
HAL Id: hal-01062773
https://hal.science/hal-01062773

Submitted on 12 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Be a Collaborator and a Competitor in Crowdsourcing
System

Iheb Ben Amor, Mourad Ouziri, Soror Sahri, Naouel Karam

To cite this version:
Iheb Ben Amor, Mourad Ouziri, Soror Sahri, Naouel Karam. Be a Collaborator and a Competitor in
Crowdsourcing System. Mascots2014, 2014, pp.12. �hal-01062773�

https://hal.science/hal-01062773
https://hal.archives-ouvertes.fr

Be a Collaborator and a Competitor in
Crowdsourcing System

Iheb Ben Amor
Université Paris Sorbone Cité

Paris Descartes
France

Email: iheb.ben-amor
@etu.parisdescartes.fr

Mourad Ouziri and Soror Sahri
Université Paris Sorbone Cité

Paris Descartes
France

Email: firstname.lastname
@parisdescartes.fr

Naouel Karam
Freie Universität Berlin

Germany
Email: naouel.karam

@fu-berlin.de

Abstract—Crowdsourcing is emerging as a powerful paradigm
to solve a wide range of tedious and complex problems in
various enterprise applications. It spawns the issue of finding
the unknown collaborative and competitive group of solvers. The
formation of collaborative team should provide the best solution
and treat that solution as a trade secret avoiding data leak
between competitive teams due to reward behind the outsourcing
of the issue. The formation of effective competitive teams not only
requires adequate skills between members of each team, but also
good team connectivity through social network and to provide the
best solution and treat that solution as a trade secret avoiding data
leak between teams due to reward behind the outsourcing of the
issue. In this paper, we propose a data leak aware crowdsourcing
system called SocialCrowd. We introduce a clustering algorithm
that uses social relationships between crowd workers to discover
all possible teams while avoiding inter-team data leakage.

I. INTRODUCTION

A new trend of teamwork has been emerged unconstrained
by local geography, available skill set, networking and
deep relationships the crowdsourcing. It is the action of
outsourcing tasks, traditionally performed by an employee
or contractor, to an undefined group of people through an
open call [3]. Crowdsourcing applications should be enable
to seek for people crowd on demand to perform a wide
range of complex and difficult tasks. Thousands human actors
will provide their skills and capabilities in response to the call.

We introduce a type of crowdsourcing called SocialCrowd
based on the efficiency of social network to outsource a task
to be performed by people on demand instead of an open
world as Mechanical Turk is doing. In fact, the interactions
between people involved to answer a query become complex
more and more and the collaboration leads to the emergence
of social relations and a social network can be weaved for
human-task environment.

The goal of SocialCrowd system is to let people collaborat-
ing on a joint task in the crowd environment where they may
seek for other members towards social crowd relationships for
achieving a business goal. Thus, many competitive teams can
provide a set of answers to the call. However, as the crowd task
is competitive between teams, it is important to group people in
a manner there is no inter-teams leaking. Such mechanism will
avoid the information leak between crowd people in different

teams. Hence, the issues and challenges considered in our
system, include:

(i) how to build up and discover teams answering the query
towards the social relationships.

(ii) how to avoid the solution disclosure of the problem
during the teams construction between competitive groups.

In fact, people on demand collaborating to a task may share
sensitive information (part of the problem solution)that may be
propagated or forwarded to other crowd members in the social
network.

Few works dealing with crowdsourcing are provided. In
[7], the Trivia Master system generates a very large Database
of facts in a variety of topics, cleans it towards a game
mechanism and uses it for question answering. In [14] is
proposed a novel approach for integrating human capabilities
in crowd process flows.

In [10]is introduced an answering queries with
Crowdsourcing. The authors explain their challenges
and present an initial solution to the problems of finding
new data and comparing data. For this, they propose a
simple SQL schema and query extensions that enable the
integration of crowdsourced data and processing, they present
also the design of croudDB including new crowdsourced
query operators and plan generation techniques that combine
crowdsourced and traditional query operators. After that, they
describe methods for automatically generating effective user
interfaces for crowdsourced tasks, and present the result of
micro-benchmarks of performance of individual crowdsourced
query operators on the ATM platform and demonstrate that
CrowdDB in indeed able to answer queries that traditional
DBMS cannot.

In [9] designed a wizard that may automatically configure
a user’s privacy settings with minimal effort from the user
to aim policy preferences learning, to classify users and
an automatic access rules affectation to new user. They
developed a tool, an easy to use and provides very simple
user interactions, it leveraging the machine learning paradigm
of active learning, it interactively asks the user to assign
privacy labels to specific, carefully selected, friends. As the

user provides more input, the quality of the classifier improves.

[17] models the relationship strength in on-line social
networks, the authors develop an unsupervised model to
estimate relationship strength from interaction activity and
user similarity. Them model can represent the full spectrum of
relationship strength and propose an unsupervised method to
infer a continuous-valued relation-ship strength links since the
relationship strength directly impact the nature and frequency
of on-line interactions between a pair of users so impact the
privacy policies of each user.

In [15], the authors introduced privacy protection tool that
measures the amount of sensitive information leakage in a
user profile and suggest self-sanitization action to regulate
the amount of leakage. The protection tool determines the
probability of individual sensitive attribute inference in a
user profile based on her/his friendship relations and friend’s
attribute values.

In [4] has concluded the need of more flexible mechanisms
of protection, making a user able to decide which network
participants are authorized to access his/her resources and
personal information to enforce privacy policies. Hence,
they focused their work on relationship protection by
proposing a strategy exploiting cryptographic techniques to
enforce a selective dissemination of information concerning
relationships across a social networks.

In [18] the authors introduce the problem of image search.
Even when we have to deal with variations in lighting,
texture, image quality, the search should be precise and
return very few erroneous results. They wish to return one
validate image before deadline, while minimizing the money.
To do this, they propose a solution named CrowdSearch, in
order to provide an accurate image search system for mobile
devices by combining an automated Image search and then
a human validation based on crowdsourcing that increases
search result accuracy. The combination presents a complex
set of trade-offs involving delay, accuracy and cost.

In [16] they are interested in the problems of finding all
duplicate records. They propose an hybrid human machine
system for entity resolution. They uses machine based
techniques to discard those pair of records that look very
dissimilar and only asks the world to verify the remaining
pairs which need human insight. They combine the efficiency
of the machine based approaches with the answer quality
obtained from people. They uses heuristics approach to fight
against the problem of processing time.

In [5] are interested in the problems of linking entity from
text to the linked open data cloud. They linked definitions
to words in texts. To do this, they propose the ZenCrowd
allowing linking definitions to words in texts. They combine
both algorithmic and manual linking, automate manual linking
via crowdsourcing and dynamically assess human workers
with a probabilistic reasoning framework.

In [6], the authors present an hybrid human machine
pipeline, a novel system used for answering complex keyword
queries. Using the crowd to understand the query (gain knowl-
edge of query structure and entity relationships). They develop
a new language to answer the queries.

[2] develops how to exploit the unique capabilities of the
crowd to mine data from the crowd. They define a method of
accessing personal databases based on association rules. The
definitions of support and confidence are used as a measure
for the significance of a rule per user.

The work in [8] is based on the social networks where
the proposed systems searches the most suitable worker to
answer the task. It is proposed a model based on the workers’
profiles using information on social network platforms. The
authors developed a native Facebook application named Open
Turk implementing tasks assignment.

In [13] it is introduced the problem of the Interactive
Crowdsourcing, they present the smartcrowd a framework for
harnessing the crowd to approximate ground truth effectively
and efficiently, while taking into account the innate uncer-
tainty of human behavior. They formulate task assignment as
an optimization problem, and rely on pre-indexing workers
and maintain the indexes adaptively, in such a way that the
task assignment process gets optimized both qualitatively,
and computation time-wise. They present rigorous theoretical
analyses of the optimization problem and propose optimal and
approximation algorithms.

Privacy and data leaking are not at all discussed in these
works.

Contributions:

We address the aforementioned challenges by proposing
the SocialCrowd framework to discover competitive and
collaborative composition teams answering the query through
a social network while prohibit data leak between those teams.

The discovering method (DLTD) is a clustering algorithm
to classify the potential crowd people from the social network
that are close to collaborate in the same team. The system
will not group them in the competitive clusters, thus, avoid
inter-teams data leaking.

To handle such leak, the HDPD algorithm, a Markov chain-
based algorithm, is proposed to discover the implicit social
relationships between crowd people.

The rest of the paper is organized as follows: section 2 pro-
vides an overview of our SocialCrowd system. The propagation
process is described in section 3. In section 4 is discussed the
clustering based approach to discover competitive clusters in
the social network answering a business call. We discuss our
experiments in Section V.

II. SocialCrowd: AN OVERVIEW

The SocialCrowd architecture is composed of three main
components as depicted in Fig.1:

Data Propagation
Process(DPP)

Social
network

Clustering
Process (CP)

Teams
Constitution

Data leak
aware

Identitied Teams

C
lu

ste
rin

g

Query
Clustering model

Propagation model

Direct
Propagation

data

Identitied Members

User
Interface

Query
Registration

Direct and Implicit relation matrix

Data leak aware

Data leak Background

Fig. 1. SocialCrowd architecture

• Data propagation component:

In order to compose data leak free teams, the data
propagation component computes the propagation of
data in the social network. The component uses the
collected (inputs) and shared (outputs) information of
each social member. The proposed data propagation
algorithm HDPD (High Data Propagation Discovery)
deals with the dynamic aspects of the network.

It first computes the probabilities of data propagation
from each member to direct friends in the social
network. Then, it calculates data propagation prob-
abilities from each member to indirect friends.It is a
based Markov Chain model detailed in next section.

• Clustering component:

Given the data propagation probabilities provided in
the previous step, the clustering component groups
crowd workers1 into competing clusters (or teams)
free of data leak. For that purpose, we define a
distance to capture data leaks.

Crowd workers with higher propagation probability
are part of the same cluster. The proposed clustering
algorithm DLTD (Data Leak free Team Discovery)
returns all potential data leak free teams. Details about
the DLTD algorithm are given in Section IV.

• Team Constitution:

The module will constitute the different team based on
the provided result from the clustering process (CP).
It will use the user profile information provided from
the social network. It will notify the users about the
team discovering results.

1In the rest of the paper, we use the terms ”member” and ”crowd worker”
interchangeably.

III. A MARKOV CHAIN-BASED APPROACH FOR DATA
PROPAGATION

The aim of our approach is to build up teams from
the social networks, all the while avoiding propagation of
data between competitive clusters. For that, the clustering
algorithm needs all the possible interactions between members
of a social network.

A Social Network is set of direct relationships between
members. These direct relationships allow us to compute
the probability of data propagation (and consequently any
data leak) between only direct friends. However, to discover
competitive teams that are data leak aware, one needs to
know all possible data propagations from friend-to-friend in
the whole social network.

The Markov chain model is used, because

• in real world the data propagation depends only of the
present state and not the past one.

• The discovering of the maximum data propagation
between members is probabilistic.

The data share is an imminent information to identify
competitive teams (by prohibiting leakage between discovered
clusters) and collaborative teams (by ensuring that the
members in the cluster interact well).

In real social network, data are shared from friend to
friend and so on, so the friendship relation is a good indicator
of data share in our case.

As example, the social network of Fig. 2 shows that Alice
shares 90% of his data with Mickael. This rate is considered as
probability of data propagations between direct friends noted
by p(Alice,Mickael) = 0.9. However, the data propagation
to indirect friends (to friends-of-friends) are implicit. They
depend on data propagation probabilities between direct
friends. In the Fig. 2, the probability of data propagation from
Alice to indirect member David is computed by the expression:

p(Alice,David) = p(Alice,Mickael) × p(Mickael,David) =
0.9× 0.5 = 0.45.

All the possible paths in the social network have to be explored
to compute data propagation between two members. This is a
hard computing task as real social networks are quite complex.

In this section, we present a Markov chain-based approach
for handling the implicit/indirect relations between members.
We present a model and an algorithm of data propagation
across the entire social network.

A. A graph-based model of data sharing relationships

In this paper, we model the relationships in the social
network without focusing on their nature (e.g., friendship,
sharing, etc.). We only need to reason on the quantity of
data propagated between members in the social network. Thus,

Fig. 2. A simple data propagation

hereafter we denote all kinds of relationships by the friendship
relation.

We model the network as a labeled directed graph
G 〈M,A,P 〉 where :

• M = {mi}: set of nodes where each node represents
a social network member.

• A = {aij = (mi,mj)/(mi,mj) ∈M}: set of edges
where each edge represents a relationship between two
members.

• P = {pij/∀i, j pij ∈ [0, 1]}: is a set of labels
where each label pij of the edge aij represents the
rate/probability of data shared by the member mi ∈M
with his friend member mj ∈M .

In the given graph model, the friend relationship is repre-
sented using edge A labeled with the real probability of shared
data P . We calculate the probability pij that the member mi

shares his data with member mj by the simple formula:

pij =
quantity of data that mi shared with mj

quantity of data held by mi

where we consider the data held by the member mi as only
the data that mi received from other direct members in the so-
cial network. For instance in Fig. 2, the arc (Alice,Mickael)
indicates that Alice has a relationship with Mickael, and
shares with him 90% of his data and the arc (Alice,George)
indicates that Alice has a relationship with George but she
never shares any data with him.

In the following, we present the Markov propagation model
to compute the implicit probability of data propagation be-
tween indirect friends (e.g., the propagation probability from
Alice to David in Fig. 2).

B. Markov chain-based model for data propagation

Given an owned data of a known member, the aim of this
section is to compute the propagation probabilities to all the
possible members of the social network. The premise is that in
social networks data is propagated from one friend to another
and so on. This observation about propagation of owned data
from friend to friend corresponds to the well known Markov
chain [11].

Definition 1: (Markov chain)

A Markov chain is a sequence of random variables
X1, ..., Xn with the Markov property; that the future state
depends only on the the present state, and not on the past
states. Formally,

P (Xn+1 = x|X1 = x1, X2 = x2, . . . , Xn = xn) =
P (Xn+1 = x|Xn = xn)

From this formal definition, the probability that a given
member gets some data depends on the probability to get it
from only his direct friends (and not from indirect friends).

We represent the probability of data propagation between
direct friends as a Propagation Matrix (defined as follows).

Definition 2: (Propagation matrix)

The Propagation Matrix of a social network G 〈M,A,P 〉
is a matrix that gives the probability pij of propagating data
between each couple of friend members (mi,mj), where

pij =

quantity of data that mi shared with mj

quantity of data held by mi
if (mi,mj) ∈ A

1 for i = j
0 else

This propagation matrix has the following properties:

• pii = 1 means that member mi does not lose the
owned due to sharing.

•
∑
k∈[1,n] (pik) 6= 1, as data may be propagated to

several members at the same time.

• pij 6= pji, which means that a member mi may share
data with a friend mj in a quantity that is different
from what his friend mj may share with him.

• (mi,mj) ∈ A; pij 6= 0, which means that members
do not necessarily share their data with their friends.

• (mi,mj) /∈ A ⇒ pij = 0, to express that data
propagation to indirect friends in the social network
is unknown.

Based on the above mentioned definitions, the propagation
matrix of the social network of Fig. 2 is given as follows:

Bob Alice John David Mickael George

Bob 1 0 0 0.1 0.1 0.7
Alice 0 1 0 0 0.9 0
John 0 0 1 0.2 0 0
David 0 0 0.2 1 0, 5 0
Mickael 0 0.9 0.3 0.5 1 0.2
George 0.7 0.3 0.1 0 0 1

C. A Markov chain-based algorithm of data propagation

The propagation matrix of Section III-A gives only the
probability of data propagation between direct friends. But
the matrix is not sufficient to compute the probability that
data is propagated from one member to other indirect-friend(s)
because:

1) The propagation probability between direct friends
is not optimal. Following different paths in the graph
of the social network, we can calculate different
probabilities of propagating data between two
members.

In Fig. 2, the direct friend relationship from Alice to
George indicates that Alice’s data is not propagated
to George as p(Alice,George) = 0. However, through
Mickael, Alice’s data may be propagated to George
with probability 0.9× 0.2 = 0.18.

2) Propagation to indirect-friends is not given in the
propagation matrix and is set to zero. The probability
of sharing data with indirect friends is zero in the
propagation matrix because members share their
data only with direct friends. However, data may be
propagated from direct friends to indirect-friends.

In the propagation matrix corresponding to Fig. 2,
probability that George’s data will be propagated
to indirect-friend David is zero because George is
not a direct friend. However, George’s data may be
propagated to David through Bob with probability
0.7× 0.1 = 0.07.

3) Computing propagation to indirect-friends is hard.
The probability that Alice’s data may be propagated
to David (probability of dotted red arrow in Fig. 2)
is hard to compute because it requires exploring all
the propagation paths from Alice to David (dotted
green arrows in Fig. 2 - although the graph of Fig.
2 is small, there are seven paths).

All the possible paths in the social network have to
be explored to compute data propagation between two
members. This process is not straight-forward as real
social networks are quite complex.

In this regard, we propose an algorithm to calculate the
optimal probability of data propagation from a given member
to all the members of the social network. This algorithm is
based on an energy function we define as follows:

Definition 3: (Energy function)

The energy function pi is the probability that data is
propagated to the member mi. Since in our model data is
propagated following a Markov chain:

pi = Max
mk∈Nmi

(pk × pki) (1)

where,
Nmi

is a set of direct friends of mi, pk is the energy function
of mk and pki is the probability of propagating data from mk

to mi.

The maximum function is the suitable aggregation function
as the aim of the approach is to estimate the maximum risk of
data propagation. The aim is to compute the data probability
propagation pij and pji of all the pairs of members (mi,mj).
This requires the use of an iterative algorithm. The pro-
posed HDPD algorithm computes the optimal energy functions
Po∗ = (po1, po2, ..., pon), which represent probabilities of data
propagation from the member mo to members {mi}i∈[1,n]. It
processes as follows:

• Initialisation:powner = 1,∀i 6= owner pi = 0. That is
only the owner has the data.

• Iterations: At each iteration, the algorithm computes
pi for mi ∈ Nmiusing the energy function.

• Stops: The algorithm stops when the maximum prob-
ability of each member is reached.

The algorithm is recursive, the complexity of the algorithm is
the main call. Given, n the number of registered members, m
the number of relations and f(n) the main call propagation
function complexity. This function is composed of a test of
complexity O (n) and it makes n recursive call. Then, the
complexity of this function is : O(n ∗m)× n.

Our algorithm is presented as follows:

Algorithm 1 HIGH DATA PROPAGATION DISCOVERY
(HDPD)
Require: G 〈M,A,PM〉 – labeled directed graph of the so-

cial network where PM is the propagation matrix
mo – owner of the data

Ensure: P – all the implicit data propagation from mo

1: P = (p1, . . . , po, . . . , pn) – Energy function at the current
step.

2: PS = (ps1, . . . , pso, . . . , psn) – Energy function at the
next step.

3: continue: boolean value indicating if the optimal proba-
bilities are reached.
{I}nitializations

4: po = 1 and ∀i 6= o, pi = 0
5: continue← true
{I}terations

6: while continue do
7: for each members mi 6= mo do
8: psi = Maxmk∈Nmi

(pk × pki))
9: end for

10: if P 6= PS then
11: pi ←Max (psi, pi)
12: else
13: continue← false
14: end if
15: end while
16: return P

Running the algorithm on the propagation matrix of previ-
ous subsection III-B results in the following graph (but only
some links are shown for readability):

Fig. 3. Data propagation graph with implicit relationships

This graph shows that:

• For indirect friend relationships such as
(Alice,David) and (Alice, John), the algorithm

calculated data propagation probabilities that do not
exist in the initial graph of Fig. 2.

• For some direct friend relationships such as
(Alice,George) and (Bob,Mickael), the algorithm
updates the data propagation probabilities from 0
and 0.1 to the optimal values 0.18 and 0.19 re-
spectively. These optimal probabilities are calcu-
lated using the paths (Alice,Mickael,George) and
(Bob,George,Alice,Mickael), respectively.

IV. DATA LEAK AWARE CLUSTERING

In this section, we provide details on the clustering process
that groups crowd members into data leak free clusters, based
on the data propagation technique defined in the previous
section. In order, to give chance to every registered member
in the competition, the clustering process discover all possible
solutions including each member only to one cluster. In
contrast to existing clustering algorithms (such as k-means
[12] and our previous presented algorithm [1]) that generate a
single clustering solution, our proposed approach generates all
possible clustering solutions while preserving their respective
data.

Before presenting the algorithm details, we give the fol-
lowing definitions:

Definition 4: (Cluster)

A cluster C is set of crowd members (having propagation,
or no strong propagation):

C = {mi} such that ∀mi,mj ∈ C, pij ∈ [0, 1], pji ∈ [0, 1]

Definition 5: (Data leak free clusters)

Two clusters Ck and Cs are data leak free iff:

∀mi ∈ Ck,∀mj ∈ Cs, pij ≤ η ∧ pji ≤ η
In definition 5, we consider there is a risk of data leak

between two clusters Ck and Cs if the propagation rate
between all the members of the two clusters is less than
a threshold η. The clustering algorithm uses the following
definition (of distance) to generate data leak free clusters:

Definition 6: (Distance)

The data propagation between a member mi and a cluster
Ck is measured by the distance Ω(Ck,mi), defined as follows
:

Ω(Ck,mi) = Max
mj∈Ck

pij

It follows from definitions 5 and 6 that there is a data leak
from a cluster Ck to member mi if: Ω(Ck,mi) > η.

Definition 7: (Clustering solution)

A solution S = {C1, ..., Cn}n≥1 is set of clusters such
that:

∀i, j ∈ [1, n] Ci and Cj are data leak free.

Note that a solution is incomplete if it does not contain all the
members, and complete otherwise.

Using definition 5, we transform the propagation matrix,
computed by the HDPD algorithm, into a symmetric matrix as
follows:

∀i, j, pij = Max(pij , pji)

The propagation matrix will be modified such as consid-
ering now an undirected graph and update the relationships
between two users with the high value of their propagation.
The maximum will be the criteria used to avoid data leaking
between clusters.

As mentioned earlier, the Data Leak free Team Discovery
algorithm (DLTD) will generate all the possible clustering so-
lutions based on the defined symmetric matrix. The processes
are as follows:

Initialization:

• A random member m0 is selected, and made the
member of a new cluster C1. That is, C1 = {m0}

• The initial partial solution is created as S1 = {C1}.

Using the partial solution(s) Si = {C1, ..., Cn}n≥1 (i is the
number of clustered members in Si), the algorithm clusters a
new member mi according to the following rules:

Rule 1: If mi has data leak with only one cluster Ck in
Si (i.e., ∃Ck ∈ SiΩ(Ck,mi) > η and ∀Cjj 6=k ∈
Si,Ω(Cj ,mi) ≤ η), then the member mi is clustered
into Ck. The partial solution Si is increased to Si+1

such that Si+1 = Si where Ck = Ck ∪ {mi}.
Rule 2: If mi has no data leak with any cluster in Si

(i.e., ∀Cj ∈ Si,Ω(Cj ,mi) > η), then the member
is clustered in each cluster while creating a new
solution for each instance.

That is, Si increases to n possible partial solutions
Sαi+1: Sαi+1 = Si ∪ {Cα}

where Cα = Cα ∪ {mi} for α ∈ [1, n].

Rule 3: If mi has data leak with two or more clusters in Si,
i.e., for SCi in Si, SCi = {C1, ...Ck}2≤k≤n such
that ∀Cj ∈ SCi,Ω(Cj ,mi) > η, then there are two
possible solutions (S1

i+1 and S2
i+1):

(1)Merge the clusters {C1, ...Ck} and mi into one
cluster

⋃
i=1,k

Ci ∪ {mi} and The partial solution Si is

increased to S1
i+1

(2) Compute the subset L ⊆
⋃

Ci∈SCi

Ci such that

members of L∪{mi} have direct or indirect data leak
between them and Create a new cluster Cg = L∪{mi}
and remove members of L from their respective clus-
ter finally the partial solution Si increased to S2

i+1

S2
i+1 = Si ∪ {Cg}.

The DLTD clustering algorithm applies the above men-
tioned defined rules until all members are clustered in

all possible solutions. The algorithm is traced as fol-
lows:

Algorithm 2 DATA LEAK FREE TEAM DISCOVERY

Input: The symmetric propagation matrix, M : set of all crowd
members to be clustered.
Output: All possible solutions Si of data free clustering.
{I}nitializations
randomly select m0 from M;
create the cluster C1 = m0;
S1 = C1 call FreeLeakClustering (S1,M −m0); Clustering
function Function FreeLeakClustering(Solution Si, Members
M);
if M = ∅ then

Return Si;
\Si is a final solution as there are no remaining members
to cluster

end if
if Rule1: mi has data leak with only one cluster Ck in Si then
Ck = Ck ∪mi

Sji+1 = Si
call FreeLeakClustering(Si+1,M −mi);

end if
if Rule2: mi has no data leak with any cluster in Si then

for each cluster Cj in Si do
Cj = Cj ∪mi

Sji+1 = Si
call FreeLeakClustering(Sji+1,M −mi);

end for
end if
if Rule3: mi has data leak with two or more cluster SCi in
Si, SCi = C1, . . . , Ck2≤k≤n ⊆ Si then
\ First alternative solution Merge all the clusters of SCi
with mi into the new cluster Cg . that is,
Cg = C1 ∪ . . . ∪ Ck ∪mi;
call FreeLeakClustering(S1

i+1,M −mi);
\ Second alternative solution compute the subset L ⊆⋃
Ci
∈ SCi Ci of members having direct or indirect data

leak between them ’see Rule3.2);
Create a new cluster Cg = L

⋃
mi;

for mj in L do
Delete mj from its cluster in Si;

end for
S2
i+1 = Si

⋃
Cg

call FreeLeakClustering(S2
i+1,M −mi);

end if

As example, Fig. 4 shows the resolution graph generated
by DLTD clustering algorithm when running on the graph of
Fig. 2. Internal nodes (S∗i , i ≤ 5) are partial solutions and leaf
nodes (S∗6) are final solutions as all members are clustered
(there are 6 members to be clustered for this example).

The graph shows five solutions of clustering. In each
solution, members of the social network are grouped into
data leak free clusters, which can be easily checked using
symmetric propagation matrix given at the beginning of this
section.

Fig. 4. Resolution graph generated by the clustering algorithm

The algorithm is recursive and consists of three main
rules: Rule 1, Rule 2 and Rule 3. The complexity of the
algorithm is the main call. Given, n the number of members
to be classified, and f(n) the main call clustering function
complexity.

Then, f(n) = Max(O(Rule1(n)), O(Rules2(n)), O(Rule3(n)).

1) Complexity of rule 1 : This rule is composed of a
test of complexity O(n), and a recursive call.

Then, the complexity of this rule is :
O(n) +O(f(n−1)) = n+ (n−1) +O(f(n−2)) =
n+ (n− 1) + . . .+O(1) = O(n2).

2) Complexity of rule 2 : This rule makes k recursive
call where k is the number of clusters in a solution.

Then, the complexity of this rule is :
O(n)+k×O(f(n−1)) = n+k×(k−1)× . . .×1 =
O(n+ k!).

If we consider the theoretical worst case k = n, then
complexity of rule 2 is O(n!).

3) Complexity of rule 3 : This rule is composed of a
test of complexity O (n), and two recursive calls.

Then, the complexity of this rule is:
O(n)+2×O(f(n−1)) = n+2(n−1)+O(f(n−2)) =
n+ 2(n− 1) + . . .+ 2 = O(n2).

Hence, the overall complexity of the algorithm is O(n!). This
is a theoretical complexity in the worst case. In practice, the
number of clusters k are usually much smaller than n.

V. EXPERIMENTS

The experiment environment consists of a Mac OS X
10.5.8 machine with a 2.13 GHz Intel Core 2 Duo processor,
and 2 GB of ram.

Coding is JAVA-based, and we have followed Metcalfe’s
law 2 for creating the social network.

Metcalfe’s law characterizes many of the network effects
of communication technologies and networks such as the
Internet, social networking, and the World Wide Web. Former
Chairman of the U.S. Federal Communications Commission,
Reed Hundt, said that this law gives the most understanding
to the workings of the Internet.

Metcalfe’s Law is related to the fact that the number of
unique connections in a network of a number of nodes (n)
can be expressed mathematically as the triangular number n(n
- 1)/2, which is proportional to n2 asymptotically.

The law is abundant and existent due to the ability of
Internet users to link together. Websites and blogs such as
Twitter, Facebook, and Myspace are the center of this law
taking effect.

We conduct experiments on effectiveness of the proposed
approach in terms of data leak comparing to K-means.
K-means clustering is a well known partitioning method. In
this objects are classified as belonging to one of K-groups.

The results of partitioning method are a set of K clusters,
each object of data set belonging to one cluster. In each cluster
there may be a centroid or a cluster representative.

A. k-means and DLTD clustering based on Ω

We present the evaluation of the proposed DLTD algorithm
and compare it to the k-means clustering algorithm, based on
the Ω distance.

The data leakage is calculated based on the results returned
by the two algorithms. We explored each cluster in order
to identify the data propagation upper than η between two

2Bob Metcalfe, personal communication, June 2007.

members in different clusters. To do this, we developed a script
computing the leakage after the classification step.

The results are depicted in Fig. 5 (where the leakage
threshold (η) is set to 40%). The figure shows that with the
DLTD algorithm, the clusters are free data leak, even if, the
size of the social network increases. These results are sound
because the algorithm groups members leading to the data
leak in the same group. In contrast, the k-means algorithm
results in a higher percentage of data leaks with increasing
social network size. This result is valid with varying number
of clusters (k).

For instance, with 20 clusters we can see that data leak
increases from 2.9% to 4.4% when the size of the social
network grows from 500 to 5000 members. These results
confirm that the k-means algorithm is not a good solution for
handling data leaks in social networks.

In fact, even if there is high data propagation between two
network members, the k-means algorithm may cluster them
into different clusters due to their respective closeness in terms
of the used distance.

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

7

6

5

4

3

2

0

Members

P
e

rc
e

n
ta

ge
 o

f
d

a
ta

 le
a

k

Fig. 5. Leakage comparison

B. Execution time comparison

We analysed the execution time of both DLTD en K-
means algorithm using Ω distance. The analysis uses between
1000 and 5000 users. We computed the execution time of
around 12497500 relationships in social network. We note
that, the DLTD algorithm has no data leakage, however, its
computational time is upper than the K-means.

In the figure 6, the execution time is between 153 and 1653
seconds for the k-means algorithm and it’s between 172 and
2631 for the DLTD. Then, the K-means algorithm is better
than the DLTD in computational time.

Fig. 6. DLTD and K-means execution time

The execution time of the DLTD algorithm is important
than the K-means, because, the DLTD discover all possible
clustering solutions, or the K-means discover only one.

Furthermore, the k-means results represent an important
data leakage (data propagation upper than η) between
the different clusters while using Ω distance, because, the
classification mechanism group members in the nearest cluster.

This means that, k-means classify the member to the
cluster with which he has the highest data propagation, even
if, he has other propagations upper than the threshold with
other clusters.

The execution time of the k-means algorithm is caused
by the convergence process. The k-means repeating the
same classification phase until convergence. The number of
repetition is variable, in our case, it depends on the number
of members and their propagation to classify data.

The convergence of k-means is reached when comparing
the last two iterations shows that members no longer move
between teams, then, the calculation of the k-means reaches
its stability and no iteration is required. In addition, the
convergence to a local minimum can produce a bad result.

The convergence criterion of DLTD algorithm is reached
when there is no crowd member to classify.

C. Solution generation scalability

In this experiment, we shows that the DLTD algorithm
returns different solutions generation depending on the
number of registered member and the data propagation values
and not depending on social network size.

The figure displays that more the of registered member
grows more the number of generated solutions increases
except from 1500 to 2000 members, because, members that
has a data propagation upper than the threshold with two or

more clusters generates merging those clusters.

Fig. 7. Solution generation scalability

Hence, there will be less solutions. Using the same social
network architecture and evolving the number of registered
member, the fig 7 shows that, with 500 registered member, the
DLTD algorithm return around 33 possible solutions, and for
3000 members the algorithm generate around 125 solutions.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a data leak aware crowdsourcing
system providing a collaborative environment between crowd-
experts organized in various teams that compete against each
other to achieve certain tasks. The system prevents data leaks
between teams to protect each team competitive advantage.

For that, we designed a clustering algorithm that discovers
all possible teams of crowd workers while minimizing data
leakage. Where the leakage is expressed by propagation of
data between crowd workers via social relationships.

However, the theoretical complexity of the clustering algo-
rithm is hard. To face with this complexity, we plan to improve
algorithm by adding heuristics.

REFERENCES

[1] Iheb Ben Amor, Salima Benbernou, Mourad Ouziri, Mohamed Nadif,
and Athman Bouguettaya. Data leak aware crowdsourcing in social
network. In WISE Workshops, pages 226–236, 2012.

[2] Yael Amsterdamer, Yael Grossman, Tova Milo, and Pierre Senellart.
Crowd mining. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’13, pages 241–252,
New York, NY, USA, 2013. ACM.

[3] Daren C. Brabham. Crowdsourcing as a model for problem solving:
An introduction and cases. Convergence: The International Journal of
Research into New Media Technologies, 14(1):75–90, 2008.

[4] Barbara Carminati, Elena Ferrari, and Andrea Perego. Enforcing access
control in web-based social networks. ACM Trans. Inf. Syst. Secur.,
13(1), 2009.

[5] Gianluca Demartini, Djellel Eddine Difallah, and Philippe Cudré-
Mauroux. Zencrowd: leveraging probabilistic reasoning and crowd-
sourcing techniques for large-scale entity linking. In WWW, pages
469–478, 2012.

[6] Gianluca Demartini, Beth Trushkowsky, Tim Kraska, and Michael J.
Franklin. Crowdq: Crowdsourced query understanding. In CIDR, 2013.

[7] Daniel Deutch, Ohad Greenshpan, Boris Kostenko, and Tova Milo.
Using markov chain monte carlo to play trivia. In ICDE, pages 1308–
1311, 2011.

[8] Djellel Eddine Difallah, Gianluca Demartini, and Philippe Cudré-
Mauroux. Pick-a-crowd: tell me what you like, and i’ll tell you what
to do. In WWW, pages 367–374, 2013.

[9] Lujun Fang, Heedo Kim, Kristen LeFevre, and Aaron Tami. A privacy
recommendation wizard for users of social networking sites. In ACM
Conference on Computer and Communications Security, pages 630–
632, 2010.

[10] Michael J. Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh,
and Reynold Xin. Crowddb: answering queries with crowdsourcing.
In Timos K. Sellis, Renée J. Miller, Anastasios Kementsietsidis, and
Yannis Velegrakis, editors, SIGMOD Conference, pages 61–72. ACM,
2011.

[11] Olle Hggstrm. Finite markov chains and algorithmic applications. In
in London Mathematical Society Student Texts. Cambridge University
Press, 2000.

[12] J. MacQueen et al. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, volume 1, page 14.
California, USA, 1967.

[13] Senjuti Basu Roy, Ioanna Lykourentzou, Saravanan Thirumuruganathan,
Sihem Amer-Yahia, and Gautam Das. Optimization in knowledge-
intensive crowdsourcing. CoRR, abs/1401.1302, 2014.

[14] Florian Skopik, Daniel Schall, Harald Psaier, Martin Treiber, and
Schahram Dustdar. Towards social crowd environments using service-
oriented architectures. it - Information Technology, 53(3):108–116,
2011.

[15] Nilothpal Talukder, Mourad Ouzzani, Ahmed K. Elmagarmid, Hazem
Elmeleegy, and Mohamed Yakout. Privometer: Privacy protection in
social networks. In ICDE Workshops, pages 266–269, 2010.

[16] Jiannan Wang, Tim Kraska, Michael J. Franklin, and Jianhua Feng.
Crowder: Crowdsourcing entity resolution. Proc. VLDB Endow.,
5(11):1483–1494, July 2012.

[17] Rongjing Xiang, Jennifer Neville, and Monica Rogati. Modeling
relationship strength in online social networks. In WWW, pages 981–
990, 2010.

[18] Tingxin Yan, Vikas Kumar, and Deepak Ganesan. Crowdsearch: Ex-
ploiting crowds for accurate real-time image search on mobile phones.
In Proceedings of the 8th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’10, pages 77–90, New York, NY,
USA, 2010. ACM.

