+(Z \alpha)^{2}\left(1-\frac{E^{2}+m^{2} c^{4}}{\hbar^{2} c^{2} \lambda^{2}}\right)\right]=i \alpha_{m-1}\left(n^{\prime}-m\right) \tag{133}
\end{equation*}
$$

which can be written as

$$
\begin{align*}
& \alpha_{m}=\frac{-\left(n^{\prime}-m\right)}{m(2 \gamma+m)} i \alpha_{m-1} \\
& =\frac{(-1)^{m}\left(n^{\prime}-1\right) \ldots\left(n^{\prime}-m\right) \alpha_{\circ} i^{m}}{m!(2 \gamma+1) \ldots(2 \gamma+m)}=\frac{\left(1-n^{\prime}\right)\left(2-n^{\prime}\right) \ldots\left(m-n^{\prime}\right)(i)^{m}}{m!(2 \gamma+1) \ldots(2 \gamma+m)} \alpha_{\circ} \tag{134}
\end{align*}
$$

Using (126), (128) and (134) we conclude that

$$
\begin{equation*}
\beta_{m}=\frac{n^{\prime}\left(n^{\prime}-1\right) \ldots\left(n^{\prime}-m+1\right)(-1)^{m} i^{m}}{m!(2 \gamma+1) \ldots(2 \gamma+m)} \beta_{\circ} \tag{135}
\end{equation*}
$$

The above equation is the confluent hyper geometric function

$$
\begin{gather*}
F(a, c ; x)=1+\frac{a}{c} x+\frac{a(a+1)}{c(c+1)} \frac{x^{2}}{2!}+\ldots \tag{136}\\
\phi_{1}=\alpha_{\circ} q^{\gamma} F\left(1-n^{\prime}, 2 \gamma+1 ; i q\right) \tag{137}\\
\phi_{2}=\beta_{\circ} q^{\gamma} F\left(-n^{\prime}, 2 \gamma+1 ; i q\right) \\
=\left(\frac{\kappa-Z \alpha m c^{2} / \hbar c \lambda}{n^{\prime}}\right) \alpha_{\circ} q^{\gamma} F\left(-n^{\prime}, 2 \gamma+1 ; i q\right) \tag{138}
\end{gather*}
$$

For negative values of n^{\prime} the above series is normalized if we choose the appropriate γ. Using (106), (107), $G=r g$ and $F=r f$, we can construct the normalized wave functions f and g.

References

1. W. Pauli, Z. Physik. 31, 765 (1925).
2. M. Sharifi, arXiv:1306.6071.
3. G. Feinberg, Phys. Rev. 159, 1089 (1967).
4. O. Heaviside, Electrical Papers (The Electrician Press, London, 1892).
5. Th. Des Coudres, Arch. Neer. Sci. 5, 652 (1900).
6. A. Sommerfeld, Knkl. Acad. Wetensch, 7, 345 (1904).
7. A. Sommerfeld, Nachr. k. Ges. Wiss. Gottingen, 5, 201 (1905).
8. O. M. P. Bilaniuk, V. K. Deshpande, and E. C. G. Sudarshan, Am. J. Phys. 30, 718 (1962).
9. O. M. P. Bilaniuk and E. C. G. Sudarshan, Phys. Today. 22, 5, 43 (1969).
10. O. M. Bilaniuk and E. C. G. Sudarshan, Nature (London). 223, 386 (1969).
11. M. E. Arons and E. C. G. Sudarshan, Phys. Rev. 173, 1622 (1968).
12. J. Dhar and E. C. G. Sudarshan Phys. Rev. 174, 1808 (1968).
13. T. Alvager and M. N. Kreisler, Phys. Rev. 171, 1357 (1968).
14. J. S. Danburg, G. R. Kalbfleisch, S. R. Borenstein, R. C. Strand, V. VanderBurg, J. W. Chapman, and J. Lys, Phys. Rev. D. 4, 53 (1971).
15. M. B. Davis, M. N. Kreisler, and T. Alvager, Phys. Rev. 183, 1132 (1969).
16. A. Chodos, A. I. Hauser, and V. A. Kostelecky, Phys. Lett. B 150, 431 (1985).
17. T. Adam, et al. (OPERA collaboration), J. High. Energ. Phys. 10, 093 (2012).
18. T. Adam, et al. (OPERA collaboration), J. High. Energ. Phys. 01, 157 (2013).
19. M. Antonello et al. (ICARUS collaboration), J. High. Energ. Phys. 11, 049 (2012).
20. G. Feinberg, Phys. Rev. D. 17, 1651 (1978).
21. Y. Aharonov, A. Komar, and L. Susskind, Phys. Rev. 182, 1400 (1969).
22. A. Sommerfeld, Ann. Phys. (Leipzig) 17, 1 (1916).
23. W. Wilson, Philos. Mag. 29, 795 (1915).
24. W. Greiner, Relativistic quantum mechanics (Springer 2000).
25. T. Chang, Nucl. Sci. Technol. 13, 129 (2002).
26. A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, Phys. Rev. D. 9, 3471 (1974).
27. K. Johnson, Acta. Phys. Polonica. B6, 865 (1975).
28. U. D. Jentschura and B. J. Wundt, Eur. Phys. J. C 72, 1894 (2012).
29. K. Wilson, Phys. Rev. D 10, 2445 (1974).
30. The Millennium Prize Problems, edited by J. Carlson, A. Jaffe and A. Wiles (Clay Mathematics Institute, American Mathematical Society 2006).
31. D. E. Kharzeev, L. D. McLerranab and H. J. Warringa, Nucl. Phys. A 803, 227 (2008).
32. K. Fukushima, D. E. Kharzeev, and H. J. Warringa ,Phys. Rev. D 78, 074033 (2008).
33. D. E. Kharzeev, J. Liao, S. A. Voloshin and G. Wang, Prog. Part. Nucl. Phys. 88, 1 (2016).
34. B. I. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. 103, 251601 (2009).
35. B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 81, 054908 (2010).
36. B. I. Abelev et al. (ALICE Collaboration), Phys. Rev. Lett. 110, 012301 (2013).
37. B. Müller and A. Schäfer, Phys. Rev. C 82, 057902 (2010).
38. G. 't Hooft, Phys. Rev. Lett. 37, 8 (1976).
39. A. A. Belavina, A. M. Polyakova, A. S. Schwartza and Yu. S. Tyupkina, Phys. Lett. B, 59, 85 (1975).
40. D Kharzeev, Phys. Lett. B 633, 260 (2006).
41. P.A.M. Dirac. Proc. Roy. Soc. A 133, 60 (1931).
42. R. F. Schwitters, in Proceeding of the International Symposium on Lepton and Lepton and Photon Interactions at High Energies, edited by. W. Kirk (Stanford University, 1975), p. 5.
43. G. Hanson, Talk given at the XVlllth Int. Conf. on High energy physics, Tbilisi, USSR, 1976, SLAC-PUB- 1814 (1976).
44. G. Hanson et al., Phys. Rev. Lett. 35, 1609 (1975).
45. G. Hanson et al., Phys. Rev. D 26, 991 (1982).
46. Ch. Berger et al. (PLUTO Collaboration), Phys. Lett. B 78, 176 (1978).
47. R. Brandelik et al. (TASSO Collaboration), Phys. Lett. B 83, 261 (1979).
48. A. Brandenburg, S. J. Brodsky, V. V. Khoze, and D. Muller, Phys. Rev. Lett. 73, 939 (1994).
49. J. S. Conway, et al., Phys. Rev. D 39, 92 (1989).
50. J. G. Heinrich et al., Phys. Rev. D 44, 1909 (1991).
51. K. J. Anderson et al., Phys. Rev. Lett. 42, 944 (1979).
52. S. Acharya et al. (ALICE Collaboration), Phys. Lett. B, 777, 151 (2018).
53. R. Brandelik et al. (TASSO Collaboration), Phys. Lett. B, 86, 243 (1979).
54. W. Bartel et al. (JADE Collaboration), Phys. Lett. B, 91, 142 (1980).
55. K. Shizuya and S. -H. H. Tye ,Phys. Rev. Lett. 41, 787 (1978).
56. A. G. Cohen and S. L. Glashow, Phys.Rev.Lett. 107, 181803 (2011).
57. F.C. Jones, Phys. Rev. D 6, 2727 (1972).
58. I.M. Dremin, Nucl. Phys. A 767, 233 (2006).
59. V. Koch, A. Majumder, and Xin-Nian Wang, Phys. Rev. Lett. 96, 172302 (2006).
60. A. Majumder and Xin-Nian Wang, Phys. Rev. C 73, 051901(R) (2006).
61. J. Casalderrey-Solana, et al., Phys. Rev. Lett. 104, 172301 (2010).
62. C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update.
63. J. Ashman et al. (European Muon Collaboration), Phys. Lett. B 206, 364 (1988).
64. J. Ashman et al. (European Muon Collaboration), Nucl. Phys. B 328, 1 (1989).
65. B. Adeva et al. (Spin Muon Collaboration), Phys. Lett. B 302, 533 (1993).
66. Christine A. Aidala, Steven D. Bass, Delia Hasch, and Gerhard K. Mallot. Rev. Mod. Phys. 85, 655 (2013).
67. B. Aubert et al. (BABAR Collaboration) Phys. Rev. Lett. 93, 131801 (2004).
68. J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay Phys. Rev. Lett. 13, 138 (1964).
69. R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 110, 221601 (2013).
70. R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 108, 111602 (2012).
71. R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 122, 211803 (2019).
72. K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 87, 091802 (2001).
73. B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 87, 091801 (2001).
74. R. Aaij et al. (LHCb Collaboration), Nature Physics 13, 391 (2017).
75. R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 712, 203 (2012).
76. R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 112, 011801 (2014).
77. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
78. R. Carosi et al. Phys. Lett. B 237, 303 (1990).
79. J.J. Aubert et al. Phys. Lett. B 123, 275 (1983).
80. R. Pohl et al. Nature Physics 466, 213 (2010).
81. W. Z. Heisenberg, Physik. 43, 172 (1927).
82. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).
83. F. Fernandez, P.G. Ortega, D.R. Entem, Front. Phys. 7, 233 (2020).
84. W. Greiner, S. Schramm, E. Stein and D.A. Bromley, Quantum Chromodynamics (Springer 2007).
85. V. Crede and C. Meyer, Prog.Part.Nucl.Phys. 63, 74 (2009).
86. W. Ochs, J. Phys. G 40, 67 (2013).
87. P. Pugnat et al. (OSQAR Collaboration), Phys. Rev. D 78, 092003 (2008).
88. E. Aprile et al. (XENON100 Collaboration), Phys. Rev. D 90, 062009 (2014).
89. H. Nishino et al. (Super-Kamiokande Collaboration), Phys. Rev. Lett. 102, 141801 (2009).
90. M. Sharifi, Illuminati butterfly of political chaos, Creator and Annihilator of Nazi Germany and Soviet Union. Lulu Press, Inc. ISBN 978-1-4717-0284-6 (2022).

[^0]: *Email: behsharifi@alumni.ut.ac.ir; behsharifi@mail.ru

