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Continuous-discrete time observers for a class of MIMO m@alr systems

M. Farzd, M. M'Saad, M.L. Fall', E. Pigeon, O. Gehah and R. Mosrati

Abstract—In this paper, we investigate the possibility of contribution, in this context, has been made using a high gai
designing an observer for a class of continuous-time dynam- gbserver for a class of nonlinear systems that are observabl
ical systems with non-uniformly sampled measurements. M& ¢, any input [10]. The design has been firstly carried out
specifically, we propose an observer with a time varying gain b . fi fi tout bef
witch converges exponentially under some conditions on the y_ assuming _con |nu0u§-. Ime output measurements before
sampling partition diameter. The proposed observer is an Pe€ing appropriately modified to handle the case where these
impulsive system since it is described by a set of differerdl ~measurements are only available at sampling instantsdBase
equations with instantaneous state impulses correspondinto  on the aforementioned contribution, many other observers
the measured samples and their estimates. As it is custom&i  pave peen proposed for specific classes of continuous-time

done in the literature, we show that such an impulsive system . . .
can be split into two subsystems and be put under the form systems with discrete-time outputs measurements ([12], [1

of a hybrid system which is designed using a continuous- [13]).

time observer together with an inter-sample output predicbr. A more promising approach to cope with the non avail-

Simulations results involving a typical bioreactor are gien to ability of the output measurements between the sampling

show the effectiveness of the proposed observer. instants has been proposed in [9]. It consisted in employing

. a continuous time-observer using a suitable output predict

Key words: Nonlinear observers, sampled-data observergyg inyolved output prediction is obtained as the solutibn o

continuous-discrete time observers, high gain observers. 5 ¢c5iar ordinary differential equation (ODE) between two
successive sampling instants with the value of the measured

. INTRODUCTION output sample as initial condition. The underlying obseise

The observer design problem for nonlinear dynamical sy?.— hybrid system that |n_her|ts the prope_rtles of the contirsuo
tems has been paid a lot of attention over the last decad®d'® observer for relatively fast sampling rates.
It is however worth mentioning that most of the available Another observer design approach for a particular class
results on nonlinear observers design deal with continuouf nonlinear systems with sampled measurements has been
time measurements ([1], [2], [3], [4], [5]). Furthermoraet proposed in [14]. It consists in using an impulsive observer
digital implementation of these continuous-time obsesver Where the output error correction term is expressed as the
generally carried out without any redesign using relagivelProduct of a constant gain by the difference between the
small sampling periods as the stability and the convergen€&timated and measured values of the last output sample,
properties of the sampled continuous-time observer mdgspectively. The observer convergence analysis as well as
be lost in the case of relatively large sampling perioddne determination of its gain are obtained using LMI tools
This is, the search for alternative design methodologiedMmilar to those described in [15].
might be necessary to deal with the long standing digital In this paper, we propose a continuous-discrete time
implementation issue. Among these approaches, one cabserver for a class of multi-input and multi-output (MIMO)
cite those whereby the observer design is based on exadnlinear systems, with sampled measurements, that are
or approximate discrete-time descriptions of the systemabservable for any input. The proposed observer is obtained
dynamics ([6], [7], [8]). This approach does not allow tofrom a redesigned version of a purely continuous-time one
take into consideration the inter-sampled dynamics, whicthat assumes continuous-time measurements. As for the
is completely lost as pointed out in [9]. Moreover, theimpulsive observer given in [14], the corrective term of the
underlying discrete-time representation of the system mayoposed observer is a function of the difference between
suffer from possible errors that might occur during thehe estimated and actual output values at the last sampling
sampling scheduling process. Nevertheless, such an iasue fstant. However, unlike in [14], the multiplicative obser
be handled by appropriately redesigning the continuaus-ti gain is time-varying and depends on the sampling periods. In
observer and by considering the fact that the outputs meparticular, it is shown that the proposed impulsive observe
surements are available only at sampling instants. Anezarlican be written under the form of a hybrid system as the
continuous-discrete time observer proposed in [9]. Indeed
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The paper is organized as follows. In the next section, thghall be achieved in the subsequent sections.
class of systems that shall be considered throughout thitie observer design requires some assumptions that shall be
paper is introduced with some notations together and a brisfated in due courses. At this step, one assumes the fojowin
recall on the design of a continuous-time high gain observéAl) The function ¢'(u,2) are globally Lipschitz with
for the considered class of systems. In section 3, the desigespect tar uniformly in « i.e.
of the impulsive continuous-discrete time observer isljirst B n i i B
detailed with full convergence analysis. Then, it is shown 7 % € R": [[¢"(u,2) = ¢"(u, )| < Lljz = 2| (6)
that the proposed impulsive observer can be written und@erer, > 0 is the Lipschitz constant.
the form of a hybrid system, allowing thereby to emphasizg . . . . . .

. . : . efore proposing the continuous-discrete time impulsive
the relationship between this observer and the contlnuou% . .

observer, one shall recall the main steps of a continuous

high gain observer. Simulations results are given in sectiq. . ; . .
4 to highlight the performances of the proposed observeaér.ne high gain observer design for syster).(The main

Finallv. some concluding remarks are aiven in section 5 outlines of the underlying convergence analysis shall also
Y. 9 9 " be sketched. This allows to show later that the continuous-

Il. PROBLEM FORMULATION AND PRELIMINARIES discrete time impulsive observer can be interpreted as a

) ) ) redesigned version of the introduced continuous-time one.
Consider MIMO systems that are diffeomorphic to the folyiore specifically, one will consider the continuous-time

lowing form: observer that has been proposed for system (1) in ([18]).[19]
{ @(t) = Ax(t) + o(u(t), z(t)) 1) The latter is given by
= Cx(ty) = ' (ty), Yk € N : . . _ .
v = Colie) = (6) F() = Ad(r) + p(u(t), 3(0)) — 62, K(Cat) — () (7)
with .
xZ
1 1
! £ o)
72 P (u, %) wherez = ) ; K is a gain matrix and is chosen such
= | elwe) = : ;@ :
. g—1 1 q—1 T
! v (“4;;”(1;7 ) ) that
A2 A-KC (8)
OP IP OP OP
g is Hurwitz andAy is the following diagonal matrix:
P
— N . , 1 1
A 0p . - 0p ) (3) Ag = dmg (Ip, afp, ey WIP) (9)
0 R/
0 ... 0, 0, whered > 1 is a real design parameter.
A detailed proof of the exponential convergence of the
C = [Ip,0p,...,0p] (4)  observation error can be found in [19]. For clarity purposes

where the state: € R” with 2/ € R?, j = 1,...,q; the and since the link between the design of this observer and
input u(t) € U, a compact subset dR® and the output that of the continuous-discrete time one shall be raised, on

y € RP Is available at time instants, satisfying proposes to briefly recall the main outlines of the proof.
0 < to < ooe <t < tias < oo With limyoo by = o ) Indeed, lett = 2 — = be the observation error. One has
and time-varying intervalsy. = fi-1 = B =(A—0A;'KC)T + p(u, &) — g(u,x)  (10)

assumes a non prime dimensiom € pq) and in all the AAA=L — 04 andCA=L — 11
q blocs, the sub-blocks’ have the same dimensign In 845 0 (11)
fact, it has been shown in [16] that systeft) (s a normal one gets

form that characterizes a class of nonlinear systems tleat ar

observable for any input and that can be put through an T =0AZ + Ao (p(u, &) — p(u, 7)) (12)
injective map under the forni] (see e.g. [16], [17] for more N, since A is Hurwitz, there exist a symmetric positive
details). L , i . _ definite matrixP and a positive regl such that

Our objective consists in designing an exponential

continuous-discrete time observer that provides contistio PA+ ATP < —2ul, (13)

time estimates of the whole state_of systei) (rom the Let us show that/(z) = #7 Pz is a Lyapunov function for
outputs measurements that are available at sampling tBSta%ystem {2). Indeed, one has

only. One also aims at providing an expression of the upper B
bound of the sampling partition diameter under which the V(z) = 202" PAZ + 22" PAg (¢(u, &) — p(u, z))
proposed observer converges exponentially. These olgscti < =200\ Z|]* 4 22" PAg (@(u, ) — @(u,z)) (14)



According to the Lipschitz assumption and the triangularLet us consider the following candidate quadratic Lyapunov

structure ofy, one can show that ([19], [16]): function
22" PAg (p(u, &) — p(u,z)) < 2Lv/nAu ||z (15) V(z) = 7T Pz (19)
where L is the Lipschitz constant op andAxs (resp.An)  \yhere P is defined as in13).
is the largest (resp. smallest) eigenvalueiof Proceeding as in the continuous case, one can show that
Combining (4) and (5), one gets )
, , V(z) < —20u|z|® + 202" PKCZ 4 2L\/nVi (%)
V(j) < _(2:“9 - 2L\/ﬁ)\M)H‘i.” (16) —29:ETPK67K19(t7tk)CIE(tk)
Now, by choosing such that2uf — 2L\/nAy > pé i.e. < —(20p — 2LvnAm)||Z|* 4+ 2027 PKz  (20)
2L+\/nA
6~ g, 2 ViAu (17) \Where
At) B Oz - e KO Og(ty)
one gets _E(h) e K g 21)
o
) - _ ime derivati
V(E(t) <e A V(% (to)) Notice that, one has(t;) = 0. Moreover, the time derivative
of z can be expressed as follows
This ends the proof. ] L
i) = z'(t)+ K'9e KUz (1)
[1l. SYNTHESIS OF THE CONTINUOUSDISCRETE TIME = 072 + o (u, ") — @' (u, ") (22)
OBSERVER
The candidate impulsive continuous-discrete time 0b$ervg1tegrat|rfg @2) from t; to ¢ and from the fact that(t,) = 0,
takes the following form one gets:
. t
t(t) = Az(t)+ 1), 2(t _ .
e 20 = [ (0226) + ¢! (' (5) o' (w0 (5)) ds (@3)
—A;'Ke W (Cé(ty) — y(tr)), k € N18) th
&t K! and hence
R @* , K? t
whered = | . | the matrx /= | .|, where =l < [ (@l + Lzt 6)]) ds
3 K i :
tr_1e K's arep x p square matrices, is such that the matrix < (+1L) Z(s)||ds (24)
A defined as ing) is Hurwitz, the matrixAy is defined in tr
(9) and¢ > 1 is a design parameter. By choosingd as in the continuous case, i.e. satisfyifg)(
Under Assumption (A1), our main result can be stated &@aequality @0) becomes

follows: o o T

V(z(t) < —pb||z||”+20z" (t)PK=z(t)
Theorem 1. For every bounded input, there exists 6, > 0; < —;—f{V(f(t)) + 20V 2V (@ ()| K128
for every 0 > 6,; there exists 7y > 0 and x(6) > 0 with
™ < ﬁ such that for all k& € N with ¢, — tp < T,
the observation error #(t) — «(t) where z and & are the ¢
respective trajectories of systems (1) and (18) exponentially \/V(f(t))/ VV(#(s))ds
converges to zero. K

IN

o A
— V(@) + 20, TEIKI(L +6).
M m

or equivalently

Notice that the parameten, is the upper diameter of the V(z(t)) 10 _ ot
sampling partition (i.e. the maximum possible value of the SO S 2w VV(E®) + 04/ K-
sampling period) under which the exponential convergence .
of the observation error is guaranteed. (L+ 9)/ VV(z(s))ds (25)

ty
A. Proof of Theorem 1. Integrating the above inequation frofp to ¢, one gets:
Let Z(t) = &(t) — «(t) be the observation error whetec 0
[tk tr+1]. One has _ S -t _

V(z(t)) < e 2 V(z(tx))

B(t) = A%+ o(u, ) — p(u @) — 08, Ke X 0 Oty LA
Consider the following change of variables= Agz. Using +0 %lIKII(L +0) [ e 2Am
the identities {1), on gets o R

D) = 0AT+ Ao (p(u,3) — p(u,2)) — 0K S0 O (1y) ( . Ve ) d (20)



Now, one has

no

/t: e 22 (t=¢) /tk VV (@(€))deds

(27)

uo
t—s
L)

< / de/t:ez

uo
, W ™
SR -

< e AN 7
2Am
(28)
Using the bound given by2@) in (26), one gets
e
L (t—t
TEm) < ¢ 2w vEm)
no

yee 2 ) / VER)E (29)

2/ NK (L +0) [ 207,
e2Am T —1 (30)
n

“_9(

Multiplying each side of inequality2Q) by e2Aum
leads to

t—t)

LA
2T TED < VEE)
+e | VV@E@©)de @Y
By setting
uo
—(t—1
vy =2 D) (32)
inequation 81) becomes
10
t——— (-t
Ut < VY@ e . 2 e
tr
t
< V) +e [ U 33)
ty
Using Gronwall’'s lemma, one gets
U(t) < et /V(Z(ty)) (34)
and one comes back tgV using 82) to obtain
JVGE) < (FE e VEE)y @9)

To end the proof, one has to exhibit the condition under
. 0 . . .
which the term i— — ¢ |, is positive. Using the expres-

M
sion of the constant given by (0), such a condition shall
be satisfied if:

0
/LKL +6) [ Ery,
A 2 ) < 10 37)
7 2Am
or equivalently
2
Enk
< 2 g 2 (38)
4 Am

TR +60)
This ends the proof.

It is important to note that condition38) may be very
restrictive and it only provides an upper bound for the sam-
pling partition diameter. Nevertheless, many simulatian e
periments have shown that the proposed continuous-discret
time observer perform well for sampling periods that are
higher than the theoretical upper bound given B§)(

Remark: If a systemi(t) = f(u(t), z(t)), y(tr) = h(x(tr))

is put under form 1) through a diffeomorphism = &(x),
then the equation of the continous-discrete time obsef&r (
can be written in the original coordinates inf ‘as follows:

fu(t), #()) -
(g—i@@))) A K (h(@(t) - y(te)) (39)

B(t) = fe 0K (4=t

B. The output prediction form of the observer

Equation (8) puts forward the impulsive form of the
proposed observer. We shall show that this observer can be
split into two subsystems: the structure of the first sulesyst
is similar to that of the continuous-time observéy Wwhere
the unavailable output is replaced by an appropriate predic
tion provided by the second subsystem. Indeed, consider the
following continuous-time dynamical system:

&(t) = Ai(t) + p(u(t), #(t)) — 04, ' K(Ci(t) — w(t))  (40)

wherez, K are as in {8) andf > 1 is a design parameter.
The structure of this system is very similar to that of the
continuous time observer)with the difference that the term
corresponding to the observation errorm, (Cz(t) — y(t)),

is replaced in 40) by the term(Cz(t) — w(t)) wherew(t)

is a new variable and it corresponds to the prediction of the
outputs. Its dynamics is described by the following Ordynar
Differential Equation (ODE):

Fort, < t
w(t) =

with w(tk)

< tk+1 .

22(t) + o' (ul(t), 3 (1))
Cx(tr) = y(tr)

The dynamics of the outputs predictianis very similar
to that of the outputs estimaté!(¢) that can be written

(41)

Since z and V/(z) are continuous with respect to their (&ccording to system4()) as follows:

can easily deduce fron8%) the following

V@) < e (F ) G

(36)

Recall that contrarily to the ODE4() that has to be re-
initialized at each sampling instat and then resolved for



t € [tx, tr+1[, equation 42) or more generally systenmi() T 21 = h
is initialized only once at, and then resolved for atl > ¢,. = < o > =z = %) = zy = L2
Set . . . . Kery +
is a diffeomorphism fromX onto its image. Systen4f)
E(t) = Ca(t) —w(t) = 21 (t) — w(t) (43) can be written in the new coordinatesunder form (). As

a result, an observer proposed in this paper can be used to
achieve the continuous state estimation of the state from
the available discrete measurements. The equations of the

and let us focus on the dynamics &flndeed, according to
(41) and @2), one has:

é(t) = —0K'¢(t) (44) observer in the original equations can be written under form
’ (39
Integrating @4) from ¢, to ¢t <ty yields
£(t) = efeKl(tftk)E(tk) (45) Simulations have been carried out by assuming a uniform
’ 1 sampling partition i.ez;, = k7. The following values are
Now, from the fact thatv(¢;) = ' (¢tx), one has used in simulation:
— ~1 _
§(tr) = & () —w(ty) p=1(min "), Ke=1, k=1, u=0.08(min"")

= @' (ts) — 2! (te) = 2" (tx) — y(tx) (46)

Combining @é5) and @6) gives
0K (+— ~ Notice that the equilibrium point is(x;g,22,0) =
§(t) = =T C(t) (A7) (0.092,0.008). The simulation of the ot(>server has been
Finally, substituting'z: () — w(t) N £(t) in equation 40) by carried_out using pseudo d_ata measgremen_t_s issued from the
its expression given by4), one gets: simulation of system49) with the point equilibrium as an
. . . initial condition. The initial condition of the observerssich
ot) = Aw(t)J“‘p(“(f)’I(t)) that the one corresponding to the substrate concentration
—0A; e TR (Ca(te) — y(tk))  (48)  is perturbed by50% from the steady state value. Many
simulations have been carried out and they show that satisfa
tory estimates are obtained as long7as 5.5. Simulation
IV. EXAMPLE results are obtained by setting = 2. The values of the

design parameters a® = 2 and p = 20, respectively.
The performance of the proposed observer shall be ijjotice that the choice of and ¢ should meet condition of

lustrated through an observer design involving a typicatheorem 1 which is may be restrictive. However in practice
bioreactor. We consider a simple microbial culture whickgjyes+ bigger than that allowed by Theorem 1 may be

involves a single biomass, growing on a single substrate yseq and satisfactory estimates will be obtained. The gain
xo. The bioprocess is supposed to be continuous with a

. 2
dilution rateu(¢) and an input substrate concentratign(t). vector is chosen equal &' = 1
The specific growth rate is assumed to follow the Contoigf the matrix A are located in—1. The available samples
model ([20]). The mathematical dynamical model of theorresponding to the output; are given in figurel and
process is constituted by the following two mass balanogey are compared to the continuous estimate of this output

Sin = 0.1(kg m=3)

and we meet observel§).

so that both poles

equations associated 19 andz., respectively: provided by the observer. Similarly, the unknown trajegtor
. (0 z (£)a (t) of x5 is compared to its estimate in figuie Notice that
i(t) = Koo () + oa(0) u(t)z1(t) the state estimates quickly converge to the unknown states
. _2H1*x1(t)xj(t) confirming thereby the theoretical results.
22(t) = oy T ult)(sin(t) — 22(2))
ez1(t) + 22(t) V. CONCLUSION

y(te) = x1(te)

(49) A continuous-discrete time observer has been proposed for
wherexz; andz, respectively denote the concentration of they ¢lass of systems that are observable for any input. The
biomass and the substraie’ and K. are the Contois law structure of this observer is simple since it consists in a
parameters whilé is a yield coefficient. The measurementssopy of the model with a corrective term that is updated at
of the biomass concentration are supposed to be availaligery sampling instant. The exponential convergence o zer
with at time interval7 and the objective is to estimate of the observation error has been established under certain
the actual biomass concentration together with that of tr@)nditions on the upper bound of the Samp“ng partition
substrate from the available discrete measurements. diameter. This observer has been firstly presented under an

impulsive form before being put under the form of a hybrid
System {9) has been considered in [21] where the authorsystem synthesized using a continuous-time design with an
exhibited a compact seX < R? which is positively inter sample output predictor.
invariant under the dynamics of4%). Moreover, it was The proposed design can be extended to a more general
shown that the following function® : X — ®(X), class of observable systems including systeth (t can
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Fig. 2. Continuous estimates of the non measured states. (19]

also be exploited to derive continuous-discrete time adgapt [20]
observers to jointly estimate the state and some unknO\f’y :
parameters from the adaptive observer proposed in [17].
Another problem that has not be considered in this paper
deals with the case where sampling is accompanied with?!
long output delays. Such a problem has been addressed in the
context of stabilization (see e.g. [22] and referenceseihgr [23]
but to the authors’ best knowledge, there is no significant
available results for this problem in terms of observatioipy
and the (few) available ones rather deal with continuous-
time measurements [23], [24], [25], [26]. All these issue?zs]
are challenging and shall be investigated in further works.
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