
HAL Id: hal-01062897
https://hal.science/hal-01062897v1

Submitted on 21 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non contact probing of interfacial stiffnesses between
two plates by zero-group velocity Lamb modes

Sylvain Mezil, Jérôme Laurent, Daniel Royer, Claire Prada

To cite this version:
Sylvain Mezil, Jérôme Laurent, Daniel Royer, Claire Prada. Non contact probing of interfacial stiff-
nesses between two plates by zero-group velocity Lamb modes. Applied Physics Letters, 2014, 105
(2), pp.021605. �10.1063/1.4890110�. �hal-01062897�

https://hal.science/hal-01062897v1
https://hal.archives-ouvertes.fr


ar
X

iv
:1

40
7.

49
88

v1
  [

ph
ys

ic
s.

cl
as

s-
ph

] 
 1

8 
Ju

l 2
01

4

Non contact probing of interfacial stiffnesses between two plates

by Zero-Group Velocity Lamb modes

Sylvain Mezil, Jérôme Laurent, Daniel Royer, and Claire Prada∗

Institut Langevin, ESPCI ParisTech, CNRS, 1 rue Jussieu, 75238 Paris Cedex 05, France

A non contact technique using Zero-Group Velocity (ZGV) Lamb modes is developed to probe
the bonding between two solid plates coupled by a thin layer. The layer thickness is assumed to
be negligible compared with the plate thickness and the acoustic wavelength. The coupling layer is
modeled by a normal and a tangential spring to take into account the normal and shear interfacial
stresses. Theoretical ZGV frequencies are determined for a symmetrical bi-layer structure and the
effect of the interfacial stiffnesses on the cut-off and ZGV frequencies are evaluated. Experiments are
conducted with two glass plates bonded by a drop of water, oil, or salol, leading to a few micrometer
thick layer. An evaluation of normal and shear stiffnesses, is obtained using ZGV resonances locally
excited and detected with laser ultrasonic techniques.

PACS numbers: 43.20.Gp, 43.35.Zc, 62.30.+d, 68.60.Bs, 79.20.Ds

The increasing use of adhesive bonding in the industry
has been motivated by the need of stronger and lighter
structures. This technique is more suitable for providing
continuous adhesion properties and easier to process
than other ones like welding, riveting or screwing. The
bonding between two solid plates can be probed by
various ultrasonic techniques: longitudinal and shear
waves reflection or transmission at the interface,1,2

thickness resonances,3 ultrasonic guided waves propa-
gating along the interface.4–8 All these methods require
a modelisation of the ultrasonic wave interaction with
the interface supposed homogeneous.9 Recently it was
shown that Zero-Group Velocity (ZGV) Lamb modes
associated with laser ultrasonic techniques, allow a local
and non contact measurement of mechanical properties
of isotropic or anisotropic plates and shells.10,11 These
ZGV modes, corresponding to a minimum frequency of
dispersion curves, also exist in layered plate structures.12

Local ZGV resonances have been used to image the lack
of adhesive bond between two plates.13

In this letter a non contact method, based on the
measurement of ZGV resonance frequencies is proposed
to probe interfacial stiffnesses between two plates. An
interfacial behavior model9,16 is used to calculate the
dispersion curves and Zero-Group Velocity Lamb modes
in a symmetrical structure composed of two plates
coupled by a thin layer. The ultrasonic wave interaction
with the interface is described by spring boundary con-
ditions. Firstly, the effect of longitudinal and transverse
stiffnesses on cut-off and ZGV frequencies is studied.
Secondly, experimental results with liquid or solid com-
pliant layers are obtained by laser ultrasonic techniques.
Then, the values of spring stiffnesses, estimated from
ZGV resonance frequencies, are discussed.

Theoretical model — The structure is composed of two
identical, isotropic and homogeneous plates with a cou-
pling layer in-between.7 The plate thickness is denoted
h and lateral dimensions are supposed infinite. Their
mass density is denoted ρ and their bulk wave velocities
cl and ct. The coupling layer thickness d is assumed to
be small (d ≪ h and kld ≪ 1, where kl is longitudinal

wavenumber) such that its mass effect can be neglected.9

Then, the structure is modeled as two plates linked by a
normal spring of stiffness Kn and a tangential spring of
stiffness Kt. In practice, spring stiffnesses per unit area
can evolve from 0 (uncoupled plates) up to 1017 N/m3.
This upper limit corresponds to a force estimation in a
1D atomic chain model for the layer.14

Lamb wave propagation is governed by the linear equa-
tions of elastodynamics.15 For a given angular frequency
ω, the scalar and vector potentials are derived in the
whole structure. For z = ±h, the boundary conditions
are free tangential and normal stresses. At the interface
z = 0, spring boundary conditions are applied:16 the tan-
gential and normal displacement differences between the
two plates are equal to the ratios of shear and normal
stresses to the spring stiffness Kt and Kn, respectively.
These analytical developments lead to an equation of the
form [M ][B] = [0] where [M ] is a 8x8 matrix and [B] is
a vector composed of the scalar and vector potentials at
the interfaces. Non trivial solutions are found when the
determinant of [M ] vanishes. The propagating modes
are defined by their wavenumbers k. Then, the corre-
sponding dispersion curves ω(k) are determined. As the
structure is symmetrical, it is possible to separate sym-
metrical modes (where the in-plane displacements at the
bilayer surfaces are equal whereas the normal displace-
ments are opposite) from anti-symmetrical modes (with
reversed situation). Finally, the matrix [M ] results in
two 4x4 matrices. The analytical expressions of corre-
sponding determinants are

S = Γ+ 2µKnkt
2p
(

4k2pq sin[hp] cos[hq]

+
[

kt
2 − 2k2

]2
cos[hp] sin[hq]

)

, (1)

for symmetrical (S) modes and

A = Γ + 2µKtkt
2q
(

[

kt
2 − 2k2

]2
sin[hp] cos[hq]

+4k2pq cos[hp] sin[hq]
)

, (2)

for anti-symmetrical (A) modes, with:

Γ = −µ2
[

8pqk2
(

kt
2 − 2k2

)2
(1− cos[hp] cos[hq])

+
(

[

kt
2 − 2k2

]4
+
[

4k2pq
]2
)

sin[hp] sin[hq]
]

, (3)
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where µ = ρct
2 is the shear modulus, kl = ω/cl and

kt = ω/ct are the bulk wavenumbers, p and q are the z-
components of longitudinal and transverse wave vectors,
respectively, that satisfy the equations kl

2 = k2 + p2

and kt
2 = k2 + q2. Due to the symmetry, it can be

observed that the symmetrical modes only depend on
the longitudinal stiffness Kn while the anti-symmetrical
modes only depend on the tangential stiffness Kt. This
is convenient to study separately the effect of each
spring stiffness on the whole system. Fig. 1 shows Lamb
mode dispersion curves calculated for two identical glass
plates of thickness h = 2.08 mm linked by two springs of
stiffnesses Kn = 3× 1014 N/m3 and Kt = 1011 N/m3. In
the frequency range [0-3 MHz] many symmetrical (solid
line) and anti-symmetrical (dashed line) modes can be
observed.
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FIG. 1. Theoretical dispersion curves for two glass plates
of thickness h=2.08 mm linked by springs of stiffness Kn =
3 × 1014 N/m3 and Kt = 1011 N/m3. Arrows indicate ZGV
Lamb modes.

When the wavenumber vanishes, the first two modes
decrease to zero frequency, whereas, higher order modes
admit a cut-off frequency. Cut-off frequencies are de-
duced from Eqs. 1 and 2 setting k = 0. It follows

ρω5

ct3
sin

[

hω

ct

](

2Kn cos

[

hω

cl

]

− ρclω sin

[

hω

cl

])

= 0

(4)

and

ρω5cl
ct4

sin

[

hω

cl

](

2Kt cos

[

hω

ct

]

− ρctω sin

[

hω

ct

])

= 0,

(5)

for symmetrical modes and anti-symmetrical ones, re-
spectively. Eqs 4 and 5 are the product of three terms
leading to different cut-off frequencies:

- ω = 0, (6)

- ω = mπcl,t/h (m ∈ N), (7)

- ω tan(hω/cl,t) = 2Kn,t/(ρcl,t), (8)

for the first, second and last terms respectively. One
can observe that cut-off frequencies are of two types:
the first two equations (Eqs. 6-7) do not depend on the
stiffnesses whereas the solutions of the transcendental
equation (Eq. 8) does. Only the last set of cut-off
frequencies depends on the bonding between the plates.

In the (ω, k)-plane (Fig. 1), Zero-Group Velocity Lamb
modes correspond to points where the slope dω/dk of
a dispersion curve vanishes whereas the wavenumber k
does not.10 The analytical calculation of the derivative
over k of Eqs. 1 and 2 can directly lead to the ZGV
determination, i.e., ∂S/∂k and ∂A/∂k. For simplicity,
the cumbersome equations are not explicitly given
here. Unwanted solutions corresponding to bulk waves
propagating at velocities cl (p = 0) or ct (q = 0) are
eliminated by dividing Eqs. 1 and 2 by the factor (pq).
Finally, a symmetric (anti-symmetric) mode have a
ZGV point if S/(pq) and ∂S/∂k simultaneously vanish
(A/(pq) = 0 and ∂A/∂k = 0) for a given (ω0, k0) with
k0 6= 0.

1013 1015 1017

Stiffness K
n
 (N/m3)

0

1

2

3

Fr
eq

ue
nc

y 
 ω

/2
π

  (
M

H
z)

(a)

f
1

f
3

f
5

f
6

1013 1015 1017

Stiffness K
t
 (N/m3)

(b)

f
2

f
4

FIG. 2. Dependence of cut-off (dashed line and dots) and
ZGV (solid line) frequencies on interfacial stiffnesses of (a)
symmetric (b) anti-symmetric modes for two glass plates of
thickness h = 2.08 mm.

A numerical study of cut-off and ZGV frequencies as
a function of interfacial stiffnesses is conducted for glass
plates. Material properties, deduced from experiments,17

are: h = 2.08 mm, ρ = 2500 kg.m−3, cl = 5800 m.s−1

and ct = 3440 m.s−1. From previous considerations,
symmetrical and anti-symmetrical modes can be studied
independently. Fig. 2 displays the evolution of cut-off
and ZGV frequencies as a function of Kn or Kt, evolving
from 1012 to 1017 N/m3. It appears that a repulsion
occurs when two cut-off frequencies, one that depends on
interfacial stiffness (Eq. 8) and one that does not (Eq. 7),
are equal. This results in a ZGV point of frequency
lower than both cut-off frequencies. This effect is similar
to the one already established for a single plate: ZGV
points result from the repulsion between two modes of
the same symmetry having close cut-off frequencies.18
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This repulsion occurs not only when cut-off frequency
coincide but also when they remain close enough. The
range of stiffness values providing a ZGV mode is not
theoretically predicted. It appears from Fig. 2 that this
range varies a lot depending on the modes, and some
ZGV modes exist with an important cut-off frequency
difference. For the whole range of Kn, a low frequency
ZGV symmetrical mode can be observed. Its frequency
f1 is very sensitive to the value of Kn and is lower than
any ZGV frequency of the single plate (1.323 MHz for
h = 2.08 mm). Thus, the existence of this low frequency
ZGV mode is characteristic of a mechanical coupling
between the two plates. From Fig. 2 it also appears that
ZGV frequencies are increasing monotonous functions
of Kn or Kt. Hence, to one pair of Kn, Kt corresponds
a unique set of ZGV frequencies. Reciprocally, if the
ZGV resonances are experimentally observed, their
frequencies directly provide the stiffness values.

Experiments — Two glass plates were bonded by a
thin liquid or solid layer. ZGV resonance were locally
excited and detected by laser ultrasonic techniques.
Values of longitudinal and transverse stiffnesses are
deduced from the comparison of experimental spectra
and theoretical predictions. The experimental set-up
is all-optical (Fig. 3). Lamb waves are excited by a
Q-switched Nd:YAG laser (1064 nm) with a 20-ns pulse
of 8-mJ energy. The 5-mm diameter beam corresponding
roughly to the thickness of the structure was chosen to
enhance the ZGV mode generation.17 The 10 × 10 cm2

glass plates, which properties are given above, are
coupled with a liquid (water, oil) or a solid (salol) layer.
The salol is liquefied by heating and a drop is deposited
on the plates as for the liquids. The drop volume (30 µL)
is controlled with a micropipette.

FIG. 3. Scheme of the experimental set-up.

The layer thickness, estimated from the ratio of
this quantity with the measured area, is within a few
micrometers: 6.2 µm for water, 10.3 µm for oil and
5.4 µm for salol. This feature is very small compare
to the plate thickness (2.08 mm), thus the bi-layer
approximation is valid. A thin layer of aluminium
(∼ 150 nm) is deposited on one of the glass plates to
enhance laser excitation and detection. The normal
surface displacement is detected by a 532-nm wavelength
heterodyne interferometer in the laser excitation spot.

The plates are attached by two bulldog clips on each
lateral side and to avoid unwanted constraints on the
coupling layer, the plates are shifted vertically, and the
lower one is fixed at its bottom (Fig. 3). A measurement
without liquid, identical to the measurement with a
single plate, ensures that the bulldog clips do not cause
a coupling between the plates. Two different liquids
and a solid have been studied: distilled water, silicone
oil (Rhodorsil 47V50 of density ρoil = 959 kg/m3 and
viscosity ηoil = 50.2 cP) and salol (or phenyl salicylate).
The experiments were achieved 5 times for each layer.
For repeatability, the plates were carefully cleaned with
ethanol then dried. The different spectra are presented
in Fig. 4(a) and the first ZGV frequencies, as well as
their variability, are reported in Tab. I.

TABLE I. ZGV frequencies measured for different structures
(f <3 MHz). The frequency uncertainties correspond to re-
peated layer realizations.

Frequency Bonding layer Single

(kHz) Water Oil Salol plate

f1 629±8 548±4 655±1

f2 1319±1 1318±0.1 1211±5 1320±0.1

f3 1646±4 1562±6

f4 2435±0.1 2435±0.1 2778±6 2436±1

f5 2473±1

Several ZGV resonances having quality factors
Q > 150 are observed, allowing frequency measure-
ments with 0.1 % accuracy. The lower resonance
frequency f1 corresponding to a ZGV symmetrical
mode depends on the coupling layer. It demonstrates
a coupling with different bonding forces. Interfacial
stiffnesses are estimated by fitting theoretical and
experimental ZGV frequencies (Fig. 4). From the f1
peak, it follows: Kn ∈ [1.43; 1.95]× 1015N/m3 for salol,
[2.8; 4.4]×1014N/m3 for water, and [8.0; 8.7]×1013N/m3

for oil. For these three Kn values, the theory predicts
0, 1 or 2 other resonances associated with symmetrical
modes between 1 and 3 MHz: f3 and f5 (Fig. 2). The
experimental ZGV frequencies given in Tab. I fit very
well with theory. For example, the f3 frequency values
lead to Kn ∈ [2.4; 3.2] × 1014N/m3 for water, agreeing
the previous interval found for f1. Thus, the most
likely interval for Kn is [2.8; 3.2] × 1014N/m3. It is
interesting to observe that the peak associated with f5
is theoretically absent for Kn > 1.2 × 1014N/m3, such
as the one associated with f3 for Kn > 6 × 1014N/m3,
which also confirms our predictions. The intervals are
clearly distinct for the various coupling layers.

For both liquids, the second and fourth ZGV peak,
f2 and f4 are similar to the single plate resonance
frequencies (Tab. I). This corresponds theoretically to a
low value of Kn or a low value of Kt (Fig. 2). Thus, the
previous estimations of Kn imply a weak shear stiffness
(Kt 6 1011N/m3) which is reasonable for liquids. The
method is not sensitive enough to estimate stiffnesses
below this limit. As expected from bulk wave velocities,
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FIG. 4. (color online) (a) Exper-
imental spectra for the three dif-
ferent bonding layers, compared
with theoretical ZGV frequencies
for (b) a single plate, (c) sym-
metrical modes, Kn ∈ [50; 3000] ×
1012N/m3, (d) anti-symmetrical
modes, Kt ∈ [1; 700] × 1012N/m3.

the mechanical coupling of water is higher than the one
of oil. The salol exhibits two different peaks (f2 and f4)
that can be linked to Kt values. In this case, it leads
to Kt ∈ [3.2; 4.4] × 1014N/m3. The normal stiffness is
about 4 times higher than the shear stiffness (Tab. II).
The ZGV frequencies below 3 MHz were presented,
actually the spectra exhibit higher frequency peaks that
also agree with the theory.

TABLE II. Experimental interface stiffnesses.

Bonding Kn Kt d

Layer (1014 N/m3) (1014 N/m3) (µm)

Water 3.00 ± 0.20 <0.001 6.20

Oil 0.84 ± 0.04 <0.001 10.30

Salol 16.90 ± 2.60 3.80 ± 0.6 5.40

In conclusion, an analytic model was applied to
calculated Lamb modes guided in a bi-layer structure.
The dependence of cut-off and ZGV frequencies as a
function of interfacial stiffnesses has been studied. It
was demonstrated that symmetrical ZGV frequencies
depend on the normal stiffness while anti-symmetrical
ZGV frequencies depend on the tangential stiffness. A
one to one correspondence between ZGV frequencies and
spring stiffnesses was observed so that the knowledge
of the ZGV frequencies provides the stiffness values
and reciprocally. Experimental evidence of the elastic
coupling between two glass plates was achieved with
water, oil or salol as a bonding layer. In all cases,
the method is sensitive to the normal stiffness. For

liquids, the shear interfacial stiffness is too low to be
determined. However, the possibility to estimate this
parameter is demonstrated for the solid layer. In a
further investigation, a three layer model should be
applied to take into account the influence of the coupling
layer thickness on ZGV resonance frequencies. This
method could be also used to study properties of ultra
thin layers.19
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