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On the Confinement of Quarks without Applying the
Bag Pressure

Mohammad Sharifi∗

Department of Physics, University of Tehran, Iran

Abstract

We explain a fatal error in quantum chromodynamics. By applying a correction to
the dynamics of quarks, we can confine quarks in hadrons. We will show why quarks
do not obey the Pauli exclusion principle and why we cannot observe free quarks. In
addition, we obtain correct hadron sizes.

1 Introduction
Two electrons with identical quantum numbers cannot exist in a hydrogen atom, because
each electron is subluminal and its phase velocity is superluminal. When there are 2 electrons
with identical quantum numbers in a hydrogen atom or with identical energy levels in a
cubic box, the second electron exists at every location (space-time coordinates) with exactly
identical wave function characteristics to those of the first electron. In other words, the two
electrons simultaneously exist at an exact point at the same time. This phenomenon is a
consequence of the probabilistic characteristics of wave functions and quantum mechanics.
Specifically, the wave equation does not provide us with more information about the exact
location of each electron. The energy and absolute value of the momentum of each electron
are exactly determined, but they do not have specific locations. At a given time, they are
ubiquitous at every location where the wave function does not vanish. However, we can
have 3 identical quarks with identical spin states in baryons. To explain this phenomenon,
we propose a strange theorem:

Theorem 1. Quarks are superluminal particles.

Any specific change in the state of a wave function in its associated Hilbert space will
propagate in space-time coordinates with the phase velocity of the wave function in space-
time. Specifically, particles communicate with each other at their phase velocities [7]. We
postulate that quarks are superluminal. Because each quark is superluminal, its phase
velocity should be subluminal; thus, quarks with identical spins can occupy the same energy
level in hadrons. In other words, the first quark is unaware of the spin and characteristics
of the second quark, because their phase velocities are subluminal. If we change the wave
function of the second quark, this change will propagate at less than c to other space-time

∗Email:behsharifi@ut.ac.ir

1



locations in the bag. The phase velocity is not measured in a space-like region. Specifically,
two quarks with identical energies and momenta are located at different points in the bag.
Quantum mechanics postulates that, at a specific time, a subluminal particle with a specific
energy-momentum does not have a specific location. In other words, it is ubiquitous in
the bag. However, because the phase velocity of a superluminal particle is subluminal,
a superluminal particle is no longer ubiquitous. Thus, two superluminal particles that are
confined in a cubic box no longer exist at the exact space-time point. Thus, it is not necessary
for them to obey the Pauli exclusion principle. The exclusion principle is applicable to two
identical particles with identical wave function characteristics.

Theoretically, as we mentioned previously, the wave function of a single superluminal
particle cannot collapse, because the phase velocity of collapse is subluminal and obeys
causality [7].

Before the wave function collapses, the particle does not have a specific location. We
create its location by performing an experiment and measuring its location. However, after
we determine the location of a particle, the particle should not be detected in other locations
even in notably far space-like locations that have no causal relation with the location of the
collapsed particle. When ψspace of a subluminal particle collapses, it communicates at its
phase velocity (at infinite velocity in the reference frame of the collapsed wave function) to
other locations in space-time that the wave function should not collapse at other locations
of the universe. Thus, a particle cannot be detected in two space-like locations, although
two locations do not have a causal relation with each other. However, if the particle is
superluminal, its phase velocity is subluminal, and it cannot perform this communication
in space-like regions of space-time. The phase velocity must be superluminal to allow for
the collapse of the wave function. Because quarks are superluminal, we never observe
free quarks. Note that, although we can identify quarks in hadrons using deep inelastic
scattering, before scattering, the wave functions of quarks are confined in hadrons, and it is
not necessary for the wave functions to communicate with the entire universe to be able to
collapse. The above argument is applicable to free quarks.

2 Wave equation of a hydrogen atom with a superluminal
electron

There is a significant difference between an ordinary hydrogen atom and a model with a
superluminal electron. In the subluminal model, we have negative potential energy. When
we increase the energy of the electron in the subluminal model, the momentum of the
electron decreases; thus, the wavelength of the electron increases, and the electron increases
its distance from the proton. In the subluminal model, although the energy cannot be less
than the mass of the particle, the minimum momentum can be zero.

E2 = c2P 2 +m2c4 (1)

Thus, the wavelength has no maximum, i.e., it can approach infinity, which results in the
escape of an electron from the hydrogen atom according to the Wilson-Sommerfeld rule.
The minimum principal quantum number for the minimum radius of the hydrogen atom is
n = 1.

However, in the superluminal model, although the minimum amount of relativistic energy
is zero, the momentum has a non-zero minimum: It cannot be less than the mass of the
electron, namely, msc.
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c2P 2 = E2 +m2
sc

4 (2)

E =
msc

2√
β2 − 1

(3)

P =
msv√
β2 − 1

(4)

We see that the electron has a maximum wavelength λ = ~/cms. Thus, by the Wilson-
Sommerfeld rule, the electron cannot have an infinite wavelength and thus cannot escape
the hydrogen atom. This fact sets a limit on the maximum radius of the bag. Thus, the
electron in the superluminal model is confined. For the superluminal model, the principal
quantum number of the maximum radius of the bag is n = 1.

(m2
◦c

4 + E2)1/2

hc
2πr = 1 (5)

When the electron energy increases, its momentum increases, but its wavelength de-
creases; thus, it becomes increasingly confined. The electron falls deeper into the hydrogen
atom or bag, which is in contrast to our observation in the subluminal model.

At this point, we seek to derive and solve the wave function of a confined superluminal
electron in the hydrogen bag. First, we study the radial Dirac equation. The Dirac equation
for a subluminal particle with real mass leads to the following [3]

~c
dg(r)

dr
+ (1 + κ)~c

g(r)

r
− [E +m◦c

2 +
Zα

r
]f(r) = 0 (6)

~c
df(r)

dr
+ (1− κ)~cf(r)r + [E −m◦c2 +

Zα

r
]g(r) = 0 (7)

The normalized solutions are proportional to

f(r) ≈ − 1

Γ(2γ + 1)
(2λr)γ−1e−λr ×{

(
(n′ + γ)m◦c

2

E
− κ)F (−n′, 2γ + 1; 2λr) + n′F (1− n′, 2γ + 1; 2λr)

}
(8)

g(r) ≈ 1

Γ(2γ + 1)
(2λr)γ−1e−λr ×{

(
(n′ + γ)m◦c

2

E
− κ)F (−n′, 2γ + 1; 2λr)− n′F (1− n′, 2γ + 1; 2λr)

}
(9)

For normalizable wave functions, γ should be positive. κ is the Dirac quantum number, and

λ =
(m2
◦c

4 − E2)1/2

~c
(10)

q = 2λr (11)
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Figure 1: real part of e−ixF (1, 3, 2ix)

γ = +
√
κ2 − (Zα)2 = +

√
(j +

1

2
)2 − (Zα)2 (12)

To terminate the hypergeometric series, we should discard the negative values of n′:

n = n′ + |κ| = n′ + j +
1

2
n = 1, 2, 3 (13)

The solution for the hydrogen atom is a hypergeometric function, which is an associated
Laguerre polynomial and is characteristic of a wave function in the Coulomb potential.

Lmn (x) =
(n+m)!

n!m!
F (−n,m+ 1, x) (14)

where Lmn (x) is the associated Laguerre function [see (8) and (9)].
We mimic the above procedure for the superluminal model with imaginary mass and

obtain
~c
dg(r)

dr
+ (1 + κ)~c

g(r)

r
− [E + im◦c

2 +
Zα

r
]f(r) = 0 (15)

~c
df(r)

dr
+ (1− κ)~cf(r)r + [E − im◦c2 +

Zα

r
]g(r) = 0 (16)

We define λ as

λ =
(m2
◦c

4 + E2)1/2

~c
(17)

We solve the above equation and exactly mimic the provided method in the reference
for the solution of the Coulomb potential [3]. Finally, we obtain

g(r) ≈ (2λr)γ−1e−iλr ×{
(
(n′ + γ)m◦c

2

E
− κ)F (−n′, 2γ + 1; 2iλr)− n′F (1− n′, 2γ + 1; 2iλr)

}
(18)

f(r) ≈ −(2λr)γ−1e−iλr ×{
(
(n′ + γ)m◦c

2

E
− κ)F (−n′, 2γ + 1; 2iλr) + n′F (1− n′, 2γ + 1; 2iλr)

}
(19)

4



In the above equations, F (−n′, 2γ + 1; 2iλr) is normalized for only negative values of n′ if

−n′ < 2γ + 1 (20)

For example, for j = 1
2 ( which gives γ = 1), and n′ = −1 we have a well-behaved wave

function (figure 1). For −n′ = 2γ+1, the behavior of the wave function F (−n′, 2γ+1; 2iλr)
is similar to cos(r). For negative n′, the above hypergeometric equations are similar to the
spherical Bessel function of the first type. From (18) and (19), the relation between the
hypergeometric series and the Bessel functions is

Jν(x) =
e−ix

ν!
(
x

2
)νF (ν +

1

2
, 2ν + 1, 2ix) (21)

The spherical Bessel function of the first type is defined as

jν(x) =

√
π

2x
Jν+1/2(x) (22)

We observed that the solution for the subluminal hydrogen atom is a Laguerre poly-
nomial. However, we see that f(r) and g(r) for a superluminal electron in the Coulomb
potential is similar to the spherical Bessel function of the first type. The spherical Bessel
functions appear in only two similar cases. The first case is a particle trapped in an infinite
three-dimensional radial well potential. The solutions to this problem are spherical Bessel
functions of the first type. Similarly, the solutions to the MIT bag model, which postulated
the existence of an unknown pressure and the vanishing of the Dirac current outside the
bag, are also spherical Bessel functions of the first type [2, 4].

To create a superluminal Dirac equation for quarks, we can use imaginary mass or
substitute the following matrix βs = iβto calculate f(r) and g(r). However, when we want
to construct the Dirac current, we will encounter a problem. The correct method is to
consider the following non-Hermitian matrices, where βs = βγ5 [1, 5]

α =

(
0 σ
σ 0

)
βs =

(
0 I
−I 0

)
(23)

This method satisfies all of the required properties of the superluminal Dirac equation. It
appears that we should reformulate the QCD Lagrangian and the gluon-gluon interaction
term. It can also be shown that the new superluminal (tachyonic) Dirac equation is CP
invariant [5]. These facts may provide a solution to the strong CP problem [6]. Note that
we did not postulate that the strong force is the electromagnetic force among superluminal
particles. However, even if the force among the particles was repulsive in the above equation
or its strength with respect to distance did not follow a 1

r2 law, the factor that determines
whether the system is stable and whether the superluminal positron can escape the proton
is the energy of the system and not the attractive or repulsive forces among the particles.

Note that the universe for a superluminal positron in a hydrogen atom is the bag. Its
beginning is the boundary of the bag, and its infinity is the center of the bag. The same law
that prevents the electron from falling into the proton in the subluminal model prohibits
the superluminal positron or electron from escaping from the hydrogen bag. When studying
the inter-quark potential, we consider the following conjecture:

Conjecture. The strong force is simply the superluminal effect of the electromagnetic force
among superluminal particles.
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Without applying any pressure or infinite potential, we have confined the superlumi-
nal electron with the appropriate bag radius in the hydrogen atom. In other words, we
solved a modified Dirac equation for superluminal particles and substituted the attractive
Coulomb potential in the absence of any infinite potential. The solutions were spherical
Bessel functions of the first type.

The confinement of quarks in hadrons has a similar mechanism to the above example. It
appears that we no longer require the non-Abelian SU(3) symmetry of the strong force to
confine quarks in hadrons. This method indicates that we should consider another symmetry
group for QCD. Unfortunately, it is not clear why the net electric charge of the bag must be
an integer value. In the next section, we provide some elementary examples of computing
cross sections using our new insights into quantum chromodynamics.

3 Quantum Electrodynamics of Superluminal Particles
The quantum field theory of superluminal particles is a problematic field theory due to the
tachyon condensation effect. In addition, quarks in hadrons do not obey the Pauli exclusion
principle, which is a fact that is not considered in tachyonic field theory.

In this section, we use a heuristic approach for the calculation of cross sections in strong
interactions. In the superluminal Klein-Gordon equation, the mass term is imaginary, but
all other parameters, including the Klein-Gordon current [jµ = (ρ, j)], are similar to the
subluminal ones. To compute cross sections in the subluminal Dirac and Klein-Gordon
equations, we use the flux relation:

F = |vA − vB |.2EA.2EB = 4(|pA|EB + |pB |EA = 4((PA.PB)2 −m2
Am

2
B)) (24)

It can be shown that, if we use the superluminal energy-momentum relation (2) instead of
(1), the above flux relation remains valid. Thus, we conclude that the cross section formulas
for superluminal and subluminal particles have similar expressions.

In the center-of-mass frame, the process AB → CD for spinless particles, has a differen-
tial cross section of [8]

dσ

dΩ
|cm =

1

64π2(EA + EB)2
pf
pi
|M|2 (25)

where for the amplitude,

M = (ie(pA + pC)µ)(
gµν
q2

)(ie(pB + pD)ν) (26)

dΩ is the element of the solid angle about PC , |PA| = |PB | = pi, and |PC | = |PD| = pf . In
the superluminal quark model, if quarks exist at the boundary of the bag, then their speeds
will approach infinity, their energies will approach zero, and their momenta will reach the
minimum value msc (non-relativistic region). In contrast, at the center of the bag, their
speeds will approach the speed of light, and their energies and momenta will approach
infinity (relativistic region).

In the subluminal model, the energy of the system in the denominator of (25) can
never be less than the mass of the interacting particles; thus, the cross section for the
minimum initial energy of the interacting particles cannot increase dramatically, but in
the superluminal model, if quarks exist at the boundary of the bag (non-relativistic limit
and infinite velocity, which in QCD is called a large distance), their cross sections can
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diverge because the energy in the denominator of the above equation (25) can approach
zero. Thus, the cross section diverges at the boundary, and a quark cannot escape from the
bag. Therefore, instead of equation (25), we use lattice QCD.

From equation (25), for the very-high-energy subluminal spinless interaction, we have
[8]

dσ

dΩ
|cm =

α2

4(EA + EB)2
(
3 + cosθ

1− cosθ
)2 (27)

where θ is the scattering angle. To obtain this formula, we neglect the mass and equate
the energy and momentum in (26). For the superluminal model, the technique is similar and
produces a similar result. Thus, equation (27) is applicable to superluminal spinless particles
at very high energies. In this limit, all interactions between quarks in hadrons, including
QCD and QED interactions, are calculated using one superluminal equation (27), which
is also related to the subluminal QED formula. Thus, we falsely conclude that, at small
distances, the QCD running coupling constant, which is a function of the energy-momentum
of the virtual gluons exchanged between quarks (pA−pC)2 , disappears. Moreover, the QCD
interactions between subluminal particles are negligible, and as a result, we have only the
subluminal QED result and not QCD. However, there is no change in the running coupling
constant, which can be concluded based on our conjecture.

If we mimic the above procedure for a spinless quark that has approximately zero energy
and moves at the boundary of the hadron (Ei, Pi) = (0,msc) and (Ef , Pf ) = (0,msc), we
obtain

dσ

dΩ
|cm =

α2

4(EA + EB)2
(
1 + cosθ

1− cosθ
)2 (28)

Note that we have assumed that the energy of each quark before and after the interaction
remains constant (Ei, Pi) = (0,msc) and (Ef , Pf ) = (0,msc).

From equation (5) and considering the experimental values in a typical bag, such as a
proton, the ratio of the energies of the quarks to their masses is extremely large. Thus, it
is probable that one quark losses all of its energy and moves toward the boundary of the
bag and the others gain all of the energy in the bag and move toward the center of the bag.
This behavior is completely evident in the parton distribution function F (x), and this low
energy region of quarks, namely, E < msc , is interpreted as a sea of quarks and gluons as
x → 0 [8]. If quarks were subluminal, then the energy of a quark could never be less than
its mass, and as a result, the shape of the parton distribution function would be different.

At this stage, we study the general form of the cross sections of tachyonic spin half
particles. The superluminal Dirac equation can be written as

Hψ = c(α.p)ψ + βsmsc
2ψ = c(α.p)ψ + βγ5msc

2ψ (29)

or in its abbreviated form as
(iγµ∂µ − γ5m)ψ(x) = 0 (30)

The tachyonic Lagrangian is [5]

£ =
i

2
(ψγ5γµ(∂µψ)− (∂µψ)γ5γµψ)−mψψ (31)

The Dirac current is [1]
ρ = ψ†γ5ψ, j = c(ψ†Σψ) (32)
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where
γ5 =

(
0 I
I 0

)
, Σ =

(
σ 0
0 σ

)
(33)

Thus, the Dirac current can also be written as

Jµ = c(ψγµγ5ψ) (34)

and the tachyonic Hamiltonian is [5, 11] ,

H = H5 +HI (35)

H5 = α.p+ βγ5m (36)

Its interaction Hamiltonian will be
HI = JµAµ (37)

Because (34) is different from the subluminal current, the cross section will be different.
It is not clear whether we should use Fermi-Dirac or Bose-Einstein statistics for superluminal
quarks in the first quantization because they do not obey the Pauli exclusion principle. In
tachyonic field theory, the tachyonic propagator is written as [9, 11]

ST (p) =
1

/p− γ5(m+ iε)
=

/p− γ5m
p2 +m2 + iε

(38)

< 0|Tψξ(x)ψξ′(y)γ5|0 >= iST (x− y)ξξ′ (39)

ST (x− y) =

∫
d4kν
(2π)4

e−ikν .(x−y)
/kν − γ5mν

k2ν +m2
ν + iε

(40)

In addition, we have

∑
σ

(−σ)uσ(p)
⊗

uσ(p)γ5 =
/kν − γ5m

2m

∑
σ

(−σ)νσ(p)
⊗

νσ(p)γ5 =
/kν + γ5m

2m
(41)

Therefore, for quark pair production in (e+e−) collisions, we have

e+(P1, r1) + e−(P2, r2)→ q+(P ′1, s1) + q−(P ′2, s2) (42)

Its amplitude will be

M(r1, r2, s1, s2) = iqe[us2(P ′2)γαγ5vs1(P ′1)](q)
1

(p1 + p2)2
[vr1(P1)γαur2(P2)](e) (43)

We compute the cross section according to the method in reference [8]
The following gamma relations are useful:

(γ5)2 = 1 γ5† = γ5 γ5γµ = −γµγ5 (44)

We have
Luve =

1

2

∑
s′

[u(k′)γµu(k)][u(k′)γνu(k)]∗ (45)
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Lquv =
1

2

∑
s′

[u(p′)γµγ5u(p)][u(p′)γνγ5u(p)]∗ (46)

Luve =
1

2
Tr((/k

′
+me)γ

µ(/k
′
+me)γ

ν) (47)

Lquv =
1

2
Tr((/p

′ − γ5mq)γµ(/p
′ − γ5mq)γν) (48)

Luve =
1

2
Tr(/k

′
γµ/kγν) +

1

2
m2
eTr(γ

µγν) (49)

Lquv =
1

2
Tr(/p

′γµ/pγν) +
1

2
m2
qTr(γµγ5γνγ5) (50)

Luve = 2(k′µkν + k′νkµ − (k′.k −m2
e)g

µν) (51)

Lquv = 2(p′µpν + p′νpµ − (k′.k +m2
q)gµν) (52)

Therefore, the amplitude will be

M2
=

8e2q2

(k − k′)2
[(k′.p′)(k.p) + (k′.p)(k.p′)−m2

ep.p
′ +m2

qk
′.k − 2m2

em
2
q] (53)

where q is the quark electric charge. This result can be compared with subluminal
electron muon scattering [8, 12]:

M2
=

8e4

(k − k′)2
[(k′.p′)(k.p) + (k′.p)(k.p′)−m2

ep.p
′ −m2

µk
′.k + 2m2

em
2
µ] (54)

In the extreme relativistic limit, we ignore the masses of electrons and quarks, and the
cross section will be similar to the electron muon scattering cross section.

dσ

dΩ
|cm =

e2e2q
64(EA + EB)2

(1 + cos2 θ) (55)

Unfortunately, the total cross section is one third of the value that we obtain from
traditional QCD calculations of electron quark scattering, which considers the color factor.

From our previous findings about spin half particles, equations (53) and (54), we can
deduce one interesting fact when calculating the cross section that is always valid: only the
second power of the mass appears in the cross section. Thus, if we use the superluminal
Lagrangian for quantum chromodynamic calculations to find the net results, we can simply
change the sign of the superluminal particle mass m2

q → −m2
q that appears in the cross

section and use traditional QED calculations to save time and omit the γ5 terms for the
mass in the Dirac tachyonic equations (29) to (31). In other words, because there is no
imaginary term in the cross section, we can easily use QED calculations to obtain QCD
results.

The running coupling constant of QCD and other renormalizations of the electric charge
and mass are similar to QED but with one important difference: the mass term in QCD
is imaginary; therefore, the second power of the mass is negative, and the virtual gluon in
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QCD is time-like, not space-like. Additionally, q2 > 0 which makes the sign of the term in
the logarithm positive.

α(Q2) =
α(µ2)

1− α(µ2)
3π log(Q

2

µ2 )
Q2 < 0, µ2 < 0, q2 = −Q2 (56)

Another interesting fact about the superluminal Lagrangian is that, in QED currents,
which are the interactions among subluminal particles, we have no γ5 term, but in charged
weak currents, which are the interactions among superluminal quarks and subluminal lep-
tons, and neutrinos with undetermined speeds according to the academic community, we
have the term (1 − γ5), which creates a left-hand term. Finally, in QCD, which describes
the interactions among superluminal particles, we have a γ5 term.

In other words, QED uses polar vectors, the charged weak currents break parity and use
both polar and axial vectors, and QCD uses axial vectors. In contrast, the weak neutral
current, includes a combination of γ5 and the unit tensor I and, thus, has mixed parity.
It seems that γ5 is related to both superluminalities and the experimental value of the
Weinberg angle in the weak hypercharge isospin relation. Why is the subtraction of the
QED and QCD current equal to the charged weak current? All of these points may hint at
further unification among fields.

cfV = T 3
f − 2 sin2 θWQf , cfA = T 3

f (57)

JNCµ (ν) = (uνγµ
1

2
(1− γ5)uν) (58)

JNCµ (e) = (ueγµ
1

2
(ceV − ceAγ5)ue) (59)

JNCµ (q) = (uqγµ
1

2
(cqV − c

q
Aγ

5)uq) (60)

JCCµ (e− ν) = (uνγµ
1

2
(1− γ5)ue) (61)

JCCµ (q − q′) = (uqγµ
1

2
(γ5 − 1)uq′) (62)

Jµ(q) = (uqγµγ
5uq) (63)

Jµ(e) = (ueγµue) (64)

For quark-antiquark scattering or, in other words, for Bhabha scattering of quarks, we
can write

q+(P1, r1) + q−(P2, r2)→ q+(P ′1, s1) + q−(P ′2, s2) (65)

M =Ma +Mb (66)

Ma = −iq2[u(P ′2)γαγ5u(P2)]
1

(p1 − p′1)2
[v(P1)γαγ5v(P ′1)] (67)
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Mb = iq2[u(P ′2)γαγ5v(P ′1)]
1

(p1 + p2)2
[v(P1)γαγ5u(P2)] (68)

The final shape of the cross section can be found from the QED result [12] and by changing
the sign of the superluminal particle mass term in the cross section.

As we discussed earlier, it can be easily shown that, for a specific amplitude in QCD,
the superluminal Dirac Lagrangian is CP invariant (see [8])

Mcp =M† (69)

In other words, there is no CP violation in QCD and, thus, no need for the introduction
of particles, such as axions. In addition, we should review our past results about grand
unified theories and proton mass decays.

4 Appendix
In the appendix, we solve the Dirac equation for the superluminal hydrogen atom. We
mimic the method from reference [3]. The electric potential is

V = −Ze
2

r
(70)

The radial Dirac equations are

dG

dr
= −k

r
G+ [

E + imc2

~c
+
Zα

r
]F (r) (71)

dF

dr
=
k

r
F − [

E − imc2

~c
+
Zα

r
]G(r) (72)

where we use G = rg and F = rf , and

α =
e2

~c
=

1

137
(73)

for small r near the origin; E ± imc2 is omitted. Thus, we have

dG

dr
+
k

r
G+−Zα

r
F (r) = 0 (74)

dF

dr
− k

r
F +

Zα

r
G(r) = 0 (75)

We attempt the ansatz G = arγ F = brγ

aγrγ−1 + κarγ−1 − Zαbrγ−1 = 0 (76)

bγrγ−1 − κbrγ−1 + Zαarγ−1 = 0 (77)

which indicate that
a(γ + κ)− bZα = 0 (78)

aZα+ b(γ − κ) = 0 (79)
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The determinant of the coefficients must vanish, which yields

γ2 = κ2 − (Zα)2 (80)

γ = ±
√
κ2 − (Zα)2 = ±

√
(j +

1

2
)2 − Z2α2 (81)

We choose
q = 2λr (82)

and

λ =

√
E2 +m2

◦c
4

~c
(83)

which results in
dG

dq
=
−kG
q

+ [
E + imc2

2λ~c
+
Zα

q
]F (q) (84)

dF

dq
= −[

E − imc2

2λ~c
+
Zα

q
]G+

k

q
F (q) (85)

For q →∞, we have
dG

dq
=
E + imc2

2λ~c
F (86)

dF

dq
= −E − imc

2

2λ~c
G (87)

Using (82) and (83), we obtain

d2G

d2q
= −E

2 +m2c2

4λ2~2c2
G = −1

4
G (88)

d2F

d2q
= −E

2 +m2c2

4λ2~2c2
F = −1

4
F (89)

We have G ≈ e± iq2 , but we choose the negative sign

G =
√
imc2 + Ee

−iq
2 (φ1 + φ2) (90)

F =
√
imc2 − Ee

−iq
2 (φ1 − φ2) (91)

by substituting into equations (84) and (85), we obtain

√
imc2 + E × −i

2
e
−iq
2 (φ1 + φ2) +

√
imc2 + Ee

−iq
2 (φ′1 + φ′2)

=
−k
q

√
imc2 + Ee

−iq
2 (φ1 + φ2) + [

E + imc2

2λ~c
+
Zα

q
][
√
imc2 − E]e

−iq
2 (φ1 − φ2)(92)

√
imc2 − E × −i

2
e
−iq
2 (φ1 − φ2) +

√
imc2 − Ee

−iq
2 (φ′1 − φ′2)

= −[
E − imc2

2λ~c
+
Zα

q
][
√
imc2 + E]e

−iq
2 (φ1 + φ2) +

k

q

√
imc2 − Ee

−iq
2 (φ1 − φ2)(93)
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or

√
imc2 + E × e

−iq
2 [
−i
2

(φ1 + φ2) + (φ′1 + φ′2)]

=
−k
q

√
imc2 + Ee

−iq
2 (φ1 + φ2) + [

E + imc2

2λ~c
+
Zα

q
][
√
imc2 − E]e

−iq
2 (φ1 − φ2)(94)

√
imc2 − E × e

−iq
2 [
−i
2

(φ1 − φ2) + (φ′1 − φ′2)]

= −[
E − imc2

2λ~c
+
Zα

q
][
√
imc2 + E]e

−iq
2 (φ1 + φ2) +

k

q

√
imc2 − Ee

−iq
2 (φ1 − φ2)(95)

Dividing by e− iq2 and further dividing the first equation by (imc2 + E)
1
2 and the second

equation by (imc2 − E)
1
2 , we obtain

[
−i
2

(φ1 + φ2) + (φ′1 + φ′2)]

=
−k
q

(φ1 + φ2) + [
E + imc2

2λ~c
+
Zα

q
]

√
imc2 − E√
imc2 + E

(φ1 − φ2) (96)

[
−i
2

(φ1 − φ2) + (φ′1 − φ′2)]

= −[
E − imc2

2λ~c
+
Zα

q
]

√
imc2 + E√
imc2 − E

(φ1 + φ2) +
k

q
(φ1 − φ2) (97)

However, we had
√
imc2 − E√
imc2 + E

=
imc2 − E√
−m2c4 − E2

=
imc2 − E
i~cλ

(98)

and
√
imc2 + E√
imc2 − E

=
imc2 + E√
−m2c4 − E2

=
imc2 + E

i~cλ
(99)

Thus,

[
−i
2

(φ1 + φ2) + (φ′1 + φ′2)]

=
−k
q

(φ1 + φ2) + [
E + imc2

2λ~c
+
Zα

q
]
imc2 − E
i~cλ

(φ1 − φ2) (100)

[
−i
2

(φ1 − φ2) + (φ′1 − φ′2)]

= −[
E − imc2

2λ~c
+
Zα

q
]
imc2 + E

i~cλ
(φ1 + φ2) +

k

q
(φ1 − φ2) (101)
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By adding the above two equations,

−iφ1 + 2φ′1 = −2
k

q
φ2 + (

E + imc2

2λ~c
)(
imc2 − E
i~cλ

)[φ1 − φ2]

+
Zα

q
(
imc2 − E
i~cλ

)[φ1 − φ2]− [
E − imc2

2λ~c
][
imc2 + E

i~cλ
[φ1 + φ2]

−Zα
q
× imc2 + E

i~cλ
(φ1 + φ2)

= −2
k

q
φ2 + (

−m2c4 − E2

2iλ2~2c2
)(φ1 − φ2) +

Zα

q
(
imc2 − E
i~cλ

)(φ1 − φ2)

−[
E2 +m2c4

2iλ2~2c2
](φ1 + φ2)− Zα

q

imc2 + E

i~cλ
(φ1 + φ2)

=
−2kφ2
q

− 1

2i
(φ1 − φ2)− 1

2i
(φ1 + φ2)

+
Zα

q
(
imc2 − E
i~mcλ

)(φ1 − φ2)− Zα

q
(
imc2 + E

i~cλ
)(φ1 + φ2) (102)

or

−iφ1 + 2φ′1 = −2k

q
φ2 −

1

i
φ1 +

Zα

q
(
imc2 − E
h~λc

)(φ1 − φ2)− Zα

q
(
imc2 + E

i~cλ
)(φ1 + φ2) (103)

By subtracting two equations, we have

−iφ2 + 2φ′2 = −2k

q
φ1 −

E2 +m2c4

2i~2c2λ2
(φ1 − φ2)

+
Zα

q

(imc2 − E)

i~cλ
(φ1 − φ2) +

(E2 +m2c4)

2i~2c2λ2
(φ1 + φ2)

+
Zα

q

imc2 + E

i~cλ
(φ1 + φ2) (104)

or

−iφ2 + 2φ′2 = −2k

q
φ1 +

φ2
i

+
Zα

q

(imc2 − E)

i~cλ
(φ1 − φ2)

+
Zα

q

imc2 + E

i~cλ
(φ1 + φ2) (105)

Summarizing, we obtain

φ′1 = (i− ZαE

qi~cλ
)φ1 − (

k

q
+
Zα

q

mc2

~cλ
)φ2 (106)
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φ′2 = (−k
q

+ Zα
mc2

~cλq
)φ1 +

Zα

q

E

i~cλ
φ2 (107)

We use a power series. We separate a factor qγ , which describes the behavior of the solution
for q → 0

φ1 = qγ
∑

αmq
m (108)

φ2 = qγ
∑

βmq
m (109)

Inserting this equation into equations (106) and (107), we obtain

∑
(m+ γ)αmq

m+γ−1 = i
∑

αmq
m+γ − ZαE

i~cλ
∑

αmq
m+γ−1

−(k +
Zαmc2

~cλ
)
∑

βmq
m+γ−1 (110)

and ∑
βm(m+ γ)qm+γ−1 = (−k +

Zαmc2

~cλ
)
∑

αmq
m+γ−1

+
ZαE

i~cλ
∑

βmq
m+γ−1 (111)

By comparing the coefficients, we obtain

αm(m+ γ) = iαm − 1− ZαEαm
h~cλ

− (k +
Zαmc2

~λc
)βm (112)

βm(m+ γ) = (−k +
Zαmc2

~cλ
)αm +

ZαE

i~cλ
βm (113)

From the above equation, we obtain

βm
αm

=
(−k + Zαmc2

~cλ )

m+ γ − ZαE
i~cλ

=
(k − Zαmc2

~cλ )

n′ −m
(114)

n′ =
ZαE

i~cλ
− γ (115)

For m = 0, we obtain

β◦
α◦

=
k − Zαmc2

~cλ
n′

=
k − (n′ + γ)mc

2

E

n′
(116)
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Inserting (114) into (112) and (113), we obtain

αm(m+ γ) = iαm−1 −
ZαEαm
i~cλ

− (k +
zαmc2

~cλ
)

(k − Zαmc2

~cλ )

(m+ γ − ZαE
i~cλ )

αm (117)

αm[(m+ γ) +
ZαE

i~cλ
−

(k + zαmc2

~cλ )(k − Zαmc2

~cλ )

(m− n′)
= iαm−1 (118)

αm[m+ γ +
ZαE

i~cλ
+

(k + zαmc2

~cλ )(k − Zαmc2

~cλ )

(n′ −m)
= iαm−1 (119)

αm[(m+ γ +
ZαE

i~cλ
)(n′ −m) + k2 − Z2α2m2c4

~2c2λ2
] = iαm−1(n′ −m) (120)

If we expand the bracket on the left-hand side of the above equation and use equation (115),
we obtain

(m+ γ +
ZαE

i~cλ
)(
ZαE

i~cλ
− γ −m) = −2mγ −m2 − γ2 − (

ZαE

~cλ
)2 (121)

Thus, we have

αm[−2mγ −m2 − γ2 − (
ZαE

~cλ
)2 + k2 − Z2α2m2c4

~2c2λ2
] = iαm−1(n′ −m) (122)

αm[−m(2γ +m) + (Zα)2 − (
ZαE

~cλ
)2 − Z2α2m2c4

~2c2λ2
] = iαm−1(n′ −m) (123)

with

γ2 = k2 − (Zα)2 (124)

We conclude that

αm[−m(2γ +m) + (Zα)2(1− E2 +m2c4

~2c2λ2
)] = iαm−1(n′ −m) (125)

which can be written as

αm =
−(n′ −m)

m(2γ +m)
iαm−1

=
(−1)m(n′ − 1)...(n′ −m)α◦i

m

m!(2γ + 1)...(2γ +m)
=

(1− n′)(2− n′)...(m− n′)(i)m

m!(2γ + 1)...(2γ +m)
α◦ (126)
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βm =
(+k − Zαmc2

~cλ )

n′ −m
(−1)m(n′ − 1)...(n′ −m)α◦i

m

m!(2γ + 1)...(2γ +m)
(127)

βm =
(+k − Zαmc2

~cλ )(−1)m(n′ − 1)...(n′ −m+ 1)α◦i
m

m!(2γ + 1)...(2γ +m)
(128)

Using (116), we conclude that

βm =
(+k − Zαmc2

~cλ )(−1)m(n′ − 1)...(n′ −m+ 1)im

m!(2γ + 1)...(2γ +m)

n′β◦

(+k − Zαmc2

~cλ )
(129)

βm =
n′(n′ − 1)...(n′ −m+ 1)(−1)mim

m!(2γ + 1)...(2γ +m)
β◦ (130)

The above equation is the confluent hyper geometric function

F (a, c;x) = 1 +
a

c
x+

a(a+ 1)

c(c+ 1)

x2

2!
+ ... (131)

φ1 = α◦q
γF (1− n′, 2γ + 1; iq) (132)

φ2 = β◦q
γF (−n′, 2γ + 1; iq)

= (
κ− Zαmc2/~cλ

n′
)α◦q

γF (−n′, 2γ + 1; iq) (133)

For negative values of n′ the above series is normalized if we choose the appropriate γ. Using
(90), (91), G = rg and F = rf , we can construct the normalized wave functions f and g.
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