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ABSTRACT

In this paper, a novel fuzzy indirect adaptive controller based on observer for uncertain nonlinear
perturbed systems is proposed. A tracking-error observer is introduced to resolve the problem of the
unavailability of state variables. Adaptive fuzzy systems are employed to approximate the unknown
smooth nonlinear functions. The control system is augmented by a low-pass filter designed to meet a SPR
condition of a transfer function of the observation error dynamics. The SPR condition is used in the
Lyapunov stability analysis to construct the adaptation laws using only available measurements (i.e. the
output observation error and the output tracking error). The main contributions of this paper lie in the
following: (a) The SPR-filter approach used here avoids the filtering of the fuzzy basis functions. (b)
Unlike in the previous works, the stability analysis is rigorously proven by using a SPR-based Lypunov
approach. Finally, numerical simulation results are presented to verify the feasibility and effectiveness of
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1. Introduction

Fuzzy systems (FS) as well as neural networks (NN) have been
successfully applied to many control problems because they do not
need an accurate mathematical model of the system under control.
It is also known that these intelligent systems (i.e. FS and NN) can
approximate uniformly any nonlinear continuous function over a
compact set [1-3]. Recently, much attention has been focused on
adaptive neural/fuzzy control of nonlinear dynamical systems
[4-17]. With suitable coordinate transformation, a class of non-
linear dynamic systems can be transformed into the so-called
normal form [4-7], or into the cascade triangular forms, which are
classified as strict-feedback and pure-feedback forms [8-17]. For
the first class [4-7], fuzzy or neural adaptive controls were
developed in which uncertainties are well dealt with. The stability
of the closed-loop system has been only investigated using a
standard Lyapunov approach. For the second class [8-17], fuzzy or
neural adaptive backstepping controls were developed in which
both uncertainties and non-matching conditions are well dealt
with. The stability analysis of these control schemes has been
investigated using the backstepping concept and Lyapunov
approach.

* Corresponding author.
E-mail addresses: boulkroune2002@yahoo.fr (A. Boulkroune),
bounar18@yahoo.fr (N. Bounar), msaad@greyc.ensicaen.fr (M. M’Saad),
mfarza@greyc.ensicaen.fr (M. Farza).

This last class of the nonlinear systems is beyond the scope of
this paper. We are interested here to the nonlinear systems having
the normal form or which can be transformed into this form.
Although the adaptive neural/fuzzy control systems designed in
the literature [4-7] for this class of systems are simple and can
give satisfactory results, they have certain limitations and short-
comings, namely: (1) the state vector of these systems is assumed
to be available for measurement. But this measurement require-
ment is more an exception than a rule in the engineering practice.
That is why observer-based controllers (or output-feedback con-
trollers) are most used in practice. (2) These control systems can
only be applied to the nonlinear systems which can satisfy a harsh
requirement named matching condition, i.e. the nonlinearities
only appear in the same equation as the control in the state space
representation.

Based on state or tracking-error observer, direct and indirect
adaptive fuzzy control schemes have been developed in [18-24].
These schemes require strictly positive real (SPR) condition on the
observation error dynamics (i.e. the estimation error dynamics) so
that one can use Meyer-Kalman-Yakubovich (MKY) lemma in the
stability analysis. The original observation error dynamics, which
are not SPR in general, are augmented by a low-pass filter
designed to satisfy the SPR condition of a transfer function
associated with the Lyapunov stability analysis. However, accord-
ing to [25], these schemes result in the filtering of the fuzzy basis
function (FBF) which is not generally suitable. Moreover, as stated
in [26], these observer-based fuzzy (direct or indirect) adaptive



controllers have not been derived rigorously in mathematics. In
fact, some comments on these control schemes have been made in
[26].

In this paper, a novel fuzzy indirect adaptive controller is
investigated for a class of uncertain perturbed monovariable non-
linear systems. The main difficulties are how to deal with
unknown nonlinear functions, to appropriately design an
observer-based indirect adaptive control using the SPR condition
and to compensate for the fuzzy approximation errors which
depend on the control input. In this paper, these difficulties can
be respectively solved by using the fuzzy systems for the function
approximation, by introducing an auxiliary error and by designing
a new robust dynamic compensator. The main contributions of
this paper lie in the following:

® A novel fuzzy indirect adaptive output-feedback control
scheme based on SPR condition for nonlinear systems is
proposed.

® Unlike in [18-24], there is no filtering of the FBF vectors in this
proposed adaptive control scheme.

® By using the SPR condition and Lyapunov theory, the stability of
the closed-loop system is rigorously proven. Recall that all
previous observer-based fuzzy indirect and direct adaptive
control schemes [18-24] have not been derived rigorously in
mathematics, as stated in [26].

2. Problem formulation, preliminaries and fuzzy systems
2.1. Problem formulation and preliminaries

Consider the nth order nonlinear dynamical system of the
form:

XM = fx, %, ..., X" Dy pgx,x, ..., xX" " Dyu+dt),y=x 1
Or equivalently of the form
X = Ax+BIf(x)+gxu+d(t)],y =C'x )
with
01 -0 0 1
0 1 - 0 0 0
A=|: + + = i|[,B=|:i|.C=]1], 3)
0 0O 1 0
0 0O 1 0
where ueR is the control input, X=[x1,Xa,..., xn]T =

X%, ....x"=D]T e R" is the vector of unmeasured states and y e R
is the measured output. f(x) and g(x) are unknown smooth
functions, d(t) is the external disturbance. Note that the pair
(A,B) is controllable and the pair (CT,A) is observable.

Design objective: Determine an output-feedback Determine an
output-feedback control law u to steer the system output y closes
to a reference signal y,, while ensuring that all involved signals in
the closed-loop system remain uniformly ultimately bounded
(UUB).

To facilitate control system design, the following usual
assumptions are presented and will be used in the subsequent
developments.

Assumption 1. There exists an unknown positive constant d* such
that 1d(t)l < d*.

Assumption 2. The reference signals y,.y,, ...y~ "

assumed to be continuous and bounded.

, and y" are

Assumption 3. There exists an unknown positive constant g, such
that: 0 < g < 1g(x)| [26,27].

The following remarks allow to motivate the above assump-
tions with respect to the considered design framework:

Remark 1. Assumption 1 is usually required in the system theory,
e.g. see [18,22,25,26]. Assumption 2 is a standard assumption in
the adaptive control literature. The latter is the first to be made in
an adaptive control scheme and can be given explicitly or
implicitly.

Remark 2. Many practical systems can be expressed or trans-
formed in the form (1) such as inverted pendulum system [3,26],
Duffing oscillator [3,26], Chua’s chaotic circuit [28], mass-
springer—-damper system [29], induction servo-motor system
[30], gyro system [31], Genesio-Tesi chaotic system [32], single-
link robot [33], atomic force microscope [34], autocatalysed
chemical reaction [35] and many others. Assumption 3 is not
restrictive as it is satisfied by all these practical systems. It
guarantees the controllability of the system (1).

Let us define the reference signal vector y and the tracking
error vector as follows:

Yo =Wrdn- 3T e=y —x=lerex..e] =leé,...e" I
By using the fact that y =Ay +By}", we get
¢ =Ae+Bly" —f(x)—gxu—d(t),e; =C'e. (4

Based on the feedback linearization approach, when the functions
f(x) and g(x) are known, d(t)=0 and the state x is available for
measurement, the so-called ideal controller can be chosen as
follows:

u=u*=g '®[-f@)+y" +Ke] 5)

where K¢ = [ke1, ke, ..., ken]T €R" is the feedback-gain vector to be
selected such that the characteristic polynomial of A—BK! is
strictly Hurwitz.

Substituting (5) into (4) yields

e Kle=e™ +kpe®™ V..t kee=0

Thus, it can be obtained that lim;_, ..e(t) = 0. However, since the
functions f(x) and g(x) are unknown and the state vector X is not
available for measurement, the ideal controller (5) cannot be
implemented. Thereafter, to overcome such problems, we will use:

® adaptive fuzzy systems to approximate the unknown nonlinear
functions (f(x) and g(x)),

® an observer to estimate the tracking error vector. From the
estimate of the tracking-error vector, we can directly determine
the estimate of the state vector x.

Remark 3.

1. Note that the system (2) is written in the observability
canonical-form. This system is observable for any input: such
a feature is vital for the observer design.

2. The form of the system (2) is also called the Byrnes-Isidori
normal form [36]. This form is controllable, if g(x) # 0.

3. The controllability property of the pair (A,B) does not imply the
controllability of the nonlinear system (1) (or (2)). But, this
property guarantees the existence of a feedback-gain vector, K,
so that the characteristic polynomial of A—BK! is strictly
Hurwitz.

4. Also, the observability property of the pair (CT,A) assures the
existence of an observer-gain vector, K,, so that the character-
istic polynomial of A—K,CT is strictly Hurwitz.
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Fig. 1. The basic configuration of a fuzzy logic system.

2.2. Description of the fuzzy logic system

The basic configuration of a fuzzy logic system consists of a
fuzzifier, some fuzzy IF-THEN rules, a fuzzy inference engine and a
defuzzifier, as shown in Fig. 1.

The fuzzy inference engine uses the fuzzy IF-THEN rules to

perform a mapping from an input vector x” =[x, X2, ..., Xa] € R" to
an output f e R. The ith fuzzy rule is written as
RY . if x; is A} and ... and x,, is A’ then f is f' 6)

where A‘; A‘2 ..., and Afl are fuzzy sets and f' is the fuzzy singleton
for the output in the ith rule. By using the singleton fuzzifier,
product inference, and center-average defuzzifier, the output of
the fuzzy system can be expressed as follows:

Foo— LS (I} 1141 ()
X
DY 1441 (%)

=0"y(x) (7

where yA,(xJ) is the degree of membershlp of x; to Aj‘ m is the
number of fuzzy rules, 67 =[f',f?,....f™] is the adjustable para-
meter vector (composed of consequent parameters), and
w! =[wly?. y™ with

(Hjnz 1ﬂAJ'_(xj))
2 (T2 1/‘A}(XJ’))

being the fuzzy basis function (FBF). Throughout the paper, it is
assumed that the FBFs are selected so that there is always at least
one active rule [3], i.e.x" NO 1yA,(xJ) > 0).

It is worth noticing that the fuzzy system (7) is widely applied
in modeling, identification and control of nonlinear systems
because it has been proven by [3] that this simple fuzzy system
can approximate an arbitrary nonlinear smooth function f(x)
defined on a compact operating space to an given accuracy. Of
particular importance, it is assumed that the FBFs y/(x) are properly
specified beforehand by designer. But, the consequent parameters
0 are determined by appropriate adaptation laws.

w'(x) =

3. Observer-based fuzzy adaptive controller

Consider now the following observer for estimating the track-
ing error vector e:

é=Acl+Koe1,6,=CTé. ®)

where A, =A— BK é1=e1—6;1=y-y, e_yr—x with % is the
estimate of the state vector x and e is the estimate of the trackmg
error vector e. K, =[ko1, koz, .. kon] eR" is the observer-gain
vector to be selected such that the characteristic polynomial of
A—K,CT is strictly Hurwitz, and the vector K. has been previously
defined.

Let us define the observation error vector as €=
[61,85,...,8,)" =e—é. Subtracting (8) from (4), we get the
dynamics of the “observation error as
& =Ao¢ +B[V—f(x) —gx)u—d(),
1=Ce. (€)

(a1}
|

with Ay =A—K,C", where 7 =y{" +K'eé.

The unknown continuous nonlinear functions f(x) and g(x) can
be approximated respectively, on the compact set ©y, by the fuzzy
system (7) as follows:

Fx.00) = 6lyp(x), (10)

8(x, 0g) = Ogg(x), an

where w(x) and w,(x) are FBF vectors fixed a priori by the
designer, and ¢y and 6, are the adjustable parameter vector of
the fuzzy system.

The respective optimal values of ¢; and 6, are defined as

0 = arg min [sup If(x) f(x 0f)|] 12)
= arg min Lsup lg(x)—&(x, 0g)|] (13)

Notice that the quantities 0}‘ and ¢ are introduced only for

analysis purposes, and their values are not needed when imple-
menting the controller [37,38].

Define
05 = 67 —0f, (14)
0g =0;— 03 15)

as the parameter estimation errors, and

ep(X) =fx)—fx.67), (16)

eg(X) = g(X) — 8(x,07) a7)

as the fuzzy approximation errors, where f(x 0}‘)_0*wa(§) and
E(X,0%) = 05y o (X).
As in the literature [3,26,39-43], we assume that those fuzzy

approximation errors are bounded for all Vx € £, i.e.
lef(x)| <& and |eg(X)| <Eg, VX€Qy (18)

where g and g, are unknown positive constants.

Since the state vector x is not available for measurement, the
fuzzy systems (10) and (11) used to approximate the unknown
functions (f(x) and g(x)) are replaced by the following fuzzy
systems:

F&.09)=0{ws(R), (19)

8(R.05) = Ogyy(R), (20)

where the vector X is the estimate of x.
From (14)-(17) and (19) and (20), we have

f) =f@)—fx.09)+f(x.0H—f®.00) +fX.0F)
=0y R) + e, () +0F [y (X) —yrR)],
=0y (R) +Wr(x, R). 21

8(x) =8(X)—&(x, )+ &(X, 05) — (X, 05) + &R, )
= 0 yg(R) +e5(0)+ 05 Tyrg(0) — g (V)]
=0§TWg(8)+Wg(£,&)- (22)



with WX, 8) = er(0)+ 0 [ (X) —yyR)]  and  wg(X,R) = eg(X)+
0§T[y/g(§ )—wg(X)] are the approximation errors. Notice that
wy(x,X) and wg(x,X) have also upper bounds [3,26].

Substituting (21) and (22) into (9) yields

— A€ +B[V— (R, 07) — 8X, O0)u+8] yy(R) + B gy g ) —wy],

€
é,=C"

| e

(23)

where wy =wp(x, ®)+wg(x, 2)u+d(t), 0y =6;—06f and 6, =0z — 6%
are the parameter approximation errors.
The control input for the system (1) can be determined as

Tanh(5,04¢(X)) T .
= = -0 Sati 24
u T4 Tanh 26T yg(E) 5, fyp(R)+Sat(V)+ur) (24)

where 1, and &, are strictly positive design constants, Tanh(.)
denotes the hyperbolic tangent function and Sat(.) the usual
saturation function. u, is a dynamic adaptive control term which

will be designed later.
Substituting the control input (24) into (23) yields

& = Aok + B~y + 0 wp(R)+ 0y (R u+ws],

81=CTe. (25)
where

Wy = —Wq +U+Vv—Sat(v)

and

T al (— 0Py (R) +Sat(®) +uy) (26)

0T o) Tanh(5,0 (X)) +61

Since only the output observation-error é; in (25) is measurable,
one will use the SPR-Lyapunov design approach to analyze the
stability of the observation error dynamics (25) and to generate
the adaptive laws to estimate the fuzzy parameter vectors and
unknown constants.

The dynamics (25) can be expressed in frequency domain using
the mixed notation (i.e. time—frequency)

&1 = HS)[— s+ 0w (R) + 0 gy g (Rt +ws] @7

where s is the Laplace variable and H(s)= C'(sI—A,) " 'B is the
stable transfer function of (25). Note that this notation is very
common in the adaptive control literature such as in [3241,
44-47]. It also refers to the convolution between the inverse
Laplace transform of H(s) and the term [—u,+§;y/f@)+§£wg
(X)u-+ws].

Now, since H(s) in (27) is not SPR in general, we introduce a low
pass filter T(s) such that H(s) = H(s)T ~!(s) is SPR:

&1 =H(S)(—yy +TO)[0f wp(R) + 05w (R)ul - 5T [T(S)ys(R)]
— 05 [T(S)yg(R)ul+way) 28)

with uy = T(s)[uy],
= T(SA®)]+ TS)u]+T($)[V—Sat(V)] (29)

and wy; = —T(S)[wy(x. R)] — T(S)[W(x. %)u]

From (28), it is clear that the presence of the filtered terms u,; and
T(s)[efy/f@ )+0£y/g@ )u] in the output observation-error dynamics
makes the control system design very difficult.

Remark 4. H(s) is SPR, with s=0+jw, if the following three
conditions are satisfied [48]:

(@) When s is real, H(s) is real.

(b) The poles of H(s) are not in the right half plane.

(c) For any real w, the real part of H(jw) is positive, i.e.
Re[H(jw)] > 0.

Remark 5. For example, one can easily show that for n = 2, H(s) is
not SPR (because the real part of H(jw) can be negative, i.e. the
third condition in Remark 4 is not satisfied). One will note this
effect in the simulation examples given in Section 4.

Let us define a novel error ep;, called the modified error, as
follows:

em =€1+eq (30

where the error ey is called the auxiliary error, which is generated

by the following dynamics:

ear = H(S)(tyy —tr =TS0y (R) + Ogyrg R+ 0f yry (R) + Oy g (X))
31

From (28), (30) and (31), the dynamics of the modified error e;;;

can be expressed as follows:

em = HS)(— Uy + 0 yp(R) + Bgyg Ru-+ws) (32)

where

w3 = Wor — O [TS)wpR)] 0 [TSWgR)u]+ 6 vy (R) + 05 yg(Ru.

Now, to facilitate the controller design and the stability analysis,

we make the following mild assumption:

Assumption 4. The following inequality holds

W3 < do+a1[Uf| + Az Uy | +as[ul +asAVs| = (33)

where «* =[dag,a;,a,,0as,ds]” is an unknown positive constant

vector, U =T@E)[U], ur=T(S)ul, AV=T()[V—Sat¥)] and

o =1, 1], lugl, lul, |ad )"

The state space realization of (33) is given by:

e, =Aoe, +Bl— s +0[y;(X)+BgygR)u+ws],

em = ngm, (34)

where e =[en,enm,....emn]' and (A, e R™"B eR”,Tf eR") is a

minimal state realization of H(s)=H(s)T~'(s)=C (sI—A,) 'B,

with C=[1,0,...,0]".

Since H(s) is SPR, the following holds:

AP+PA,=—Q <0

PB=C 35)

where P=PT > 0and Q =QT > 0. Note that the matrix Eq. (35) and

the dynamics (34) will be used later in the stability analysis.

In order to dynamically compensate for the uncertain term ws,
the robust control term u;, can be designed as follows:

. Tanh(ssu;) T

U= —yUr+7y, |€m1 —————————————x ple, , 36
r Yrr TV [€Eml u Tanh(53uf)+5lzlk @lem| (36)

with

Ba= —ysG50a— Oa Tolem| Withs,0)>0  (37)

y‘su, Tanh(83u;) 462

k= —y.0&k+7|€nile withk;(0)=0 (38)

where 7,,75.7., G« 05 and 55 are positive design constants, x € R is
the estimate of the unknown vector «*.
The adaptation laws for ¢; and 6, can be determined as follows:

O = — 1007 — rremiyy(X) (39

ég = - ygageg - ygem1 qu(&) (40)

where yy,7,, 0y and o are positive design constants.
Fig. 2 shows the scheme of the proposed fuzzy indirect
adaptive controller.



<>

Observer
Eq. (8)

1>

\4

and (36-40)

Fuzzy adaptive
controller, Eqs. (24)

Plant
u Eq. (1) y

v

gh gl f

oty u

Eq. (31)

Estimator of €,

A

Fig. 2. The scheme of the proposed fuzzy indirect adaptive controller based on observer.

The following theorem establishes the stability and perfor-
mance properties of the closed-loop system with this proposed
controller.

Theorem 1. Consider the system (1) under Assumptions 1-4 and the
observer (8). Then, the proposed fuzzy adaptive controller, defined by
(24), (30), (31) and (36)-(40), guarantees the following nice
properties:

1. All signals in the closed-loop system are bounded, i.e.
€,.-€m1.€a1,€1, €, &, €, 07,0q Uy, 64, k and u € Ly,

2. The output tracking error converges to the residual set
Q. ={e1| |e1] <n., Where y, is a positive constant which will
be defined later.

Proof of Theorem 1. Let us consider the following Lyapunov-like
function:

1 1 1

Vi—le Pe, + 4 —55+ 1

1 T
5€m % 0fn9f+2 ol 0g+2 . ZVKK Iy 41)
where & =k —«*.
The time derivative of V; is
. 1 1.1 1. 1. 1 1 1
Vi 2emPe +§e Pe +—f€f0f+—0 0g+ u,u,+ 5454+ZK i
(42)

Evaluating (42) along the trajectories (34) and (36)-(40) gives

Vi< —%g; Qe, —u2—0s55— aféfef - agégeg — o0&k 43)
Since the following inequalities are valid:
57 o OF || g
— 0,07 0; < — HefH +=7 e
—0g0, 0g < ——H0g|H 0* and
2
we can rewrite (43) as follows:
. 1 T ~ 112
V2= ~Jehae, oo -]
(44)

where
_Of || 2 " [ 2
__’ o 2 o +7 K
Let py = min {Anin(Q)/Amax(P), 27, 27505, 770f,7¢0¢,7,0«}, hence

we can rewrite (44) as follows:

Vi<—mVi+m (45)

where ;i (Q) denotes the smallest eigen-value of Q, and Amax(P)
the largest eigen-value of P.
Multiplying (45) by et leads to the following result:

%(W ety < zemt (46)

Integrating (46) over [0,t] yields

0<Vi<™ 4+ (v1(0)—’ﬂ)e-ﬂlf (47)
Iz m

From (47), therefore, the modified error e, , the robust term u,, the
adaptive parameter §, and the parameter errors (éf,ég and &)
are UUB.

With the help of (41), V1(O) is defined as follows:

V1(0)——€ O)Pe,, (0)+5 0f(0)t9f(0)+ 0 (O)Hg(O)
1, 1 ST
tg, W0+ RO+ 2ny (0)%(0) 48)
From (41) and (47), one has
lle ||<( 2 (”—1+ (v (0)—”—1)e‘”1f))1/2 49)
=M \Amin(P) \#q ! M1 ’

Then, the solution e, exponentially converges to a bounded
region 2., ={e | lle, 1 < e}, with

()"
fem /Imin(P).ul '

From the boundedness of 6,0, and &, one can directly conclude
about the boundedness of ¢, ¢; and «. The boundedness of the
control u follows that of u, 6y, 0g and Sat(V). From (31), since the
term  (uyy —r — LSO yr(R) +0gwe@)ul+ 0f s (R) + gy () is
bounded and H(s) is a stable transfer function, one can easily
show that the auxiliary error e;; is also bounded (i.e. it has an
upper bound). Now, in order to quantifier this upper bound, one




Table 1
Comparison between our control scheme and the previous works.

Comparaison Features of the proposed controller

Advantages/disadvantages

Scheme in — An indirect adaptive control has been proposed.
[18] — A linear observer has been used to estimate the tracking error
vector.
— A projection algorithm has been incorporated in the adaptive
laws to avoid the parameters drift.
— The problem of an possible singularity of the controller has
been solved by modifying this projection algorithm.
— This scheme requires SPR condition on the observation error
dynamics
— A sliding mode control term has been used to deal with the
fuzzy approximation errors.
Scheme in — A direct adaptive control has been designed.
[19] — A linear observer has been used to estimate the tracking error
vector.
— A projection algorithm has been incorporated in the adaptive
laws to avoid the parameters drift.
— This scheme requires SPR condition on the observation error
dynamics
— A sliding mode control term has been used to compensate for
the fuzzy approximation errors.
Scheme in — Indirect and direct adaptive controllers have been designed.
[21] — A linear observer has been used to estimate the tracking error
vector.
— The problem of a possible drift of the adaptive fuzzy parameters
has not been treated.
— The singularity problem of the controller has not been
discussed.
— This scheme requires SPR condition on the observation error
dynamics.
— An H,, robust control term has been used to compensate for the
fuzzy approximation errors.
Scheme in — A direct adaptive control has been designed.
[26] — An unified observer has been used to estimate the tracking
error vector.
— To avoid the parameters drift, a c-modification term has been
incorporated in the adaptive laws.
— it does not require the SPR condition on the observation error
dynamics.
— Asliding mode term has been used to compensate for the fuzzy
approximation errors.
Our — An indirect adaptive control has been designed.
proposed — An linear observer has been used to estimate the tracking error
scheme vector.

— To avoid the parameters drift, a c-modification term has been
incorporated in the adaptive laws.

— This scheme requires the SPR condition on the observation error
dynamics.

— A dynamic adaptive compensator has been used to compensate
for the fuzzy approximation errors together with other
uncertainties

Advantages
— The tracking errors can theoretically converge to the origin.

Disadvantages

— The filtering of the FBFs can make the dynamic order of the controller-observer
system very large.

— Authors have designed a robust control term filtered vy instead of v. The
problem is how to obtain v from v;?

— The robust control term designed vy is not smooth.

— The projection algorithm used requires the knowledge of the norm bound of
the uncertain optimal fuzzy parameters.

— The stability analysis is questionable, according to [26].

Advantages
— The tracking errors can theoretically converge to the origin.

Disadvantages
— Authors have designed a robust control term filtered vf instead of v. The
problem is how to obtain v from v?
— The robust control term designed vy is not smooth.
— The projection algorithm used requires the knowledge of the norm bound of
the uncertain optimal fuzzy parameters.

Advantages:
— The controller designed is very simple.
— There are fewer parameters to be adapted.

Disadvantages:

— Authors have designed the filtered control terms (g and us ) instead of (u, and
us). The question is how to obtain the control terms (uq and us) from (ug; and
Ugy ), respectively?

— Because the authors have not treated the singularity problem and parameters
drift, they assumed that the adjusted parameters never reach some known
boundaries. Note that this assumption is not realistic in the practice.

— The FBF filtering makes the dynamic order of the controller-observer system
very large.

— Moreover, the stability analysis is questionable, according to [26].

Advantages:
— An unified design frame-work for the high-gain observers has been proposed.
— This scheme does not require the SPR condition.
— The FBF filtering is no longer required.

Disadvantages:
— The robust control term designed is not smooth.
— The tracking errors cannot converge to zero. They are only UUB.
— High-gain observers proposed are very sensitive to noise.

Advantages:
— Unlike in [18,21], there is no filtering of the FBF vectors.
— Unlike in [18,19,21], by using the SPR condition and the Lyapunov theory, the
stability of the closed-loop is rigorously proven.
— The dynamic adaptive compensator designed is smooth.
— Unlike [26], the proposed observer is not an high-gain observer.

Disadvantages:
— The tracking errors cannot converge to zero. They are only UUB.

makes the state space realization of the dynamics (31):

¢, = Aoe,,+Bllla],

eaq=Ce, (50)
with
Uy = Uy — Ur = L0y (R) + Oy g ROU]+ 6] wp(R) +Ogyrg(ou,  (51)

where e = [eq, €42, ...,eqn]” and (A, e R""Be R’;f € R") is a mini-
mal state realization of H(s)=H(s)T~'(s)=C (sI-A,)~'B with
C=[1,0,...,0".

Let us consider the following Lyapunov-like function:

(52)
Its time derivative is given by

Vo= elPe, + ¢ Pe

2 2%
LT
= —§9aQ9a+9aPB”a
1 2 C1 2 ¢
< —imin@le,|| +5t||ed]| +5




< —uVo+m (53)

with ¢1 = [IPB|*[tal?, 42 = (min(Q) = (C1/€)) /Amax(P) and 72 = ¢/2,
where ¢ is a small positive constant, and 4,,;,(Q) > (¢ /e).
From (52) and (53), one has

(2 (2 (vy0)-m2)eme)) 54
teai= (i (2052) ) &

Then, the solution e, exponentially converges to a bounded
region Qe, ={e,| el <neq}, With

_< 2 7[2>]/2
ea = ﬂmin(P).”Z '

From (30) and the bounds of the errors e, and e, one can get the
upper bound of the output tracking error e; as follows:

181l < lem1l+lea1l <#e (55)

where

( 2 7[2>1/2 ( 2 7[1>1/2
e=—p.) Tl pn
Amin(P).”Z Amin(P)ﬂl

From the observer dynamics (8), one can demonstrate that é; and
é are bounded and converge to a bounded adjustable region.

From (55) and because &; and & are bounded, then the output
tracking error remains in a compact set . specified as:
Q. ={e1| le1|<n,} where 5,=ns+n, with n; >|[é1||. This ends
the proof. ©

Remark 6. This paper considers only single-input single-output
(SISO) systems to simplify the representation. The extension of our
fundamental results to the following class of multivariable non-
linear uncertain systems is straightforward (that is why we
omitted the control design for this class of multivariable systems):

Xp] = Xp2

sz = Xp3

Xpn, =fpX1, .. Xm) +&p (X1, ..., Xm)Up+d(t) forp=1,2,...,m. (56)

where fp(x1, ...,Xm) is the unknown nonlinear functions of the pth
subsystem, u), is the input of the pth subsystem, g,(x, ..., Xm) # 0 is
the unknown positive control gain. x=[x!,....x" |7 is the overall
state vector, and x; = [Xp1, ...,xpnp]T is the state vector of the pth
subsystem. Note that the model (56) can be used to describe a
relatively large class of multivariable nonlinear dynamical systems,
namely: the robotic manipulator used in [49], the induction motor
[50], the mass-spring-damper system in [51], the unified chaotic
systems [52], and many others.

Remark 7. Note that some closely related works have been
investigated in [18,19,21,26]. Unlike in [26], the stability of the
closed-loop system has been proven in [8,9,11] and in this paper
by using the SPR condition and the Lyapunov theory. A detailed
comparison between our present work and that of [18,19,21,26] is
summarized in Table 1.

4. Simulation results

Simulation studies are carried out to show the effectiveness of
the proposed controller. Two control problems are considered at
this end. The first one concerns a Duffing oscillator, while the
second one concerns an inverted pendulum system.

4.1. Example 1

In the following, we present simulation results showing the
performances of the proposed controller applied to a Duffing
oscillator. This chaotic system can be described as [53]

{M - 7)

Xy = —P1X2 —PyX1 — P3X] +4q Cos (i)

where x =[x1,%]" =[x,X]" is the state vector, py,p,,ps, and q are
positive constants, t is the time variable, and  is the frequency.
Depending on the choice of these constants, it is known that the
solutions of (57) exhibit periodic, almost periodic, and chaotic
behavior [53]. A typical chaotic behavior of the uncontrolled

Duffing equation can be obtained with
p1=04,p,=-11,p3=1,q=2.1 and w=1.8

Then, the controlled Duffing equation can be written as follows:

. [0 1 0
X= {o O}ﬁ{l}(qug(z)wd(t))
y=[1 O (58)

where f(X) = —p;X; —P,X1 —P3X3+¢q cos(wt) and g(x)=1. The
external disturbance d(t) is selected as a square wave having an
amplitude + 1 with a period of 2x(s).

The control objective is to force the system output y to track the
reference signal y, = sin(t). It is worth noting that the function
f(x) and the control gain g(x) are assumed here to be unknown by
the controller. In addition, the state vector is assumed to be non-
measurable and only the system output y is measurable. In fact,
the model (58) is only required for simulation purposes.

The observer-gain vector and the feedback-gain vector
are selected respectively as follows:K, =[160,6400]" and
KT =1[144, 24). The transfect function H(s) is given by

1
s2+160s+6400°
According to Remark 4, H(s) is not SPR because the real part of
H(jw) can be negative. One should choose a low-pass filter T(s) so
that H(s) = H(s)T ~'(s) = (1/s® +160s+ 6400)T ~ '(s) is SPR. This fil-
ter can be selected as follows:

H(s) =

1
1) =5.02555 108197
From the expression of H(s), we can find that
— —160 1 —T —T
_ [76400 o}’ B =[0.0255 0.8197], andC =[1 0],
Given
10 -5
Q= [ -5 10 }

solving the matrix equation (35), one obtains the following
symmetric positive-definite matrix:

200.0312 —5.0000
{—S.OOOO 0.1555 }

The design parameters are selected as yr= 10°, yg=0.5,
7k=500, y;=10"", y,=2, 6 =5x10">, 6,=10">, g, =10 ">,
05;=10"7,5,=10"2,5,=1 and &3 = 5.

The fuzzy membership functions are defined for the variables
X1, X as follows:

o 1 Xj+0.5
ﬂA}(Xj):§<l+ Tanh<f ’0.4 ))

o) —expl L[ a
ﬂAjz(Xj)—eXp AL an
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Fig. 3. Simulation results of Example 1: (a) the system output y =x; (solid line) and the reference signal y, (dotted line). (b) The state variable x, (solid line) and the
reference signal y, (dotted line). (c) The tracking-errors estimates é; (dotted line) and &, (solid line). (d) The control signal u.

Table 2

IAE, ISE and IAU criteria for this proposed method and that of [26] (for Example 1).
Control method IAE ISE IAU
The proposed fuzzy control method 0.5271 0.3893 107.1
The fuzzy control method of [26] 2.02 2.028 81.95

N 1 xi—0.5
ij_z(xj):§<l+ Tanh( ’0.4 ))

The initial conditions are chosen as x(0) = [x1(0),x(0)]" =2, 2],
€(0)=1[21(0),82(0)]" =[0,1]", 84(0)=12 and «0)=[0, 0, O,
0,0]". The elements of 0r(0) are randomly selected in the interval
[—1, 1]. As well, the elements of 9;(0) are randomly selected in
the interval [0.4, 1.2].

Fig. 3 shows the simulation results obtained by applying the
proposed fuzzy indirect adaptive controller. Fig. 3(a) and
(b) illustrates the tracking performances of the state variables.
The estimates (é; and é,) of tracking errors are given in Fig. 3(c).
Fig. 3(d) shows the boundedness of the control signal u.

The fuzzy adaptive control method proposed in [26] is also
simulated and compared to represent the efficiency of our method
proposed in this paper. And to represent a qualitative comparison
between these two controllers, integral of absolute (output-track-
ing) error (IAE) integral of squared error (ISE) and Integral
Absolute input (IAU) criteria are calculated for each one in Table 2.

From Table 2, it is clear that the output-tracking performances
(IAE and ISE) obtained by applying the proposed fuzzy controller
are very good, in comparison with the fuzzy controller in [26].
However the IAU criterion is relatively increasing, because the
control effort in the proposed scheme is important in the begin-
ning period.

4.2. Example 2

In this section, we present simulation results showing the
tracking performances of the proposed fuzzy adaptive controller
applied to an inverted pendulum system.

Let x; =0 be the angle of the pendulum with respect to the
vertical line and x, = 6. The dynamic equations of such a system
are given by [3]

[?ﬁ] _ {o 1} [?ﬁ] N m(f(,ﬁ,XZHg(x],xZ)wd(t)),

X2 0 0]|[x
o O}[M]' (59)
X2
with
Flx1,%0) = mlx, sin x; cos x; —(M+m)G sin x;

ml cos?2 x; —(4/3)(M +m) ’

— COS X1
ml cos? x; —(4/3)(M+m)’

8(x1,X%) =

where G is the acceleration due gravity, M is the mass of the cart,
m is the mass of the pole, [ is the half-length of pole and u is the
applied force. It is assumed that the external disturbance d(t) is
a square wave having an amplitude + 1 with a period of 2x(s).
The system parameters are given as M=1kg m=0.1kg,
[=05m, G=9.8m/s%

The control objective is to force the system output y to track the
reference signal y, = sin (t). We assume that the functions f(x) and
g(x) are completely unknown by the controller and only the
system output y is available for measurement. In fact, the model
(59) is only required for simulation purposes.



a

1
X~ 0.5
5
g o
S
@
= 05

-1

0 5 10

time(s)

c 5
Q)N
2
& (o)) S
o
5 5
8
T
£ -10
»
L

-15

0 5 10

time(s)

(e

2

0 m
>N
5 2
o)
£
X
@ 4
|_

_8 N

0 5 10
time(s)

d

200

control u
o

-200

0 5 10
time(s)

Fig. 4. Simulation results of Example 2: (a) the system output y =x; (solid line) and the reference signal y, (dotted line). (b) The state variable x, (solid line) and the
reference signal y, (dotted line). (c) The tracking-errors estimates é; (dotted line) and é, (solid line). (d) The control signal u.

Table 3
IAE, ISE and IAU criteria for this proposed method and that of [26] (for Example 2).

Control method IAE ISE 1AU
The proposed fuzzy control method 0.3647 0.02654 109.1
The fuzzy control method of [26] 0.4798 0.04118 105.1

The observer-gain vector K,, the feedback-gain vector K, the
SPR filter T(s) and the matrix Q are all selected as in the previous
example.

The design parameters are selected as y; = 10%, rg= 02,y =
500, y;=10"", 7, =2,0;=8x10">, 0,=10"% 6, =10">, 65 =
1077,6,=10"2, 5, =1 and 53 =5.

The fuzzy membership functions are defined for the variables
X1, Xy as follows:

2
N 1 N 1 X;
%) = exp(3(% +0.25)) "Af("f)—e"p<_2<o.6>>’ and

. 1
#ap %) =7 +exp(—3(x—0.25)y

The initial conditions are chosen as x(0) = [x;(0), x2(0)]" =[0.5,0]",
€(0) =[21(0),2,(0)]" =[0,1]", 64(0)=1.2 and «(0)=[0,0,0,0,0]".
The elements of 6p(0) are randomly selected in the interval
[—1,1]. As well, the elements of 63(0) are randomly selected in
the interval [0.4,1.2].

The simulation results are depicted in Fig. 4. From this figure,
we can see that the system tracks its desired trajectories and the
control signal is bounded.

The fuzzy adaptive control method proposed in [26] is also
simulated and compared to represent the efficiency of our method
proposed in this paper. The results of these qualitative comparison
are illustrated in Table 3. It is clear from this table that the tracking
performances are better than those in the previous work [26].

5. Conclusion

In this paper, an observer-based fuzzy indirect adaptive con-
troller for a class of SISO nonlinear systems has been presented. In
the controller designing, neither measurement of the system
states nor knowledge of the system nonlinearities is required.
Indeed, an observer has been constructed to estimate the tracking
error vector and an adaptive fuzzy system has been used to
approximate the system nonlinearities. Using the SPR condition
and Lyapunov theory, the stability of the closed-loop system has
been rigorously proven. Simulation results have been reported to
emphasize the performances of the proposed controller.
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