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NON-FLAT EXTENSION OF FLAT VECTOR BUNDLES

INDRANIL BISWAS AND VIKTORIA HEU

Abstract. We construct a pair (E ,F ), where E is a holomorphic vector bundle over a com-
pact Riemann surface and F ⊂ E a holomorphic subbundle, such that both F and E/F admit
holomorphic connections, but E does not.

1. Introduction

Let X be a compact connected Riemann surface. Let E be a holomorphic vector bundle

over X . We say that E is flat if it can be endowed with a holomorphic connection. Such a

holomorphic connection is automatically flat (in the usual sense) because there are no nonzero

(2 , 0)-forms on X . Conversely, given a C∞ vector bundle E on X , a flat connection on V

defines a holomorphic structure on E as well as a holomorphic connection on it. A criterion

due to Atiyah and Weil says that a holomorphic vector bundle E on X is flat if and only if for

every holomorphic subbundle 0 6= F ⊆ E such that there is another holomorphic subbundle

F ′ ⊂ E with F ⊕ F ′ = E, the degree of F is zero [At], [We]. In particular, any semistable

vector bundle on X of degree zero admits a holomorphic connection.

Let E be a holomorphic vector bundle on X and

0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fℓ = E

a filtration by holomorphic subbundles of E. It is natural to ask for conditions that ensure

that E admits a holomorphic connection that preserves this filtration. An obvious necessary

condition is that each successive quotient Fi/Fi−1, 1 ≤ i ≤ ℓ, should admit a holomorphic

connection. One might expect that this necessary condition is also sufficient. One reason for

this expectation is the following: if E is semistable of degree zero, then indeed E admits a

filtration preserving holomorphic connection by Simpson correspondence [Si, p. 40, Corollary

3.10] (see also [BH, p. 1474]). Note that if E is semistable of degree zero, and all successive

quotients admit holomorphic connection, then each Fi is semistable of degree zero.

Our aim here is to show that flatness of vector bundles over curves does not behave well

under extensions. More precisely, we produce a short exact sequence of holomorphic vector

bundles

0 −→ F −→ E −→ Q −→ 0

on any compact Riemann surface X of genus g ≥ 2 such that both F and Q admit holomorphic

connections but E does not.
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Note that such a vector bundle cannot exist in in genus 0 and 1. Indeed, in that case, all

flat vector bundles are semistable of degree 0, and extension of a semistable vector bundle of

degree 0 by a semistable vector bundle of degree 0 is again semistable of degree 0.

The vector bundle E we construct is of rank 3. Note that this also is a minimal condition since

a vector bundle E of rank at most two fitting in an exact sequence as above is automatically

semistable of degree zero (and thus flat).

2. Construction of E

Let X be a compact connected Riemann surface of genus g, with g ≥ 2. Denote by KX the

canonical divisor on X . The linear equivalence class of KX can be expressed as

(2.1) KX = P +D ,

where P is a single point and D is an effective divisor of degree 2g − 3 such that P is disjoint

from the support of D. Indeed, this follows from the fact that

dimH0(X, KX) = g ≥ 2 .

Fix P and D as in (2.1). Let us now split the divisor D in two parts, namely

(2.2) D = DQ +DR ,

where DQ and DR are effective divisors with

(2.3) deg(DQ) + 1 = deg(DR) = g − 1 .

By Serre duality, we have

(2.4) H1(X, OX(DQ +DR)) ≃ H0(X, OX(P )) ≃ C .

In particular, we can choose a nonzero element (which is actually unique up to multiplication

by a nonzero scalar)

(2.5) θ ∈ H1(X, OX(DQ +DR)) \ {0} .

Since OX(DQ+DR) = HomOX
(OX(−DR) ,OX(DQ)), the cohomology class θ in (2.5) produces

a short exact sequence of vector bundles

(2.6) 0 −→ OX(DQ) −→ V −→ OX(−DR) −→ 0

on X . This exact sequence does not split since θ 6= 0. From (2.3) it follows that deg(V ) = −1.

Consider the holomorphic vector bundle

(2.7) E := OX(P )⊕ V

on X of rank three and degree zero. We have

(2.8) OX(P )⊕OX(DQ) ⊂ E

because OX(DQ) ⊂ V (see (2.6)). Let sP (respectively, sQ) be the holomorphic section of

OX(P ) (respectively, OX(DQ)) given by the constant function 1 on X . So sP (respectively, sQ)
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vanishes over P (respectively the support of DQ) of order one, and is nonzero everywhere else.

Now consider the holomorphic section

(2.9) σ1 : OX −→ OX(P )⊕OX(DQ)

defined by x 7−→ (sP (x) , sQ(x)). Note that σ1 does not vanish anywhere because P is disjoint

from the support of DQ according to (2.1) and (2.2). Let σ be the composition

(2.10) OX
σ1−→ OX(P )⊕OX(DQ) →֒ E

(see (2.8)). Since σ is nowhere vanishing, we get a short exact sequence of holomorphic vector

bundles on X

(2.11) 0 −→ F := OX
σ

−→ E −→ Q := E/σ(F ) −→ 0 .

By construction, OX(P ) is a direct summand of E. Since deg(OX(P )) 6= 0, from the

criterion of Atiyah–Weil we conclude that E is not flat. We will now prove that both F and Q

in (2.11) are flat.

2.1. Flatness of F and Q.

Lemma 2.1. The holomorphic vector bundle Q in (2.11) is a nontrivial extension of the line

bundle OX(−DR) by OX(P +DQ).

Proof. On one hand, we have
∧

2(OX(P ) ⊕ OX(DQ)) = OX(P + DQ). On the other hand,∧
2(OX(P )⊕OX(DQ)) = (OX(P )⊕OX(DQ))/σ1(OX) (see (2.9)). It follows that

(2.12) (OX(P )⊕OX(DQ))/σ1(OX) = OX(P +DQ) .

The inclusion of OX(P ) ⊕ OX(DQ) in E (see (2.10)) produces an inclusion of the quotient

(OX(P )⊕OX(DQ))/σ1(OX) in E/σ(F ) = Q (see (2.11)). Therefore, from (2.12) we have

(2.13) OX(P +DQ) ⊂ Q

as a subbundle. Using (2.6), (2.7) we have
∧2

Q =
∧3

E = OX(P )⊗
∧2

V = OX(P +DQ −DR).

Note that its degree is zero (2.3). Therefore, from (2.13),

OX(P +DQ −DR) =
∧2

Q = OX(P +DQ)⊗ (Q/OX(P +DQ)) .

So, Q/OX(P +DQ) = OX(−DR). Consequently, from (2.13), we get a short exact sequence

of vector bundles

(2.14) 0 −→ OX(P +DQ) −→ Q −→ OX(−DR) −→ 0 .

To complete the proof of the lemma, we need to show that the short exact sequence in (2.14)

does not split. Let

(2.15) ω ∈ H1(X, Hom(OX(−DR) ,OX(P +DQ)) = H1(X, OX(P +DQ +DR))

be the extension class for the exact sequence in (2.14). We will now compute ω.
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From (2.6) and (2.7) we have the short exact sequence

0 −→ OX(P )⊕OX(DQ) −→ E −→ OX(−DR) −→ 0

of holomorphic vector bundles on X . Let

θ′ ∈ H1(X, (OX(P )⊕OX(DQ))⊗OX(DR))

= H1(X, OX(P +DR))⊕H1(X, OX(DQ +DR))

be the cohomology class for this exact sequence. Evidently, θ′ coincides with

(0, θ) ∈ H1(X, OX(P +DR))⊕H1(X, OX(DQ +DR)) ,

where θ is the class in (2.5).

Next, consider the homomorphism γ defined by the composition

OX(DQ) →֒ OX(P )⊕OX(DQ) ։ (OX(P )⊕OX(DQ))/σ1(F ) = OX(P +DQ))

(see (2.12)), where the homomorphism OX(DQ) →֒ OX(P )⊕ OX(DQ) is the inclusion of the

second factor. Clearly, this composition γ coincides with the natural inclusion of the coherent

sheaf OX(DQ) in OX(P + DQ)). Therefore, the cohomology classes ω and θ (constructed in

(2.15) and (2.5)) satisfy the equation

(2.16) ω = ρ(θ) ,

where

ρ : H1(X, OX(DQ +DR)) −→ H1(X, OX(P +DQ +DR))

is the homomorphism induced by the natural inclusion of the coherent sheaf

OX(DQ +DR) in OX(P +DQ +DR). Consider the short exact sequence of coherent sheaves

0 −→ OX(DQ +DR) −→ OX(P +DQ +DR) −→ OX(P +DQ +DR)P −→ 0 ,

where OX(P +DQ +DR)P is the torsion sheaf supported at P with its stalk being the fiber of

the line bundle OX(P +DQ +DR) over P . Let

(2.17)

0 −→ H0(X, OX(DQ +DR)) −→ H0(X, OX(P +DQ +DR))
α1−→ OX(P +DQ +DR)P

α2−→ H1(X, OX(DQ +DR))
ρ

−→ H1(X, OX(P +DQ +DR))

be the long exact sequence of cohomologies associated to it. We have

dimH0(X, OX(P +DQ +DR)) = dimH0(X, OX(KX)) = g

and, by Riemann-Roch and (2.4),

dimH0(X, OX(DQ +DR)) = g − 1.

These imply that α1 in (2.17) is surjective. Therefore, α2 in (2.17) is the zero homomorphism.

This implies that ρ in (2.17) is injective.

Since ρ is injective, from (2.16) it follows that ω 6= 0, because θ 6= 0 (see (2.5)). The exact

sequence in (2.14) does not split because ω 6= 0. �
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Proposition 2.2. The holomorphic vector bundle Q in (2.14) admits a holomorphic connec-

tion.

Proof. Assume that Q does not admit any holomorphic connection. Since degree(Q) = 0,

and Q does not admit any holomorphic connection, the criterion of Atiyah–Weil says that Q

holomorphically decomposes as

(2.18) Q = L⊕M ,

where degree(L) = −degree(M) > 0. Let pM : Q −→ M be the projection given by the

decomposition in (2.18). Let β denote the composition

OX(P +DQ) →֒ Q
pM−→ M ,

where the inclusion is constructed in (2.13). Since

degree(OX(P +DQ)) = g − 1 > 0 > deg(M) ,

there is no nonzero homomorphism from OX(P +DQ) to M . In particular, β = 0.

We have OX(P + DQ) ⊂ L because β = 0. Since both OX(P + DQ) and L are line

subbundles on Q, this implies that the two subbundles OX(P +DQ) and L coincide. Hence

M = Q/L = Q/OX(P +DQ) = OX(−DR)

(see Lemma 2.1). Therefore, the decomposition Q = L⊕M in (2.18) produces a splitting of the

short exact sequence in (2.14). But we know from Lemma 2.1 that the short exact sequence

in (2.14) does not split. In view of the above contradiction we conclude that Q admits a

holomorphic connection. �

As we have seen, E is not flat by construction. On the other hand, consider the short exact

sequence in (2.11). The trivial holomorphic line bundle F = OX admits the trivial holomorphic

connection. The quotient bundle Q is flat by Proposition 2.2. Therefore, we have the following:

Theorem 2.3. Let X be a compact connected Riemann surface of genus g ≥ 2. The vector

bundle E in (2.7) has a holomorphic subbundle such that both the subbundle and the quotient

bundle admit holomorphic connections. But E does not admit a holomorphic connection.
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