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1 Notation and loop equations

1.1 Introduction to the problem

In this section we remind the general formalism (for simplicity, we try to keep the same

notation as the one developed in [1]) used to write the loop equations for the Gaussian Beta

ensembles. The Gaussian Beta Ensembles are defined by the following partition function:

ZN =

∫

dλ
∏

i<j

|λi − λj |2κe
−Nκ

T

N∑

i=1

λ2i
2

(1.1)

We will define κ = β
2 to match the convention of [1]. Note that our coupling constant is

written T instead of g as used in [1]. The potential is quadratic and is given by V (x) = x2

2 .
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The hermitian case is recovered as usual for κ = 1 (or β = 2 with our convention). We

also define the free energy (note the conventional minus sign in the following definition):

F = − lnZN (1.2)

The general purpose in the study of matrix models is to determine the large N asymptotic

of integrals of the form (1.1). In the case of hermitian matrix models (and to some extent for

β = 1 or β = 4), there are several methods to obtain it but most of them fail to extend to the

general β case. For example, the orthogonal polynomials strategy [11] has not been general-

ized to the general β case so far. Other method like tridiagonalization of the matrix by the

householder algorithm and connection with stochastic differential equations [14, 17, 18] are

possible but become rapidly inefficient to get subleading orders of the large N expansion.

However universality results for local statistics (universal in the sense that they do not de-

pend on the potential V (x)) have been proved to hold for general beta using and therefore it

appears important to understand better the Gaussian case for which results are usually eas-

ier to derive. The strategy used in [1] is to solve the so-called “loop equations” by using an

adaptation of the topological recursion for general beta. Historically, the topological recur-

sion has been developed to solve the hermitian matrix models loop equations and was later

adapted to any spectral curve. This situation is nicely understood (See [2] for the general

theory) and many geometric or combinatorial identities have been derived (or re-derived)

with this formalism. The situation is different regarding β-ensembles. Indeed, as we will

see later, loop equations for β-ensembles can be derived in the same way as the hermitian

case but an important simplification arises only when β = 2. Solving the loop equations for

arbitrary β and a general potential V (x) still remains an open question although some at-

tempts were tried [4, 5, 8–10]. In our case, since the model is Gaussian the situation is much

easier and the loop equations can be solved recursively. However as we will see the recursive

solution is mostly formal since the computations rapidly become tedious and hide the com-

binatorial aspects of the correlations functions. In [1] some conjectures were proposed and

we plan to prove pieces of them in this paper. Eventually we believe that understanding

properly the Gaussian case is essential since recent universality results (in the bulk or at the

edge of the spectrum) [12, 13, 15, 16] prove that the Gaussian case can be used to describe

local statistics arising for any potential V (x). We will now introduce the correlation func-

tions, the large N expansion and remind the conjecture proposed by Witte and Forrester.

1.2 Correlation functions

For an arbitrary potential V (x), it is standard to define the following functions:

Wn(x1, . . . , xn) =

〈

N
∑

i1,...,in=1

1

x1 − λi1

. . .
1

xn − λin

〉

c

Qn+1(x;x1, . . . , xn) =

〈

N
∑

i,i1,...,in=1

V ′(x)− V ′(λi)

x− λi

1

x1 − λi1

. . .
1

xn − λin

〉

c

(1.3)

– 2 –



J
H
E
P
0
9
(
2
0
1
4
)
0
0
3

with the convention that Q1(x) =

〈

N
∑

i=1

V ′(x)−V ′(λi)
x−λi

〉

. The index c stands for the “con-

nected” or “cumulant” part. As usual, the bracket notation corresponds to taking the

average relatively to the measure defined by (1.1). Note that in the definition of Pn+1, the

cumulant part only applies to the last nth variables but not to the first one. The func-

tions Wn(x1, . . . , xn) are known as correlation functions. In particular W1(x) is usually

called the resolvent or the one-point function. Moreover, in many articles the notation is

extended to n = 0 by defining W0 = F = − lnZN . When V (x) is polynomial, the functions

Pn+1(x;x1, . . . , xn) are also polynomial functions in their first variable, a key observation

to solve the topological recursion in the hermitian case.

In the Gaussian case, the situation simplifies greatly because we have:

Q1(x) = N

Qn+1(x, x1, . . . , xn) = 0 , ∀n ≥ 1 (1.4)

Indeed, V ′(x) = x and therefore Q1(x) =

〈

N
∑

i=1
1

〉

= N . For n ≥ 1, Qn+1 vanishes because

the cumulant part makes it zero by symmetry.

1.3 Loop equations

It is known for general potentials V (x) (See [6]) that the previous functions satisfy the

so-called loop equations (we denote I = {x1, . . . , xn−1}):

W1(x)
2 − N

T
V ′(x)W1(x) +

(

1− 1

κ

)

W ′
1(x) +W2(x, x) +

N

T
Q1(x) = 0 (1.5)

and ∀n > 1:
[

NV ′(x)
T

− 2W1(x) +

(

1

κ
− 1

)

∂x

]

Wn(x, I) = Wn+1(x, x, I)

+
∑

J⊂I,J /∈{∅,I}
W|J |+1(x, J)Wn−|J |(x, I \ J) +

N

T
Qn(x; I)

+
1

κ

∑

xi∈I

∂

∂xi

Wn−1(x, I \ {xi})−Wn−1(I)

x− xi
(1.6)

These equations can be easily derived with infinitesimal transformations or with a suitable

integration by parts. A direct observation shows that the case κ = 1 (i.e. β = 2) is special

since the coefficient in front of ∂xWn(x, I) vanishes.

1.4 Large N expansion

In many cases, it can be proved that the correlation functions have a series expansion in 1
N

at large N . In particular this situation is expected when the potential V (x) has only one

minimum around which the eigenvalues are expected to accumulate. In other cases, the sit-

uation may not be as nice and the 1
N expansion is also known not to reproduce the complete

asymptotic expansion of the correlation functions (See [7, 16]). We will not say more about

– 3 –
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these aspects here and refer the reader to the standard literature about this issue. We just

mention here that this issue is mostly irrelevant for the Gaussian case since it has been

proved recently [15] that in the Gaussian case there exists a large N expansion of the form:

Wn(x1, . . . , xn) =
∞
∑

l=0

(

N

T

)2−n−l √
κ
2−2n−l

W (l)
n (x1, . . . , xn)

Qn(x;x1, . . . , xn−1) =
∞
∑

l=0

(

N

T

)2−n−l √
κ
2−2n−l

Q(l)
n (x1, . . . , xn)

F =
∞
∑

l=0

(

N
√
κ

T

)2−l

F (l) (1.7)

In particular we have both even and odd powers of N in the expansion whereas in the

hermitian case only even powers appear. The structure of the loop equations implies that

each W
(l)
n is a polynomial in

(√
κ− 1√

κ

)

of degree l with the upper half of its coefficients

only determined by V (x).

2 Solving recursively the loop equations in the Gaussian case

2.1 Initialization: spectral curve

We now focus on the Gaussian case and we project the loop equation (1.5) to its leading

order in 1
N . We get:

W
(0)
1 (x) =

1

2

(

x−
√

x2 − 4T
)

(2.1)

which gives the standard semi-circular law. We introduce the following notation:

y(x) = V ′(x)− 2W
(0)
1 (x) =

√

x2 − 4T , y2(x) = x2 − 4T (2.2)

Note that this equation is independent of κ and therefore corresponds to the usual spectral

curve of the Gaussian Hermitian matrix model.

2.2 Rewriting of the loop equations

In order to have more compact notations we define:

~
def
=

√
κ− 1√

κ
(2.3)

Let us now project the loop equations (1.5) to the various powers of the series expansion

in 1
N . Remembering that the functions Q

(g)
1 (x) vanish for g > 0 we get:

y(x)W
(1)
1 (x) = ~∂xW

(0)
1 (x) (2.4)

and ∀g ≥ 2 :

y(x)W
(g)
1 (x) =

g−1
∑

p=1

W
(p)
1 (x)W

(g−p)
1 (x) + ~∂xW

(g−1)
1 (x) +W

(g−2)
2 (x, x) (2.5)

– 4 –
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Equation (2.4) gives W
(1)
1 (x) while (2.5) taken at g = 0 gives W

(0)
2 (x, x) but not the com-

plete function W
(0)
2 (x1, x2). Note that equation (2.5) is only useful to determine W

(g+2)
1 (x)

from the knowledge of W
(g)
2 (x, x) but the opposite way would not determine W

(g)
2 (x1, x2)

but only its diagonal part W
(k)
2 (x, x).

The expansion of (1.6) gives the following set of equations (n ≥ 1 and g ≥ 0):

y(x)W (g)
n (x, I) = ~∂xW

(g−1)
n (x, I) +W

(g−2)
n+1 (x, x, I)

+
′
∑

J⊆I

g
∑

p=0

W
(p)
|J |+1(x, J)W

(g−p)
n−|J | (x, I \ J) +

∑

xi∈I

∂

∂xi

(

W
(g)
n−1(x, I \ xi)−W

(g)
n−1(I)

x− xi

)

(2.6)

with the notation ′ on the double sum indicating that the terms (J = ∅, p = 0) and

(J = I, p = g) should be discarded. Moreover we use here the convention that W
(−1)
n and

W
(−2)
n are identically zero. We clearly see that the equations only involve ~ =

√
κ − 1√

κ

but not directly κ itself. In particular it means that we have the symmetry κ → 1
κ , a well-

known fact in the matrix models literature. Finally, we observe that (2.5) is a special case

of (2.6) with n = 1 so that we can conveniently regroup them under the same notation.

2.3 Observation for the derivatives of y(x)

From the definition of the function y(x) (2.2), we have:

y′(x) =
x

y(x)
, y′′(x) = − 4T

y(x)3
, y(3)(x) =

12Tx

y(x)5
(2.7)

and more generally:

∀n ≥ 2 : y(n)(x) =
Rn(x)

y(x)(2n−1)
with Rn(x) a polynomial of degree n-2 (2.8)

The polynomials Rn(x) satisfy the following recursion:

∀n ≥ 1 : Rn+1(x) = (x2 − 4T )R′
n(x)− (2n− 1)xRn(x) with R1(x) = x (2.9)

Note that we have a special case when passing from R1(x) to R2(x) because the leading

term cancels (that is why the degree of R2(x) is 0 and not 2). It is then straightforward

to prove by induction that:

1. ∀n ≥ 2 : Rn(x) is a polynomial of degree n− 2

2. Rn(x) is even when n is even and Rn(x) is odd when n is odd

3. The leading coefficient of Rn(x) is given by 2T (−1)n+1n!

4. If we denote Rn(x) =
n−2
∑

k=0

a
(n)
k xk the coefficients of the polynomials, then the non-zero

coefficients are determined by:

∀ 0 ≤ k ≤ n− 1 : a
(n+1)
k = (k − 2n)a

(n)
k−1 − 4T (k + 1)a

(n)
k+1 (2.10)

with the convention that a
(n)
−1 = 0 and a

(n)
n−1 = 0

These properties are useful to compute the first correlation functions more efficiently.

– 5 –
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2.4 Computation of the first correlation functions

In the Gaussian case the loop equations (2.5) and (2.6) can be solved recursively because

they do not imply any unknown functions (that would not be the case for a general potential

where some unknown Q
(g)
n functions would appear). In order to illustrate the conjectures

proposed in [1] we present here the first correlation functions. In the rest of the paper we

will denote y for y(x) and yi for y(xi) to shorten formulas:

W
(1)
1 (x) =

~

2

(

1

y
− x

y2

)

(2.11)

W
(0)
2 (x1, x2) = − 1

2(x1 − x2)2
+

x1x2 − 4T

2(x1 − x2)2y1y2
= −y1y2 − x1x2 + 4T

2(x1 − x2)2y1y2
(2.12)

We observe that if we introduce f(x1, x2) = x1x2 − 4T we get y = f(x, x) so that

W
(0)
2 (x1, x2) is regular at x1 = x2 and we obtain:

W
(0)
2 (x, x) =

T

y4
(2.13)

From the loop equations, it is also easy to observe that the correlation functions

W
(0)
n (x1, . . . , xn) do not depend on κ and are therefore identical to the standard hermitian

ones. The next orders are:

W
(2)
1 (x) = ~

2

[

− x

y4
+

x2 + T

y5

]

+
T

y5

W
(3)
1 (x) = 5~3

(

x2 + T

y7
− x(x2 + 2T )

y8

)

+ ~

(

x2 + 6T

2y7
− x(x2 + 30T )

2y8

)

W
(0)
3 (x1, x2, x3) =

2T (x1x2 + x1x3 + x2x3 + 4T )

y31y
3
2y

3
3

W
(0)
3 (x, x, x) =

2T (3x2 + 4T )

y9
(2.14)

and

W
(0)
4 (x1, x2, x3, x4) =

1

y5
1y

5
2y

5
3y

5
4

[

− 12288T 6
T

5
(

1536 (x2
1 + perm)− 4096 (x1x2 + perm)

)

+T
4
(

− 1536x1x2x3x4 + 640 (x1x2x
2
3 + perm) + 640 (x3

1x2 + perm)
)

+T
3
(

288 (x1x2x3x
3
4 + perm)− 64 (x1x

2
2x

3
3 + perm)− 64 (x3

1x
3
2 + perm)− 64 (x1x2x

2
3x

2
4 + perm)

−96 (x2
1x

2
2x

2
3 + perm)

)

+T
2
(

48x2
1x

2
2x

2
3x

2
4 − 48 (x3

1x
3
2x3x4 + perm)− 8 (x3

1x
3
2x

2
3 + perm)− 8 (x3

1x
2
2x

2
3x4 + perm) +

)

+T
(

8 (x3
1x

3
2x

2
3x

2
4 + perm) + 6 (x3

1x
3
2x

3
3x4 + perm)

)]

(2.15)

The word “perm” indicates that we include all other terms needed to obtain a symmetric

polynomial in (x1, x2, x3, x4). The evaluation at coinciding points is:

W
(0)
4 (x, x, x, x) =

24T (3x4 + 18Tx2 + 8T 2)

y14

W
(4)
1 (x) = ~

4

(

−37x3 + 92Tx

y10
+

37x4 + 123Tx2 + 21T 2

y11

)

+~
2

(

−23x3 + 180Tx

2y10
+

23x4 + 454Tx2 + 176T 2

2y11

)

+
21T (x2 + T )

y11

– 6 –
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W
(1)
2 (x, x) = ~

(

−x(x2 + 18T )

2y7
+

x2 + 4T

2y6

)

W
(2)
2 (x, x) =

T (20T + 21x2)

y10
+ ~

2

(

98Tx2 + 38T 2 + 8x4

y10
− 8x3 + 45Tx

y9

)

(2.16)

We recover here the results presented in [1] in which the authors proposed the following

conjecture:

Conjecture 2.1 (From [1], page 9) For l ≤ 2 even we have:

W
(l)
1 (x)=~l

[

P l
1(x)

y3l−2
+
P l
2(x)

y3l−1

]

+~l−2

[

P l
3(x)

y3l−2
+
P l
4(x)

y3l−1

]

+. . .+~2

[

P l
l−1(x)

y3l−2
+
P l
l (x)

y3l−1

]

+
P l
l+1(x)

y3l−1
(2.17)

where degxP
l
j = l−1 for j = 1, 3, . . . , l−1 and degxP

l
j = l for j = 2, 4, . . . , l and degxP

l
l+1 =

l − 2. For l ≥ 1 odd we have:

W l
1(x) = ~

l

[

P l
1(x)

y3l−2
+

P l
2(x)

y3l−1

]

+~
l−2

[

P l
3(x)

y3l−2
+

P l
4(x)

y3l−1

]

+ · · ·+~

[

P l
l (x)

y3l−2
+

P l
l+1(x)

y3l−1

]

(2.18)

where the polynomials have degxP
l
j = l − 1 for j = 1, 3, . . . , l and degxP

l
j = l for j =

2, 4, . . . , l + 1. Moreover, the polynomials involved in both formulas are either even or odd

functions of x according to their degree. Furthermore, the leading term in the x → ∞
expansion of W l

1(x) is of order x−2l−1 for all l ≥ 0.

In their article, the authors presented computations up to l = 6 supporting their

conjecture. In this article we prove that the conjecture holds for certain coefficients and we

propose a generalization to all correlation functionsW
(l)
n (x1, . . . , xn) evaluated at coinciding

points x1 = · · · = xn.

3 Main theorem and generalization of the conjecture

First from the loop equations (2.6) a straightforward induction shows that the functions

W
(g)
n (x1, . . . , xn) are polynomials in ~ of degree g and are either even or odd functions of

~ relatively to their degree. Therefore we introduce the following definition:

Definition 3.1 For k ≥ 1, we define w
(g)
k,2r(x) to be the coefficient of order ~

g−2r of

W
(g)
k (x, . . . , x). The index r goes from 0 to g

2 when g is even and from 0 to g−1
2 when

g is odd. In other words we have:

• When g is even:

W
(g)
1 (x) = ~

gw
(g)
1,0(x) + ~

g−2w
(g)
1,2(x) + · · ·+ ~

2w
(g)
1,g−2(x) + w

(g)
1,g(x)

W
(g)
2 (x, x) = ~

gw
(g)
2,0(x) + ~

g−2w
(g)
2,2(x) + · · ·+ ~

2w
(g)
2,g−2(x) + w

(g)
2,g(x)

. . .

W
(g)
k (x, . . . , x) = ~

gw
(g)
k,0(x) + ~

g−2w
(g)
k,2(x) + · · ·+ ~

2w
(g)
k,g−2(x) + w

(g)
k,g(x) (3.1)

– 7 –
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• When g is odd:

W
(g)
1 (x) = ~

gw
(g)
1,0(x) + ~

g−2w
(g)
1,2(x) + · · ·+ ~w

(g)
1,g−1(x)

W
(g)
2 (x, x) = ~

gw
(g)
2,0(x) + ~

g−2w
(g)
2,2(x) + · · ·+ ~w

(g)
2,g−1(x)

. . .

W
(g)
k (x, . . . , x) = ~

gw
(g)
k,0(x) + ~

g−2w
(g)
k,2(x) + · · ·+ ~w

(g)
k,g−1(x) (3.2)

We can now state our generalized version of the conjecture:

Conjecture 3.1 For n ≥ 1 and for g ≥ 0 and g even:

W (g)
n (x, . . . , x) = ~

g

(

P
(g)
n,1(x)

y5n+3g−7
+

P
(g)
n,2(x)

y5n+3g−6

)

+ ~
g−2

(

P
(g)
n,3(x)

y5n+3g−7
+

P
(g)
n,4(x)

y5n+3g−6

)

+ · · ·+ ~
2

(

P
(g)
n,g−1(x)

y5n+3g−7
+

P
(g)
n,g−2(x)

y5n+3g−6

)

+
P

(g)
n,g+1(x)

y5n+3g−6
(3.3)

where deg(P
(g)
g+1(x)) = 2n+ g − 4, for all j even: deg(P

(g)
n,j ) = 2n+ g − 2 and for all j odd:

deg(P
(g)
n,j ) = 2n+g−4. Moreover, the polynomials are even or odd functions of x according

to their degree. For n ≥ 1 and for g ≥ 1 and g odd:

W (g)
n (x, . . . , x) = ~

g

(

P
(g)
n,1(x)

y5n+3g−7
+

P
(g)
n,2(x)

y5n+3g−6

)

+ ~
g−2

(

P
(g)
n,3(x)

y5n+3g−7
+

P
(g)
n,4(x)

y5n+3g−6

)

+ . . .

+~

(

P
(g)
n,g (x)

y5n+3g−7
+

P
(g)
n,g+1(x)

y5n+3g−6

)

(3.4)

where for all j even: deg(P
(g)
n,j ) = 2n + g − 2 and for all j odd: deg(P

(g)
n,j ) = 2n + g −

3. Moreover, the polynomials are even or odd functions of x according to their degree.

Moreover, the polynomials are even or odd functions of x according to their degree.

Eventually we have at x → ∞:

W (g)
n (x, . . . , x) = O

(

1

x3n+2g−2

)

(3.5)

Note that the last part of the conjecture is equivalent to prove that the leading co-

efficient of the polynomials P
(g)
n,j and P

(g)
n,j+1 are opposite. Indeed, a trivial expansion at

x → ∞ of formulas (3.3) and (3.4) shows that we are two orders above the one claimed

in (3.5). The first order is canceled by the condition on the leading coefficients of the

polynomials and the second one vanishes trivially from the parity of the functions.

Unfortunately, we were not able to completely prove our conjecture with elementary

means. Our best results are the following:

Theorem 3.1 The conjecture holds for w
(g)
1,0(x), w

(g)
1,2(x), w

(g)
2,0(x) for any g ≥ 0 as well as

for any w
(g)
k,g(x) with k ≥ 1 and g ≥ 0. In other words, we proved the conjecture of Witte

and Forrester for the leading, subleading and last coefficients of the ~ expansion of W
(g)
1 (x).
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Moreover we prove the asymptotic part of the conjecture at x → ∞:

Theorem 3.2 The asymptotic expansion at x → ∞ of the functions W
(g)
n (x, . . . , x) are of

the form:

W (g)
n (x, . . . , x) = O

(

1

x3n+2g−2

)

(3.6)

The proofs of the two theorems are given in the next sections and in appendix A we il-

lustrate the validity of the conjecture with the computation of the first correlation functions.

4 Proof of theorem 3.2

From the definition, it is clear that ∀g ≥ 1, the functions W
(g)
n (x, x2, . . . , xn) have a series

expansion at x → ∞ starting at least at O
(

1
x2

)

. Let us start with the general loop equations

(2.6) and let us take the asymptotic expansion at x = ∞. Since all correlation functions

W
(g)
n (x, x1, . . . , xn−1) are of order at least = O

(

1
x2

)

at infinity and because y(x) = x+O(1)

we observe that the order O(
(

1
x

)

only gets two contributions and we have:

lim
x→∞

x2W (g)
n (x, x1, . . . , xn−1) = −

n−1
∑

i=1

∂xi
W

(g)
n−1(x1, . . . , xn−1) (4.1)

Let us now focus on the expansion of W
(g)
1 (x) at x = ∞. The last equation for n = 2 gives:

∀x1 ∈ C : W
(g)
2 (x, x1)

x→∞
=

∂x1W
(g)
1 (x1)

x2
+ o

(

1

x2

)

(4.2)

The first loop equation can be rewritten as:

y(x)W
(g)
1 (x) =

g−1
∑

p=1

W
(p)
1 (x)W

(g−p)
1 (x) + ~∂xW

(g−1)
1 (x) +W

(g−2)
2 (x, x) (4.3)

We want to prove the expansion for W
(g)
1 (x) by induction on g. Let us assume that

for p ≤ g − 1 we have W
(p)
1 (x) = O

(

1
x2p+1

)

as wanted. From (4.2) we get that

W
(g−2)
2 (x, x) = O

(

∂xW
(g−2)
1 (x)

x2

)

= O
(

1
x2g

)

. All terms in the sum of (4.3) are by in-

duction of order O
(

1
x2g+2

)

while the derivative term is of order O
(

1
x2g

)

. Dividing by

y(x)gives that W
(g)
1 (x) is at least of order O

(

1
x2g+1

)

. We also note that only terms in

~∂xW
(g−1)
1 (x) + W

(g−2)
2 (x, x) contribute in the leading order of the expansion at x → ∞

of W
(g)
1 (x). Since the induction initializes nicely for W

(1)
1 (x) and W

(2)
1 (x) (see explicit

formulas) we get the following theorem: For all g ≥ 1 we have:

W
(g)
1 (x)

x→∞
= O

(

1

x2g+1

)

W
(g)
2 (x, x1)

x→∞
=

∂x1W
(g)
1 (x1)

x2
+ o

(

1

x2

)

(4.4)
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Combining both results implies:

W
(g)
2 (x, x)

x→∞
= O

(

1

x2g+4

)

(4.5)

From (4.1), a trivial recursion on n (with g fixed) gives:

W (g)
n (x, . . . , x)

x→∞
= O

(

1

x2g+3n−2

)

(4.6)

Indeed, at each step we gather a factor 1
x2 from the first variable and an additional

derivative relatively to one variable that increases the degree by 1. Therefore the exponent

must be proportional to 3n. The initialization of the induction is provided by W
(g)
1 and

leads to the previous formula.

5 Proof theorem 3.1

5.1 The case of w
(g)
k,g(x)

The terms w
(g)
k,g(x) correspond to the limit when ~ → 0 of the correlation functions:

w
(g)
k,g(x) = lim

~→0
W

(g)
k (x, . . . , x) (5.1)

These terms correspond to the hermitian case for which many results are known. In

particular, the structure proposed in the conjecture has been known for a long time and

can be easily recovered by standard results regarding the topological recursion described

in [2] for the spectral curve y2 = x2 − 4T . The main challenge is thus to prove that the

structure remains valid for higher order in ~.

5.2 The ~
g order in W

(g)
1 (x)

First we prove the properties for the ~
g order of W

(g)
1 (x), that is to say with our notation

for w
(g)
1,0(x). The strategy is the following: we observe that the loop equation (2.5) projects

into the highest order in ~ like:

w
(g)
1,0(x) =

1

y(x)



∂xw
(g−1)
1,0 (x) +

g−1
∑

p=1

w
(p)
1,0(x)w

(g−p)
1,0 (x)



 (5.2)

In particular, note that the termW
(g−2)
2 (x, x) cannot provide any contribution here because

its degree in ~ is at most ~g−2. Now the previous equation gives a recursive way to compute

w
(g)
1,0(x) from the knowledge of w

(1)
1,0(x) = 1

2

(

1
y(x) − x

y(x)2

)

. Let us prove by induction on

g that the properties presented in the theorem hold for w
(g)
1,0(x). First we observe that it

holds for w
(1)
1,0(x) thus initializing the induction (note that W

(0)
1 (x) never appears in the

loop equations in the double sum so we do not need it to perform the recursion). Then

inserting the desired form of w
(k)
1,0(x) with k ≤ g − 1 into (5.2) leads to:

P
(g)
1,1 (x) = −x(3g − 5)P

(g−1)
1,1 (x) + (x2 − 4T )P

(g−1)′

1,1 (x)

+

g−1
∑

p=1

P
(p)
1,1 (x)P

(g−p)
1,2 (x) + P

(p)
1,2 (x)P

(g−p)
1,1 (x)
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P
(g)
1,2 (x) = −x(3g − 4)P

(g−1)
1,2 (x) + (x2 − 4T )P

(g−1)′

1,2 (x)

+

g−1
∑

p=1

P
(p)
1,2 (x)P

(g−p)
1,2 (x) + P

(p)
1,1 (x)P

(g−p)
1,1 (x) (5.3)

It is then straightforward to see that the claimed degrees for P
(g)
1,1 (x) and P

(g)
1,2 (x) match

properly with the r.h.s. to give respectively g−1 and g. The parity of the polynomials also

follows directly from the one arising in the r.h.s. (one needs to split into cases g even or g

odd to write it properly but no problem arises here). The claim regarding the leading coef-

ficients of the polynomials is a little more subtle. We denote by p
(g)
1,1 and p

(g)
1,2 the leading co-

efficients of respectively P
(g)
1,1 and P

(g)
1,2 . Looking at the leading coefficients of (5.3) leads to:

p
(g)
1,1 = −(3g − 5)p

(g−1)
1,1 + (g − 1)p

(g−1)
1,1 +

g−1
∑

p=1

p
(p)
1,1p

(g−p)
1,2 + p

(p)
1,2p

(g−p)
1,1

p
(g)
1,2 = −(3g − 4)p

(g−1)
1,2 + gp

(g−1)
1,2 +

g−1
∑

p=1

p
(p)
1,2p

(g−p)
1,2 + p

(p)
1,1p

(g−p)
1,1 (5.4)

If we assume by induction that p
(k)
1,1 + p

(k)
1,2 = 0 for all k ≤ g− 1 then summing the last two

equations gives p
(g)
1,1 + p

(g)
1,2 = 0. Hence we have proved here that the main theorem holds

for w
(g)
1,0(x).

5.3 The ~
g order in W

(g)
2 (x, x)

In order to prove the results for w
(g)
2,0(x) we first need to take the general loop equation

(2.6) at coinciding points x1 = x2 = · · · = xn. We know from their definition that the

correlations functions W
(g)
n (x1, . . . , xn) are symmetric functions in x1, . . . , xn and that they

are regular at x1 = · · · = xn. We get:

y(x)W (g)
n (x, . . . , x) =

~

n
∂x

(

W (g−1)
n (x, . . . , x)

)

+W
(g−2)
n+1 (x, x, . . . , x)

+
′
∑

J⊆I

g
∑

p=0

W
(p)
|J |+1(x, . . . , x)W

(g−p)
n−|J | (x, . . . , x) +

(n− 1)

2

(

∂2
1W

(g)
n−1

)

(x, . . . , x) (5.5)

where the notation
(

∂2
1W

(g)
n−1

)

(x, . . . , x) means that we must take twice the derivatives of

(x1, . . . , xn) 7→ W
(g)
n−1(x1, . . . , xn) in its first variable x1 and then evaluate it at coinciding

points x1 = · · · = xn = x. In particular for n = 2, (5.5) leads to:

y(x)W
(g)
2 (x, x)=

~

2
∂x

(

W
(g−1)
2 (x, x)

)

+W
(g−2)
3 (x, x, x)+2

g−1
∑

p=0

W
(p)
2 (x, x)W

(g−p)
1 (x)+

1

2
W

(g)′′

1 (x)

(5.6)

Taking the coefficient in ~
g gives:

y(x)w
(g)
2,0(x) =

1

2
∂x

(

w
(g−1)
2,0 (x)

)

+ 2

g−1
∑

p=0

w
(p)
2,0(x)w

(g−p)
1,0 (x) +

1

2
w

(g)′′

1,0 (x) (5.7)
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Since we know the properties for w
(g)
1,0(x) from the last subsection, we get a recursive

relation that determines w
(g)
2,0(x) from the lower cases w

(k)
2,0(x) with k ≤ g− 1. We note also

that the properties stated in the theorem hold for W
(0)
2 (x, x) = T

y(x)4
hence initializing our

induction. Inserting the desired form and the knowledge about w
(g)
1,0(x) into (5.7) gives: (we

mention here that according to 2.3 we have the following observations: y(x)2 = x2 − 4T ,

y′(x) = x
y(x) and y′′(x) = − 4T

y(x)3
)

P
(g)
2,2 (x) = −

(3g + 1)x

2
P

(g−1)
2,2 (x) +

x2 − 4T

2
P

(g−1)′

2,2 (x)

+2

g−1
∑

p=0

(

P
(p)
2,2 (x)P

(g−p)
1,2 (x) + (x2

− 4T )P
(p)
2,1 (x)P

(g−p)
1,1 (x)

)

+
1

2
g(3g − 1)(4 + 3x2)P

(g)
1,2 (x)− (3g − 1)x(x2

− 4T )P
(g)′

1,2 (x) +
1

2
(x2

− 4T )P
(g)′′

1,2 (x)

P
(g)
2,1 (x) = −

3gx

2
P

(g−1)
2,1 (x) +

x2 − 4T

2
P

(g−1)′

2,1 (x) + 2

g−1
∑

p=0

(

P
(p)
2,1 (x)P

(g−p)
1,2 (x) + P

(p)
2,2 (x)P

(g−p)
1,1 (x)

)

+
1

2
(3g − 2)(4g + (3g − 1)x2)P

(g)
1,1 (x)− (3g − 2)x(x2

− 4T )P
(g)′

1,1 (x)

+
1

2
(x2

− 4T )P
(g)′′

1,1 (x) (5.8)

We remind here that a prime means a derivative relatively to x. Similarly to the

previous case, it is straightforward to observe that the degree and parity properties extend

from the cases k ≤ g − 1 to g by using the results for P
(p)
1,1 (x) and P

(p)
1,2 (x). The leading

coefficients are again a little more subtle. Indeed the leading coefficients in x of (5.8) gives:

p
(g)
2,2 = −(3g + 1)

2
p
(g−1)
2,2 +

g + 1

2
p
(g−1)
2,2 + 2

g−1
∑

p=0

(

p
(p)
2,2p

(g−p)
1,2 + p

(p)
2,1p

(g−p)
1,1

)

+
3

2
g(3g − 1)p

(g)
1,2 − (3g − 1)gp

(g)
1,2 +

g(g − 1)

2
p
(g)
1,2

p
(g)
2,1 = −3g

2
p
(g−1)
2,1 +

g

2
p
(g−1)
2,1 + 2

g−1
∑

p=0

(

p
(p)
2,1p

(g−p)
1,2 + p

(p)
2,2p

(g−p)
1,1

)

+
(3g − 2)(3g − 1)

2
p
(g)
1,1 − (3g − 2)(g − 1)p

(g)
1,1 +

(g − 1)(g − 2)

2
p
(g)
1,1 (5.9)

Then one observes the identity :

3

2
g(g − 1)− (3g − 1)g +

1

2
g(g − 1) =

1

2
(3g − 2)(3g − 1)− (3g − 2)(g − 1) +

1

2
(g − 1)(g − 2)

so that the last lines of each quantity are opposite. Hence the induction gives p
(g)
2,1+p

(g)
2,2 = 0

concluding the proof for the w
(g)
2,0(x).

5.4 The ~
g−2 order in W

(g)
1 (x)

The loop equation for n = 1 is given by:

y(x)W
(g)
1 (x) =

g−1
∑

p=1

W
(p)
1 (x)W

(g−p)
1 (x) + ~W

(g−1)′

1 (x) +W
(g−2)
2 (x, x) (5.10)
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Taking order ~g−2 in the previous equation gives:

w
(g)
1,2(x) =

1

y(x)



2

g−1
∑

p=2

w
(p)
1,2w

(g−p)
1,0 (x) + w

(g−1)′

1,2 (x) + w
(g−2)
2,0 (x)



 (5.11)

From the last section, we know that the desired properties hold for w
(k)
1,0(x) and w

(k)
2,0(x).

Therefore the previous equation gives us a recursive way to get w
(g)
1,2(x) from the lower cases

w
(k)
1,2(x) with k ≤ g − 1. The recursion holds for w

(1)
1,2(x) = 0 as well as w

(2)
1,2(x) = w

(0)
2,0(x)

that are known cases. A straightforward computation gives:

P
(g)
1,3 (x) = 2

g−1
∑

p=2

(

P
(p)
1,3 (x)P

(g−p)
1,2 (x) + P

(p)
1,4 (x)P

(g−p)
1,1 (x)

)

+ (x2 − 4T )P
(g−1)′

1,3 (x)

+(3g − 5)xP
(g−1)
1,3 (x) + P

(g−2)
2,1 (x)

P
(g)
1,4 (x) = 2

g−1
∑

p=2

(

P
(p)
1,4 (x)P

(g−p)
1,2 (x) + (x2 − 4T )P

(p)
1,2 (x)P

(g−p)
1,1 (x)

)

+ (x2 − 4T )P
(g−1)′

1,4 (x)

+(3g − 4)xP
(g−1)
1,4 (x) + P

(g−2)
2,2 (x) (5.12)

From the last set of equations, it is then easy to observe from the knowledge of P
(k)
1,1 (x),

P
(k)
1,2 (x), P

(k)
2,1 (x) and P

(k)
2,2 (x) that an easy recursion on g will lead to the fact that P

(g)
1,3 (x)

and P
(g)
1,4 (x) satisfy the expected conditions on their degree, parity and leading coefficients

as stated in the conjecture. The induction goes in the same spirit as before and presents

no difficulty. Therefore we conclude that the desired properties hold for w
(g)
1,2(x).

6 Limitation of our strategy

The strategy involved in our previous proofs is to use the loop equations only at coinciding

points x1 = · · · = xn = x and to use a recursive way to prove our conjecture. In general

the loop equations (2.6) at coinciding points are:

y(x)W (g)
n (x, . . . , x) =

~

n
∂x

(

W (g−1)
n (x, . . . , x)

)

+W
(g−2)
n+1 (x, x, . . . , x)

+
n−1′
∑

j=0

g
∑

p=0

(

n− 1

j

)

W
(p)
|J |+1(x, . . . , x)W

(g−p)
n−|J | (x, . . . , x) +

n− 1

2

(

∂2
1W

(g)
n−1

)

|(x,...,x)
(6.1)

In the double sum, we exclude as usual the terms (j, p) = (0, 0) and (n−1, g). Note here that

we have used the symmetry of the functions W
(g−1)
n (x1, . . . , xn−1) in order to rewrite the

term involving ~. At this point it is tempting to define f
(g)
n (x) = W

(g)
n (x, . . . , x) and hope

that previous equation will lead to a nice induction. Unfortunately this is not true when

n ≥ 3 because the term
(

∂2
1W

(g)
n−1

)

|(x,...,x)
cannot be rewritten easily with f

(g)
n (x). Indeed,

the second derivative of f
(g)
n−1(x) would imply terms like

(

∂i∂jW
(g)
n−1

)

|(x,...,x)
that become

problematic when i 6= j. For n = 1 and n = 2, these terms are no longer problematic and
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we could hope to derive results for these cases (that in particular recover the conjecture of

Witte and Forrester). Unfortunately, equation (6.1) contains the term W
(g−2)
n+1 (x, x, . . . , x)

that increases the value of n thus prohibiting a simple recursive approach for every order

in ~. However as we proved in this article the conjecture holds for highest and lowest

orders in ~ and there is little doubt that it should hold for the middle ones. A possible

approach could be to consider the full correlation functions W
(g)
n (x1, . . . , xn) and propose

a general form that we could insert into the loop equations and that we could prove by in-

duction. This strategy looks tedious because the proposed form should be precise enough

to contain our conjecture but general enough to be proved by induction. Moreover the

computations proposed in appendix A show that the coinciding point limit is very singular

and prevented us to guess a general formula for W
(g)
n (x1, . . . , xn). Another possible ap-

proach could be to use the expansion at x → ∞ and insert it in a clever way into the loop

equations to get information about the problematic term
(

∂2
1W

(g)
n−1

)

|(x,...,x)
. Eventually a

last possible way to prove the conjecture could be to propose a formula for every derivative
(

∂i1
1 . . . ∂in

n W
(g)
n

)

|(x,...,x)
and prove them by induction. In this approach, the difficult step

is no longer becomes to go from (k, p) with k < n and p < g to (n, g) for which (6.1) applies

nicely but to find a way to get the derivatives of W
(g)
n (x, . . . , x) from the loop equations.

The author would be very happy to work with anyone interested with this problem.

A Illustration of the conjecture: computation of the first correlation

functions

In this section we illustrate our conjecture with the computation of the first correlation

functions W
(g)
n (x1, . . . , xn) as well as their limit at coinciding points x1 = · · · = xn = x.

We find:

W
(1)
2 (x1, x2).

W
(1)
2 (x1, x2) =

~

2

[

x1x2 + 4T

y31y
3
2

− x21x
2
2 + 4Tx21 − 4Tx1x2 − 3x1x

3
2 − 32T 2 + 16Tx22

(x1 − x2)3y1y42

+
x21x

2
2 + 4Tx22 − 4Tx1x2 − 3x31x2 − 32T 2 + 16Tx21

(x1 − x2)3y41y2

]

(A.1)

which non trivially gives:

W
(1)
2 (x, x) = ~

(

−x(x2 + 18T )

2y7
+

x2 + 4T

2y6

)

(A.2)

The limit at coinciding points is non trivial and comes from the fact that:

P (x1, x2) = x21x
2
2 + 4Tx22 − 4Tx1x2 − 3x31x2 − 32T 2 + 16Tx21 ⇒ P (x, x) = −2y(x)4 (A.3)

W
(2)
2 (x1, x2). We have also:

W
(2)
2 (x1, x2) =

A(x1, x2)

y71y
7
2

+ ~
2

[

P (x1, x2)

y41y
4
2(x1 − x2)4

+
Q(x1, x2)

y31y
6
2(x1 − x2)3

− Q(x2, x1)

y61y
3
2(x1 − x2)3

+
S(x1, x2)

y71y
7
2(x1 − x2)4

]

(A.4)
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with:

A(x1, x2) = T
(

5x1
5
x2 + 5x1x2

5 + 4x1
4
x2

2 + 4x1
2
x2

4 + 3x1
3
x2

3
)

+T
2
(

− 52x1
3
x2 − 52x1x2

3
− 52x1

2
x2

2 + 4x1
4 + 4x2

4
)

+T
3
(

− 16x1
2
− 16x2

2 + 208x1x2

)

+ 320T 4

P (x1, x2) =
3

2
x1

4
x2

2 +
3

2
x1

2
x2

4
− 6x1

3
x2

3

+T
(

6x1
4 + 6x2

4
− 8x1x2

3
− 8x1

3
x2 + 40x1

2
x2

2
)

+T
2
(

− 88x1
2
− 88x2

2 + 32x1x2

)

+ 192T 3

Q(x1, x2) = −3x1
4
x2

2 + 7x1
3
x2

3
−

9

2
x1

2
x2

4 +
3

2
x1x2

5

+T
(

− 4x1
4 + 4x1

3
x2 + 12x1

2
x2

2 + 8x2
4
− 32x1x2

3
)

+T
2
(

− 24x1x2 + 24x1
2 + 48x2

2
)

− 64T 3

S(x1, x2) =
23

2
x1

7
x2

5 +
23

2
x1

5
x2

7
− 10x1

8
x2

4
− 10x1

4
x2

8

+3x1
9
x2

3 + 3x1
3
x2

9
− 6x1

6
x2

6

+T
(

− 36x1
2
x2

8
− 36x1

8
x2

2 + 128x1
4
x2

6 + 128x1
6
x2

4
− 7x1

7
x2

3
− 7x1

3
x2

7

+13x1
9
x2 + 13x1x2

9
− 268x1

5
x2

5
)

+T
2
(

− 156x1
7
x2 − 156x1x2

7 + 388x1
6
x2

2 + 388x1
2
x2

6 + 4x1
8 + 4x2

8

+284x1
3
x2

5 + 284x1
5
x2

3
− 320x1

4
x2

4
)

+T
3
(

− 3376x1
4
x2

2
− 3376x1

2
x2

4 + 16x1x2
5
− 16x2

6
− 16x1

6 + 16x1
5
x2 + 2912x1

3
x2

3
)

+T
4
(

12160x1
2
x2

2 + 3392x1
4 + 3392x2

4
− 3712x1x2

3
− 3712x1

3
x2

)

+T
5
(

− 10240x1
2
− 10240x2

2 + 2048x1x2

)

+ 12288T 6 (A.5)

Note that A(x, x) ∝ y(x)4, P (x, x) ∝ y(x)6, Q(x, x) ∝ y(x)6 and S(x, x) ∝ y(x)12

W
(1)
3 (x1, x2, x3).

W
(1)
3 (x1, x2, x3) = ~

[

Q111(x1, x2, x3)

y51y
5
2y

5
3

+
Q110(x1, x2, x3)

y31y
3
2y

6
3(x1 − x3)3(x2 − x3)3

+
Q101(x1, x2, x3)

y31y
6
2y

3
3(x1 − x2)3(x2 − x3)3

+
Q011(x1, x2, x3)

y61y
3
2y

3
3(x1 − x2)3(x1 − x3)3

]

(A.6)

with polynomials Q given by:

Q111 = x1
2
x2

3
x3

3 + x1
3
x2

3
x3

2 + x1
3
x2

2
x3

3

+T
(

8x1
2
x2

2
x3

2 + 2x1
2
x2

3
x3 + 2x1x2

3
x3

2 + 2x1
3
x2x3

2 + 2x1
2
x2x3

3

+2x1x2
2
x3

3 + 2x1
3
x2

2
x3 + 2x1

3
x3

3 + 2x1
3
x2

3 + 2x2
3
x3

3
)

+T
2
(

− 8x2
2
x3

2
− 8x1

2
x2

2
− 8x1

2
x3

2
− 32x1x2

2
x3 − 32x1x2x3

2
− 32x1

2
x2x3

−32x1x3
3
− 32x1x2

3
− 32x1

3
x3 − 32x2x3

3
− 32x2

3
x3 − 32x1

3
x2

)

+T
3
(

224x1x3 + 224x2x3 + 224x1x2 − 64x1
2
− 64x2

2
− 64x3

2
)

+ 640T 4 (A.7)

Q110 = +2x1
3
x2

4
x3

4 + 2x1
4
x2

3
x3

4
− 3x1

3
x2

3
x3

5
− x1

4
x2

4
x3

3

+T
(

− 18x2
3
x3

6
− 18x1

3
x3

6
− 6x1x3

8 + 48x1x2
3
x3

5 + 24x1
4
x2

3
x3

2
− 18x1x2

4
x3

4

+6x1
2
x2

3
x3

4
− 52x1

3
x2

3
x3

3
− 6x2x3

8
− 12x1

4
x2

4
x3 + 36x1

2
x2

2
x3

5
− 18x1

4
x2x3

4

+48x1
3
x2x3

5 + 6x1
3
x2

2
x3

4
− 48x1

2
x2x3

6
− 48x1x2

2
x3

6 + 6x2
4
x3

5
− 12x1

2
x2

4
x3

3

+24x1
3
x2

4
x3

2 + 28x1x2x3
7
− 12x1

4
x2

2
x3

3 + 18x1
2
x3

7 + 18x2
2
x3

7 + 6x1
4
x3

5
)

+T
2
(

88x2x3
6 + 48x2

4
x3

3
− 32x3

7 + 48x1
4
x3

3
− 72x2

2
x3

5
− 48x2

3
x3

4 + 48x1
2
x2

4
x3
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+48x1
4
x2

2
x3 − 48x1x2

4
x3

2
− 48x1

4
x2x3

2 + 48x1x2
3
x3

3
− 144x1

2
x2

2
x3

3

+168x1x2
2
x3

4 + 168x1
2
x2x3

4 + 48x1
3
x2x3

3
− 288x1x2x3

5

−72x1
2
x3

5 + 88x1x3
6
− 48x1

3
x3

4
)

+T
3
(

96x1
2
x3

3
− 96x1

3
x3

2
− 96x1

3
x2

2 + 96x2
2
x3

3
− 96x1

2
x2

3
− 96x2

3
x3

2

−32x1
4
x3 − 32x2

4
x3 − 32x1

4
x2 − 32x1x2

4 + 64x1
3
x2x3 + 64x1x2

3
x3

−256x1x2x3
3 + 224x2x3

4 + 224x1x3
4
)

+T
4
(

384x1x2
2
− 384x2

2x3 + 384x2x3
2 + 384x1x3

2 + 384x1
2
x2 − 384x1

2
x3

−1024x3
3 + 256x1

3 + 256x2
3
− 256x1x2x3

)

+T
5
(

2048x3 − 1024x1 − 1024x2

)

(A.8)

and

Q101(x1, x2, x3) = −Q110(x1, x3, x2) and Q011(x1, x2, x3) = Q110(x3, x2, x1) (A.9)

Q111 is a symmetric polynomial and we have:

Q111(x, x, x) = y(x)4(3x4 + 50Tx2 + 40T 2)
Q110(x, x2, x3)

(x− x3)3(x2 − x3)3
→

x2,x3→x
2x(216T 2 − 122x2 + 21x4) (A.10)

We can obtain similar limits for Q101 and Q011 so we find:

W
(1)
3 (x, x, x) = ~

[

3x4 + 50Tx2 + 40T 2

y11
− x(3x4 + 160Tx2 + 354T 2)

y12

]

(A.11)

We checked our conjecture for all correlation functions required to obtain W
(5)
1 (x). As

one can see from the previous example, taking coinciding points x1 = · · · = xn = x is

highly non trivial and increases the power of y(x) at the denominator quite substantially.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] N.S. Witte and P.J. Forrester, Moments of the Gaussian β Ensembles and the large-N

expansion of the densities, arXiv:1310.8498 [INSPIRE].

[2] B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion,

Commun. Num. Theor. Phys. 1 (2007) 347 [math-ph/0702045] [INSPIRE].

[3] I. Dumitriu and A. Edelman, Matrix models for β ensembles, J. Math. Phys. 43 (2002) 5830

[math-ph/0206043].

[4] A. Brini, M. Mariño and S. Stevan, The uses of the refined matrix model recursion,

J. Math. Phys. 52 (2011) 052305 [arXiv:1010.1210] [INSPIRE].

[5] O. Marchal, One-cut solution of the β ensembles in the Zhukovsky variable,

J. Stat. Mech. 01 (2012) P01011 [arXiv:1105.0453] [INSPIRE].

[6] B. Eynard, Topological expansion for the 1-Hermitian matrix model correlation functions,

JHEP 11 (2004) 031 [hep-th/0407261] [INSPIRE].

– 16 –

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1310.8498
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.8498
http://dx.doi.org/10.4310/CNTP.2007.v1.n2.a4
http://arxiv.org/abs/math-ph/0702045
http://inspirehep.net/search?p=find+EPRINT+math-ph/0702045
http://dx.doi.org/10.1063/1.1507823
http://arxiv.org/abs/math-ph/0206043
http://dx.doi.org/10.1063/1.3587063
http://arxiv.org/abs/1010.1210
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.1210
http://dx.doi.org/10.1088/1742-5468/2012/01/P01011
http://arxiv.org/abs/1105.0453
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0453
http://dx.doi.org/10.1088/1126-6708/2004/11/031
http://arxiv.org/abs/hep-th/0407261
http://inspirehep.net/search?p=find+EPRINT+hep-th/0407261


J
H
E
P
0
9
(
2
0
1
4
)
0
0
3

[7] G. Bonnet, F. David and B. Eynard, Breakdown of universality in multicut matrix models,

J. Phys. A 33 (2000) 6739 [cond-mat/0003324] [INSPIRE].

[8] B. Eynard and O. Marchal, Topological expansion of the Bethe ansatz and non-commutative

algebraic geometry, JHEP 03 (2009) 094 [arXiv:0809.3367] [INSPIRE].

[9] L. Chekhov, B. Eynard and O. Marchal, Topological expansion of the Bethe ansatz and

quantum algebraic geometry, arXiv:0911.1664 [INSPIRE].

[10] L.O. Chekhov, B. Eynard and O. Marchal, Topological expansion of β-ensemble model and

quantum algebraic geometry in the sectorwise approach, Theor. Math. Phys. 166 (2011) 141

[arXiv:1009.6007] [INSPIRE].

[11] M.L. Mehta, Random matrices, 3rd edition, Pure Appl. Math. Ser. 142, Elsevier, London

U.K. (2004) [ISBN:0120884097].

[12] P. Bourgade, L. Erdös and H.T. Yau, Bulk universality of General β Ensembles with

non-convex potential, J. Math. Phys. 53 (2012) 095221 [arXiv:1201.2283].

[13] P. Bourgade, L. Erdös and H.T. Yau, Universality of General β Ensembles,

arXiv:1104.2272.

[14] J.A. Ramirez, B. Rider and B. Virag, Beta ensembles, stochastic Airy spectrum and a

diffusion, J. Amer. Math. Soc. 24 (2011) 919 [math.PR/0607331].

[15] G. Borot and A. Guionnet, Asymptotic expansion of β matrix models in the one-cut regime,

Commun. Math. Phys. 317 (2013) 447 [arXiv:1107.1167].

[16] G. Borot and A. Guionnet, Asymptotic expansion of β matrix models in the multi-cut regime,

arXiv:1303.1045.

[17] R. Allez, J.P. Bouchaud and A. Guionnet, Invariant β-ensembles and the Gauss-Wigner

crossover, Phys. Rev. Lett. 109 (2012) 094102 [arXiv:1205.3598].

[18] R. Allez and L. Dumaz, Tracy-Widom at high temperature, J. Stat. Phys. 156 (2014) 1146

[arXiv:1312.1283].

– 17 –

http://dx.doi.org/10.1088/0305-4470/33/38/307
http://arxiv.org/abs/cond-mat/0003324
http://inspirehep.net/search?p=find+EPRINT+cond-mat/0003324
http://dx.doi.org/10.1088/1126-6708/2009/03/094
http://arxiv.org/abs/0809.3367
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.3367
http://arxiv.org/abs/0911.1664
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.1664
http://dx.doi.org/10.1007/s11232-011-0012-3
http://arxiv.org/abs/1009.6007
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.6007
http://dx.doi.org/10.1063/1.4751478
http://arxiv.org/abs/1201.2283
http://arxiv.org/abs/1104.2272
http://dx.doi.org/10.1090/S0894-0347-2011-00703-0
http://arxiv.org/abs/math.PR/0607331
http://dx.doi.org/10.1007/s00220-012-1619-4
http://arxiv.org/abs/1107.1167
http://arxiv.org/abs/1303.1045
http://dx.doi.org/10.1103/PhysRevLett.109.094102
http://arxiv.org/abs/1205.3598
http://dx.doi.org/10.1007/s10955-014-1058-z
http://arxiv.org/abs/1312.1283

	Notation and loop equations
	Introduction to the problem
	Correlation functions
	Loop equations
	Large N expansion

	Solving recursively the loop equations in the Gaussian case
	Initialization: spectral curve
	Rewriting of the loop equations
	Observation for the derivatives of y(x)
	Computation of the first correlation functions

	Main theorem and generalization of the conjecture
	Proof of theorem 3.2
	Proof theorem 3.1
	The case of w(k,g)**((g))(x)
	The hbar**g order in W(1)**((g))(x)
	The hbar**g order in W(2)**((g))(x,x)
	The hbar**(g-2) order in W(1)**((g))(x)

	Limitation of our strategy
	Illustration of the conjecture: computation of the first correlation functions

