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On The Confinement Of Quarks Without Applying the
Bag Pressure

Mohammad Sharifi∗

Department of Physics, University of Tehran, Iran

Abstract

We explain the fatal error in quantum chromodynamics. By applying this correction
to the dynamics of quarks, we can confine quarks in hadrons. We will show why quarks
do not obey the Pauli exclusion principle and why we cannot observe free quarks. In
addition, we obtain the correct size of hadrons.

1 Introduction
Two electrons with identical quantum numbers cannot exist in the hydrogen atom, because
each electron is subluminal and its phase velocity is superluminal. When there are 2 electrons
with identical quantum numbers in a hydrogen atom or with identical energy levels in a
cubic box, the second electron exists at every location (space-time coordinates) with exactly
identical wave function characteristics to those of the first electron. In other words, the
two electrons simultaneously exist at an exact point in equal time. This phenomenon is the
consequence of the probabilistic characteristic of a wave function and quantum mechanics.
In other words, the wave equation does not provide us with more information about the
exact location of each electron. The energy and absolute value of the momentum of each
electron are exactly determined, but they do not have a specific location. At a specific time,
they are ubiquitous at every location where the wave function does not have a zero value.
However, we can have 3 identical quarks with identical spin states in baryons. To explain
this phenomenon, we propose a strange theorem.

Theorem 1. Quarks are Superluminal particles.

Any specific change of each state of the wave function in its associated Hilbert space will
propagate in the space-time coordinate with the phase velocity of the wave function in space-
time. In other words, the particles communicate with one another via their phase velocities
[7]. We postulate that quarks are superluminal. Because each quark is superluminal, its
phase velocity should be subluminal; thus, quarks with identical spins can occupy the same
energy level in hadrons. In other words, the first quark is unaware of the spin and the
characteristics of the second quark, because their phase velocities are subluminal. If we
change the wave function of the second quark, this change will propagate with a speed less
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than c to other locations of space-time in the bag. The phase velocity is not in space-
like regions. In other words, two quarks with identical energies and momenta are located
at different points in the bag. Quantum mechanics postulate that at a specific time, a
subluminal particle with a specific energy momentum does not have a specific location.
In other words, it is ubiquitous in the bag. However, because the phase velocity of a
superluminal particle is subluminal, superluminal particle is no longer ubiquitous. Thus,
two superluminal particles that are confined in a cubic box no longer exist at the exact
space-time point. Thus, it is not necessary for them to obey Pauli Exclusion Principle.
Note that the exclusion principle is applicable for two identical particles with identical wave
function characteristics.

Theoretically, as we mentioned previously, the wave function of a single superluminal
particle cannot collapse, because its phase velocity of collapse is subluminal and obeys
causality [7].

Before the wave function collapses, the particle does not have a specific location. We
create its location by doing an experiment and measuring its location. However, after we
determined the location of a particle, the particle should not be detected in other locations
even in notably far space-like locations that have no causal relationship with the location of
the collapsed particle. When ψspace of a subluminal particle collapses, it communicates via
its phase velocity (at infinite velocity in the reference frame of the collapsed wave function)
to other locations in space-time that the wave function should not collapse at other locations
of the universe. Thus, a particle cannot be detected in two space-like locations, although
two locations do not have causal relations with each other. However, if the particle is
superluminal, its phase velocity is subluminal and cannot perform this communication in
space-like regions of space-time. The phase velocity must be superluminal to allow the
collapse of the wave function. Because quarks are superluminal, we never observe a single
free quark.

2 Wave equation of the hydrogen atom with superlumi-
nal electron

There is a big difference between the ordinary hydrogen atom and a model with superluminal
electron. In the subluminal model, we have negative potential energy. When we increase the
energy of the electron in the subluminal model, the momentum of the electron decreases;
thus, the wavelength of the electron increases, and the electron increases its distance from
the proton. In the subluminal model, although the energy cannot be less than the mass of
the particle, the minimum momentum can be zero.

E2 = c2P 2 +m2c4 (1)

Thus, the wave length has no maximum, and it can approach infinity, which results in the
escape of an electron from the hydrogen atom according to the Wilson-Sommerfeld rule. The
minimum principal quantum number for the minimum radius of hydrogen atom is n = 1.

However, in the superluminal model, although the minimum amount of relativistic energy
is zero, the momentum has a specific minimum. It cannot be less than the mass of the
electron, which is msc.

c2P 2 = E2 +m2
sc

4 (2)
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E =
msc

2√
β2 − 1

(3)

P =
msv√
β2 − 1

(4)

We see that the electron has a maximum wavelength λ = ~/cm. Thus, by the Wilson-
Sommerfeld rule, the electron cannot gain infinite wavelength and cannot escape the hy-
drogen atom. This fact sets a limit on the maximum radius of the bag. Thus, the electron
in the superluminal model is confined. For the superluminal model, the principal quantum
number of the maximum radius of the bag is n = 1.

(m2
◦c

4 + E2)1/2

hc
2πr = 1 (5)

When the electron energy increases, its momentum increases, but its wavelength de-
creases; thus, it becomes increasingly confined. The electron falls deeper in the hydrogen
atom or bag, which is contrary to our observation in the subluminal model.

At this point, we seek to derive and solve the wave function of confined superluminal
electron in the hydrogen bag. First, we study the radial Dirac equation. The Dirac equation
for a subluminal particle with real mass leads to the equations shown below[3]

~c
dg(r)

dr
+ (1 + κ)~c

g(r)

r
− [E +m◦c

2 +
Zα

r
]f(r) = 0 (6)

~c
df(r)

dr
+ (1− κ)~cf(r)r + [E −m◦c2 +

Zα

r
]g(r) = 0 (7)

The normalized solutions are proportional to

f(r) ≈ − 1

Γ(2γ + 1)
(2λr)γ−1e−λr ×{

(
(n′ + γ)m◦c

2

E
− κ)F (−n′, 2γ + 1; 2λr) + n′F (1− n′, 2γ + 1; 2λr)

}
(8)

g(r) ≈ 1

Γ(2γ + 1)
(2λr)γ−1e−λr ×{

(
(n′ + γ)m◦c

2

E
− κ)F (−n′, 2γ + 1; 2λr)− n′F (1− n′, 2γ + 1; 2λr)

}
(9)

For normalizable wave functions, γ should be positive. κ is the Dirac quantum number, and

λ =
(m2
◦c

4 − E2)1/2

~c
(10)

q = 2λr (11)

γ = +
√
κ2 − (Zα)2 = +

√
(j +

1

2
)2 − (Zα)2 (12)
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Figure 1: real part of e−ixF (1, 3, 2ix)

To terminate hyper geometric series, we should discard the negative values of n′

n = n′ + |κ| = n′ + j +
1

2
n = 1, 2, 3 (13)

The solution for the hydrogen atom provides a hyper geometric function, which is an
associated Laguerre polynomial and is characteristic of the wave function for Coulomb po-
tential.

Lmn (x) =
(n+m)!

n!m!
F (−n,m+ 1, x) (14)

where Lmn (x) is the associated Laguerre function. look at (8) and (9).
We mimic the above procedure for the superluminal model with imaginary mass and

obtain
~c
dg(r)

dr
+ (1 + κ)~c

g(r)

r
− [E + im◦c

2 +
Zα

r
]f(r) = 0 (15)

~c
df(r)

dr
+ (1− κ)~cf(r)r + [E − im◦c2 +

Zα

r
]g(r) = 0 (16)

we define λ as

λ =
(m2
◦c

4 + E2)1/2

~c
(17)

We solve the above equation and exactly mimic the provided method in the reference
for the solution of Coulomb potential [3]. Finally, we obtain

g(r) ≈ (2λr)γ−1e−iλr ×{
(
(n′ + γ)m◦c

2

E
− κ)F (−n′, 2γ + 1; 2iλr)− n′F (1− n′, 2γ + 1; 2iλr)

}
(18)

f(r) ≈ −(2λr)γ−1e−iλr ×{
(
(n′ + γ)m◦c

2

E
− κ)F (−n′, 2γ + 1; 2iλr) + n′F (1− n′, 2γ + 1; 2iλr)

}
(19)
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In the above equations, F (−n′, 2γ + 1; 2iλr) is normalized for only negative values of n′ if

−n′ < 2γ + 1 (20)

For example, for j = 1
2 ( which gives γ = 1), and n′ = −1 we have a well behaved wave

function (figure 1). For −n′ = 2γ+1, the behavior of the wave function F (−n′, 2γ+1; 2iλr)
is similar to cos(r). for negative n′, the above hyper geometric equations are similar to
the spherical Bessel function of the first type. From (18) and (19) the relation between the
hyper geometric series and the Bessel functions is

Jν(x) =
e−ix

ν!
(
x

2
)νF (ν +

1

2
, 2ν + 1, 2ix) (21)

The spherical Bessel function of the first type is defined as

jν(x) =

√
π

2x
Jν+1/2(x) (22)

We saw that the solution for subluminal hydrogen atom is Laguerre polynomial. How-
ever, we see that f(r) and g(r) for a superluminal electron with Coulomb potential is similar
to the spherical Bessel function of the first type. The spherical Bessel functions appear in
only two similar cases. The first case is a particle trapped in an infinite three-dimensional
radial well potential. The solution to this problem is the spherical Bessel function of the first
type. Similarly, the solution to the MIT bag model, which postulated the existence of an
unknown pressure and the vanishing of the Dirac current outside the bag, is also spherical
Bessel functions of first type[2, 4].

To create a superluminal Dirac equation for quarks, we can use imaginary mass or
substitute the following matrix βs = iβ to calculate f(r) and g(r). However, when we want
to construct the Dirac current, we will face a problem. The correct method is to consider
the following non-Hermitian matrices βs = βγ5 [1, 5]

α =

(
0 σ
σ 0

)
βs =

(
0 I
−I 0

)
(23)

This method satisfies all required properties of a superluminal Dirac equation. It can be
shown that the new superluminal (tachyonic) Dirac equation is CP invariant[5]. this fact
can be a solution to the strong CP problem [6]. Note that we did not postulate that the
strong force is actually the electromagnetic force among superluminal particles. However,
even if the force among the particles was repulsive in the above equation or its strength with
respect to distance was not 1

r , the factor that determines whether the system is stable and
whether the superluminal positron can escape the proton is the energy of the system and
not the attractive or repulsive force among the particles.

Note that the universe for a superluminal positron in the hydrogen atom is the bag. Its
beginning is the boundary of the bag, and its infinity is the center of the bag. The same law
that does not permit the electron to fall on the proton in the subluminal model prohibits
the superluminal positron or electron to escape from the hydrogen bag. By studying the
inter quarks potential, we consider the following conjecture

Conjecture. The strong force is only the superluminal effect of the electromagnetic force
among superluminal particles.
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Without applying any pressure or infinite potential, we have confined the superlumi-
nal electron with the appropriate bag radius in the hydrogen atom. In other words, we
solved a modified Dirac equation for superluminal particles and substituted the attractive
Coulomb potential in the absence of any infinite potential. The solutions were spherical
Bessel functions of the first type.

The confinement of quarks in hadrons has a similar mechanism to the above example. It
appears that we no longer require SU(3) symmetry of the strong force to confine quarks in
hadrons. This method indicates that we should consider another symmetry group for QCD.
Although it is not clear why the net electric charge of the bag must be an integer value, The
author is completely confident that if we consider the superluminal correction for quarks,
we can solve QCD at all energy values.

3 Appendix
In the appendix, we solve the Dirac equation for the superluminal hydrogen atom. We
mimic the method from reference [3]. The electric potential is

V = −Ze
2

r
(24)

The radial Dirac equations are

dG

dr
= −k

r
G+ [

E + imc2

~c
+
Zα

r
]F (r) (25)

dF

dr
=
k

r
F − [

E − imc2

~c
+
Zα

r
]G(r) (26)

where we use G = rg and F = rf , and

α =
e2

~c
=

1

137
(27)

for small r near the origin, E ± imc2 is omitted. thus, we have

dG

dr
+
k

r
G+−Zα

r
F (r) = 0 (28)

dF

dr
− k

r
F +

Zα

r
G(r) = 0 (29)

We attempt the ansatz G = arγ F = brγ

aγrγ−1 + κarγ−1 − Zαbrγ−1 = 0 (30)

bγrγ−1 − κbrγ−1 + Zαarγ−1 = 0 (31)

which indicates that
a(γ + κ)− bZα = 0 (32)

aZα+ b(γ − κ) = 0 (33)

The determinant of coefficients must vanish, which yields

γ2 = κ2 − (Zα)2 (34)
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γ = ±
√
κ2 − (Zα)2 = ±

√
(j +

1

2
)2 − Z2α2 (35)

We choose
q = 2λr (36)

and

λ =

√
E2 +m2

◦c
4

~c
(37)

which results in
dG

dq
=
−kG
q

+ [
E + imc2

2λ~c
+
Zα

q
]F (q) (38)

dF

dq
= −[

E − imc2

2λ~c
+
Zα

q
]G+

k

q
F (q) (39)

For q →∞, we have
dG

dq
=
E + imc2

2λ~c
F (40)

dF

dq
= −E − imc

2

2λ~c
G (41)

using (36) and (37), we obtain

d2G

d2q
= −E

2 +m2c2

4λ2~2c2
G = −1

4
G (42)

d2F

d2q
= −E

2 +m2c2

4λ2~2c2
F = −1

4
F (43)

We have G ≈ e± iq2 , but we choose the negative sign

G =
√
imc2 + Ee

−iq
2 (φ1 + φ2) (44)

F =
√
imc2 − Ee

−iq
2 (φ1 − φ2) (45)

by substituting into equation (38) and (39), we obtain

√
imc2 + E × −i

2
e

−iq
2 (φ1 + φ2) +

√
imc2 + Ee

−iq
2 (φ′1 + φ′2)

=
−k
q

√
imc2 + Ee

−iq
2 (φ1 + φ2) + [

E + imc2

2λ~c
+
Zα

q
][
√
imc2 − E]e

−iq
2 (φ1 − φ2)(46)

√
imc2 − E × −i

2
e

−iq
2 (φ1 − φ2) +

√
imc2 − Ee

−iq
2 (φ′1 − φ′2)

= −[
E − imc2

2λ~c
+
Zα

q
][
√
imc2 + E]e

−iq
2 (φ1 + φ2) +

k

q

√
imc2 − Ee

−iq
2 (φ1 − φ2)(47)

or
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√
imc2 + E × e

−iq
2 [
−i
2

(φ1 + φ2) + (φ′1 + φ′2)]

=
−k
q

√
imc2 + Ee

−iq
2 (φ1 + φ2) + [

E + imc2

2λ~c
+
Zα

q
][
√
imc2 − E]e

−iq
2 (φ1 − φ2)(48)

√
imc2 − E × e

−iq
2 [
−i
2

(φ1 − φ2) + (φ′1 − φ′2)]

= −[
E − imc2

2λ~c
+
Zα

q
][
√
imc2 + E]e

−iq
2 (φ1 + φ2) +

k

q

√
imc2 − Ee

−iq
2 (φ1 − φ2)(49)

dividing by e− iq2 and further dividing the first equation by (imc2 + E)
1
2 and the second

equation by (imc2 − E)
1
2 , we obtain

[
−i
2

(φ1 + φ2) + (φ′1 + φ′2)]

=
−k
q

(φ1 + φ2) + [
E + imc2

2λ~c
+
Zα

q
]

√
imc2 − E√
imc2 + E

(φ1 − φ2) (50)

[
−i
2

(φ1 − φ2) + (φ′1 − φ′2)]

= −[
E − imc2

2λ~c
+
Zα

q
]

√
imc2 + E√
imc2 − E

(φ1 + φ2) +
k

q
(φ1 − φ2) (51)

However, we had
√
imc2 − E√
imc2 + E

=
imc2 − E√
−m2c4 − E2

=
imc2 − E
i~cλ

(52)

and
√
imc2 + E√
imc2 − E

=
imc2 + E√
−m2c4 − E2

=
imc2 + E

i~cλ
(53)

Thus

[
−i
2

(φ1 + φ2) + (φ′1 + φ′2)]

=
−k
q

(φ1 + φ2) + [
E + imc2

2λ~c
+
Zα

q
]
imc2 − E
i~cλ

(φ1 − φ2) (54)

[
−i
2

(φ1 − φ2) + (φ′1 − φ′2)]

= −[
E − imc2

2λ~c
+
Zα

q
]
imc2 + E

i~cλ
(φ1 + φ2) +

k

q
(φ1 − φ2) (55)
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By adding the two above equations

−iφ1 + 2φ′1 = −2
k

q
φ2 + (

E + imc2

2λ~c
)(
imc2 − E
i~cλ

)[φ1 − φ2]

+
Zα

q
(
imc2 − E
i~cλ

)[φ1 − φ2]− [
E − imc2

2λ~c
][
imc2 + E

i~cλ
[φ1 + φ2]

−Zα
q
× imc2 + E

i~cλ
(φ1 + φ2)

= −2
k

q
φ2 + (

−m2c4 − E2

2iλ2~2c2
)(φ1 − φ2) +

Zα

q
(
imc2 − E
i~cλ

)(φ1 − φ2)

−[
E2 +m2c4

2iλ2~2c2
](φ1 + φ2)− Zα

q

imc2 + E

i~cλ
(φ1 + φ2)

=
−2kφ2
q

− 1

2i
(φ1 − φ2)− 1

2i
(φ1 + φ2)

+
Zα

q
(
imc2 − E
i~mcλ

)(φ1 − φ2)− Zα

q
(
imc2 + E

i~cλ
)(φ1 + φ2) (56)

or

−iφ1 + 2φ′1 = −2k

q
φ2 −

1

i
φ1 +

Zα

q
(
imc2 − E
h~λc

)(φ1 − φ2)− Zα

q
(
imc2 + E

i~cλ
)(φ1 + φ2) (57)

By subtracting two equations, we have

−iφ2 + 2φ′2 = −2k

q
φ1 −

E2 +m2c4

2i~2c2λ2
(φ1 − φ2)

+
Zα

q

(imc2 − E)

i~cλ
(φ1 − φ2) +

(E2 +m2c4)

2i~2c2λ2
(φ1 + φ2)

+
Zα

q

imc2 + E

i~cλ
(φ1 + φ2) (58)

or

−iφ2 + 2φ′2 = −2k

q
φ1 +

φ2
i

+
Zα

q

(imc2 − E)

i~cλ
(φ1 − φ2)

+
Zα

q

imc2 + E

i~cλ
(φ1 + φ2) (59)

Summarizing, we obtain

φ′1 = (i− ZαE

qi~cλ
)φ1 − (

k

q
+
Zα

q

mc2

~cλ
)φ2 (60)
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φ′2 = (−k
q

+ Zα
mc2

~cλq
)φ1 +

Zα

q

E

i~cλ
φ2 (61)

We use the power series. We separate a factor qγ , which describes the behavior of the
solution for q → 0

φ1 = qγ
∑

αmq
m (62)

φ2 = qγ
∑

βmq
m (63)

Inserting this equation into equations (60) and (61), we obtain

∑
(m+ γ)αmq

m+γ−1 = i
∑

αmq
m+γ − ZαE

i~cλ
∑

αmq
m+γ−1

−(k +
Zαmc2

~cλ
)
∑

βmq
m+γ−1 (64)

and ∑
βm(m+ γ)qm+γ−1 = (−k +

Zαmc2

~cλ
)
∑

αmq
m+γ−1

+
ZαE

i~cλ
∑

βmq
m+γ−1 (65)

By comparing the coefficient, we obtain

αm(m+ γ) = iαm − 1− ZαEαm
h~cλ

− (k +
Zαmc2

~λc
)βm (66)

βm(m+ γ) = (−k +
Zαmc2

~cλ
)αm +

ZαE

i~cλ
βm (67)

From the above equation, we obtain

βm
αm

=
(−k + Zαmc2

~cλ )

m+ γ − ZαE
i~cλ

=
(k − Zαmc2

~cλ )

n′ −m
(68)

n′ =
ZαE

i~cλ
− γ (69)

For m = 0, we obtain

β◦
α◦

=
k − Zαmc2

~cλ
n′

=
k − (n′ + γ)mc

2

E

n′
(70)
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inserting (68) into (66) and (67), we obtain

αm(m+ γ) = iαm−1 −
ZαEαm
i~cλ

− (k +
zαmc2

~cλ
)

(k − Zαmc2

~cλ )

(m+ γ − ZαE
i~cλ )

αm (71)

αm[(m+ γ) +
ZαE

i~cλ
−

(k + zαmc2

~cλ )(k − Zαmc2

~cλ )

(m− n′)
= iαm−1 (72)

αm[m+ γ +
ZαE

i~cλ
+

(k + zαmc2

~cλ )(k − Zαmc2

~cλ )

(n′ −m)
= iαm−1 (73)

αm[(m+ γ +
ZαE

i~cλ
)(n′ −m) + k2 − Z2α2m2c4

~2c2λ2
] = iαm−1(n′ −m) (74)

If we expand the bracket on the left hand side of the above equation and use equation (69),
we obtain

(m+ γ +
ZαE

i~cλ
)(
ZαE

i~cλ
− γ −m) = −2mγ −m2 − γ2 − (

ZαE

~cλ
)2 (75)

Thus, we have

αm[−2mγ −m2 − γ2 − (
ZαE

~cλ
)2 + k2 − Z2α2m2c4

~2c2λ2
] = iαm−1(n′ −m) (76)

αm[−m(2γ +m) + (Zα)2 − (
ZαE

~cλ
)2 − Z2α2m2c4

~2c2λ2
] = iαm−1(n′ −m) (77)

with

γ2 = k2 − (Zα)2 (78)

We conclude that

αm[−m(2γ +m) + (Zα)2(1− E2 +m2c4

~2c2λ2
)] = iαm−1(n′ −m) (79)

which can be writen as

αm =
−(n′ −m)

m(2γ +m)
iαm−1

=
(−1)m(n′ − 1)...(n′ −m)α◦i

m

m!(2γ + 1)...(2γ +m)
=

(1− n′)(2− n′)...(m− n′)(i)m

m!(2γ + 1)...(2γ +m)
α◦ (80)
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βm =
(+k − Zαmc2

~cλ )

n′ −m
(−1)m(n′ − 1)...(n′ −m)α◦i

m

m!(2γ + 1)...(2γ +m)
(81)

βm =
(+k − Zαmc2

~cλ )(−1)m(n′ − 1)...(n′ −m+ 1)α◦i
m

m!(2γ + 1)...(2γ +m)
(82)

Using (70), we conclude that

βm =
(+k − Zαmc2

~cλ )(−1)m(n′ − 1)...(n′ −m+ 1)im

m!(2γ + 1)...(2γ +m)

n′β◦

(+k − Zαmc2

~cλ )
(83)

βm =
n′(n′ − 1)...(n′ −m+ 1)(−1)mim

m!(2γ + 1)...(2γ +m)
β◦ (84)

The above equation is the confluent hyper geometric function

F (a, c;x) = 1 +
a

c
x+

a(a+ 1)

c(c+ 1)

x2

2!
+ ... (85)

φ1 = α◦q
γF (1− n′, 2γ + 1; iq) (86)

φ2 = β◦q
γF (−n′, 2γ + 1; iq)

= (
κ− Zαmc2/~cλ

n′
)α◦q

γF (−n′, 2γ + 1; iq) (87)

For negative value of n′ the above series is normalized if we choose the appropriate γ. using
(44) , (45) and the fact that G = rg and F = rf , we can construct the normalized wave
functions f and g.
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