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Abstract—Cloud computing has increasingly been used as
a platform for running large business and data processing
applications. Although clouds have become highly popular, when
it comes to data processing, the cost of usage is not negligible.
Conversely, Desktop Grids, have been used by a plethora of
projects, taking advantage of the high number of resources
provided for free by volunteers. Merging cloud computing and
desktop grids into hybrid infrastructure can provide a feasible
low-cost solution for big data analysis. Although frameworks like
MapReduce have been conceived to exploit commodity hardware,
their use on hybrid infrastructure poses some challenges due
to large resource heterogeneity and high churn rate. This study
introduces BIGhybrid a toolkit to simulate MapReduce on hybrid
environments. The main goal is to provide a framework for
developers and system designers to address the issues of hybrid
MapReduce. In this paper, we describe the framework which
simulates the assembly of two existing middleware: BitDew-
MapReduce for Desktop Grids and Hadoop-BlobSeer for Cloud
Computing. Experimental results included in this work demon-
strate the feasibility of our approach.

I. INTRODUCTION

Mankind has been producing over increasing amount of
data. According to IDC1, by 2020 there will be around 40
Zettabytes (40,000,000 Petabytes) of data that will require
processing of some sort. This data volume requires processing
capabilities beyond those that current IT infrastructure can
provide.

MapReduce (MR) [1], a programming framework proposed
by Google and currently utilized by many large companies, has
been employed as a successful means for data processing and
analysis. Hadoop, the most popular open-source implementa-
tion of MR [2], abstracts task parallelism management from
programmers who only need to implement their applications as
Map and Reduce functions. Cloud computing has increasingly
been used as a platform for business applications and data
processing [3]. Cloud providers offer Virtual Machines (VMs),
storage, communication, and queue services to customers for
which they pay an hourly fee. These resources can be used for
deploying Hadoop clusters for data processing and analysis.

When it comes to data processing, the computing power
offered by other types of infrastructure is also of interest.
Desktop Grids (DG) [4], for instance have numerous users

1IDC’s Digital Universe Study, sponsored by EMC, December 2012.

around the world who donate idle computing power to multiple
projects. DG have been applied in several domains such as
biomedicine, weather forecasting, and natural disaster predic-
tion. Merging DG and Cloud Computing (Cloud) into Hybrid
Infrastructures could provide a more affordable mean for
data processing. However, although MR has been designed to
exploit commodity hardware, its use on hybrid infrastructure
poses some challenges due to large resource heterogeneity and
high churn rate typical of such environments.

The adaptation of existing MR framework or the devel-
opment of new software raises research issues related to
a priori data splitting and distribution, strategies to avoid
the communication between the infrastructures, tasks and
data co-scheduling, fault and sabotage tolerance, data privacy,
among other issues and more. Moreover, using real testbeds
to evaluate the use of MR on hybrid infrastructure presents
considerable challenge due to the lack of reproducibility of
the experimental conditions in DG and the complexity of fine-
tuning Cloud software stacks.

This study introduces BIGhybrid, a toolkit for simulating
MR on hybrid environments, with a focus on Cloud and DG.
We analyze the characteristics of hybrid MR runtime environ-
ment and design the simulator accordingly. The simulator is
based on SimGrid [5] and leverages solutions proposed in the
scope of the MapReduce ARN project [6].

It is able to simulate two middleware for two distinct in-
frastructures: BitDew-MR [7], [8] for Desktop Grid Computing
and Hadoop-Blobseer [9] for Cloud computing. BIGhybrid
has several desirable features: it is built atop of MRSG, a
validated Hadoop simulator [10], and MRA++, a simulator
for heterogeneous environments [11]; it has a trace toolkit
that enable analyze, monitor and graphically plot the task
executions; it is a trace-base simulator able to process real
infrastructure availability traces [12]; and its modular design
allows for further extension. BIGhybrid can be used for
evaluating scheduling strategies for MR applications on hybrid
infrastructures. We believe that such a tool is important to
researchers and practitioners working on big data applications
and scheduling.

The rest of this work is structured as follows. Section II
provides an overview on the MR framework and other systems
used. In Section III, we describe the characteristics of hybrid
infrastructures. Section IV introduces BIGhybrid and Section



V describes the evaluation methodology. The conclusion and
suggestions for future work are summarized in Section VI.

II. BACKGROUND

This section presents MR and introduces the implementa-
tions of both Hadoop-BlobSeer and BitDew-MapReduce, that
will be used on BIGhybrid simulator.

A. MapReduce

MR is a programming framework that abstracts the com-
plexity of parallel applications by partitioning and scattering
data sets across hundreds or thousands of machines, and by
moving computing closer to data [2]. Figure 1, adapted from
[2], shows the MR data flow. The Map and Reduce phases
are handled by the programmer, whereas the Shuffle is created
while the job is being carried out. The input data is split into
smaller pieces called chunks, that normally have a size of 64
MB. The data is serialized and distributed across machines that
compose the Distributed File System (DFS).

When running an application, the master assigns tasks to
workers that then run each processing stage. The machine
that receives a Map task, handles a Map function and emits
key/value pairs as intermediate results that are temporarily
stored in the workers’ disks. The execution model creates a
computational barrier, which allows tasks to be synchronized
between the producers and consumers. A Reduce task does
not start its processing until all the Map tasks have been
completed. A hash function is applied over the intermediate
data to determine which key partitions will compose a Reduce
task. Each key partition is transferred to one machine, in
prefetching mode, during the Shuffle phase, to execute the next
phase. After a Reduce function has been applied to the data, a
new resulting key/value pair is issued. Then results are stored
in the distributed file system and made available to the users.

Fig. 1. MapReduce data flowchart model

The MR Hadoop provides management mechanisms, data
replication and execution control. The MR has a management
architecture based on the master/worker model, while a slave-
to-slave data exchange requires a P2P model [2]. When the task
runtime on a machine is greater than average for the cluster,
the machine running the task is characterized as a straggler.
If a machine is characterized as a straggler after the first task
distribution, it will not receive new tasks to processing in free
slots.

B. Hadoop-BlobSeer

BlobSeer is a DFS that manages a huge amount of data in
a flat sequence of bytes called BLOBs (Binary Large Objects).
The data structure format allows a fine-grained access control.
BlobSeer emits file version control which enables incremental
updates on data files, and high throughput with concurrent
reads, writes and updates data. The data chunks have a fixed
size of 64 MB so that they can maintain compatibility with
the structure of the Hadoop file system.

The DFS on Hadoop (HDFS) was replaced in its integrally
by BlobSeer. An API implements the calls of Hadoop for the
BlobSeer File System (BSFS). The name space manager is
centralized, and it keeps the name space of BSFS for mapping
files for BLOBs. However, this data structure is completely
transparent for the Hadoop system and its MR users. The
classical execution of MR on Hadoop was not changed and
explores data locality similar to HDFS. The BSFS provides a
data replication using a flat structure. The blocks are distributed
for local storage in machines with a load-balancing strategy.
The fault-tolerance mechanism is a simple data replication
across the machines. However, it does not explore replication
across racks as in HDFS.

C. BitDew-MapReduce

BitDew [7] is a middleware that exploits protocols like
P2P, http, BitTorrent and ftp, and selects the best protocol
depending on data size. BitDew architecture is decentralized
and has independent services for Data Scheduler, Data Cat-
alog, Data Repository and Data Transfer. These services are
accessed via three API: Active Data to control the behavior
of the data system, such as replication, fault-tolerance, data
placement, lifetime, protocols and event-driven programming
facilities; Transfer Manager to manage the concurrent file
transfer completions and the concurrency level of transfers;
BitDew to provide functions that create slots and carry out
data management.

The Data Catalog maintains a centralized and updated
meta-data list for the whole system in a Distributed Hash
Table. The model includes both stable and volatile storage. The
stable storage is provided by stable machines or Cloud Storage
like Dropbox and Google Drive, and the volatile storage are
local disks of volatile nodes. The MR implementation [13] is
an API that controls the master and worker daemon programs.
This MR API can handle the Map and Reduce functions
through BitDew services. The data locality from Hadoop MR
was implemented like a data attribute to support the separation
of the input data distribution from the execution process.

Result checking is controlled through a major voting mech-
anism [8]. In the Hadoop implementation when the network
experiences unavailability, a heartbeat mechanism signals to
the master that the host is dead. However, in BitDew the
network can be temporarily offline without undergoing any
failure. The fault tolerance system needs a synchronization
schema, as pointed out by [14] where transient and permanent
failures can be handled. A barrier-free computation is imple-
mented in BitDew to mitigate the host churn behavior [13]. In
BitDew (unlike the case of the classical MR implementation),
the computation of Reduce nodes starts as soon as intermediate
results are available.



III. HYBRID INFRASTRUCTURE

Table I, summarizes the main architectural features of
Cloud-BlobSeer, BitDew-MapReduce and the Hybrid MR en-
vironment. Hybrid infrastructure enables the use of highly
heterogeneous machines, and stable and volatile storage to
avoid data lost. The set of data-distribution strategies appli-
cable to a given scenario depends on how much bandwidth is
available. Two independent DFS implementations are required
to handle data distribution under two scenarios, namely low-
bandwidth and high-bandwidth. Hybrid infrastructure uses an
orchestrator to manage results and data input from users. It can
be decentralized to improve data distribution over network. In
special case of Cloud and DG, fault tolerance mechanisms have
different policies to detect faults. A more specialized system
is applied on DG due to node volatility.

Figure 2 illustrates the solution proposed to model a
hybrid system and introduces Global Dispatcher and Global
Aggregator that will be used on BIGhybrid simulator. The
Global Dispatcher located outside the DG and the Cloud has
middleware functions for receiving both job tasks and input
data from users. It is a centralized data storage system that
manages policies for split data and distribution, in accordance
with the needs of each system. The working principle is similar
to the publish/subscribe service where the system gets data and
publishes the computing results. This approach is simple, but
creates a potential network bottleneck. BIGhybrid simulator
will enable the study of several strategies to determine the best
data distribution and resource allocation on MR applications
in hybrid infrastructures.

Global Aggregator receives all key/values of Reduce, and
keys with the same index in each system are joined to last
Reduce function in order to create a consistent result. The
BIGhybrid simulator will help to choose the best strategies
to achieve this goal.

Fig. 2. Hybrid Infrastructure

Iterative MR computations, necessary on Global Aggre-
gator, are not supported by an original MR model. It is
not an easy task to combine all Reduces from heterogeneous
platforms, although it is possible to make a new stage for MR
[15]. A possible approach is to use the MapIterativeReduce
[16] which creates an Aggregator to collect all the outputs of
the Reduce tasks and combines them into a single result. At the
end of each iteration, the reducer checks if it is the last or not.
However, according to [17], this schema might be inefficient
for large workloads. BIGhybrid enables the study of variations

and patterns to be implemented for aggregation module.

IV. BIGHYBRID SIMULATOR

The idea behind BIGhybrid simulator is to optimize MR
applications in order to provide a cloud service with the avail-
able resources of a DG system. BIGhybrid is modular and it is
built on top of Simgrid [5], which is a simulation-based frame-
work for evaluating cluster, clouds, grid and P2P (peer-to-peer)
algorithms and heuristics. Different from others simulators,
BIGhybrid has two independent systems, through which it is
possible to use different configurations for DFS, schedulers,
input/output data size, number of workers, homogeneous and
heterogeneous environments, combine two different platforms,
and make the simulation parallel. BIGhydrid generates traces
from each system to allow individual or collective analyzes in
the same time line.

BIGhybrid is built on two components described in pre-
vious work: MRSG (MapReduce over SimGrid) that simu-
lates Cloud-BlobSeer with Hadoop; and MRA++ (MapReduce
Adapted Algorithms to Heterogeneous Environments) that sim-
ulates BitDew-MapReduce. Figure 3 illustrates the architecture
of BIGhybrid, which comprises four main components: input
data management (Global Dispather), Cloud-BlobSeer module,
BitDew-MapReduce module and integration module for results
(Global Aggregator). More details about MRSG simulator and
MRA++ can be found in [10] and [11].

Fig. 3. BIGhybrid Simulator Architecture

A user can specify an input function for each system
and for individual Map and Reduce functions. In the next
release version it will be possible to build platforms for real
infrastructures using Failure Trace Archive [12]. This means,
the BIGhybrid enables 256 settings of configurations in the
same simulator. It is possible to make adjustments to several
kinds of strategies and configurations in both Cloud-BlobSeer
with Hadoop and BitDew-MapReduce, to find a load balance
without data loss and with suitable strategies to achieve an
efficient data partition between the two environments.

A. Cloud-BlobSeer Simulation Module

The Cloud-BlobSeer simulation module reproduces the
behavior of the MR platform, and invokes SimGrid opera-
tions whenever a network transfer or processing task must



TABLE I. COMPARISON AMONG MR SYSTEMS

Characteristics Cloud-BlobSeer with Hadoop BitDew-MapReduce Hybrid-MapReduce

Heterogeneity Moderately High High

Network High Bandwidth Low Bandwidth, distributed cache Hybrid Bandwidth

Local Storage Distributed Remote (Cloud Storage) + local Local and distributed + Remote Cloud Storage

Management Master/Slave Master/Slave Hierarchical Orchestrator

Application Profile Any Low Communication on Shuffle phase Optimized for all size archives

File System API Posix Tuple Space model Hybrid (Posix + Tuple Sace)

Hosts Stable Stable and Volatile Stable and Volatile

FT mechanism Data and Task Replication Data Replication and transient failure support Data and Task Replication, and transient failure support

Computation Hadoop Compatilble Barrier-free Hybrid

be performed, without modifying SimGrid source code. This
simulation follows the Hadoop implementation, which a heart-
beat mechanism to control job execution. This architecture
is the following: API of input users code, DFS, MapReduce
functions, master (Jobtracker) and slaves (Tasktracker).

The DFS is implemented as a matrix that maps chunks to
nodes. The master node knows where each chunk is placed,
exactly as it happens in the real implementation. Moreover,
each chunk can be linked to more than one node, which
allows to simulate chunk replicas. SimGrid is responsible
for the simulation of all network communication and task
processing in our implementation. Cloud-BlobSeer simulation
only implements the node distributions in one rack. The next
version of BIGhybrid will use the storage simulation API of
SimGrid, on Disk Emulation Module to simulate the storage
behavior. As of writing disk simulation is specified as an I/O
cost in the configuration file in User API.

The virtualization of machines behavior is not simulated in
current version of BIGhybrid, but is abstracted as an additional
task cost. The virtualization support module will be integrated
in the future by the SimGrid virtualization support, as de-
scribed in [18], and migrating virtual machines, as described
in [19].

B. BitDew-MapReduce Simulation Module

BitDew [7] is a middleware for large scale data man-
agement on hybid distributed computing infrastructures. Its
runtime environment supports the use of multiple file transfer
protocols: either client/server (http, ftp, scp), P2P (bittorrent),
Grid (through the SAGA API) or Cloud (Amazon S3, Drop-
box). A set of BitDew services handle many high level data
management issues: data index and meta-data catalog, fault
tolerance, reliable file transfer, data scheduling, replication,
data life-cycle, collective communication, data collection man-
agement, event-based programing model and more.

The implementation of MapReduce over BitDew targets
firstly Desktop Grid systems [13], proposing mechanisms to
alleviate host churn, unavailability of direct communication
between the hosts and lack of host trust. The implementation
relies on master and worker daemon programs. This MR API
can handle the Map and Reduce functions through BitDew
services. The data locality from Hadoop MR was implemented
like a data attribute to support the separation of the input data
distribution from the execution process.

A function controls result checking through the major vot-
ing mechanism as in Moca [8]. When the network experiences

unavailability, a heartbeat interval signals to the master that
the host is dead, in the Hadoop implementation. However, in
BitDew the network can be temporarily offline without under-
going any failure. The FT needs a synchronization schema,
as pointed out by [14] where transient and permanent failures
can be handled. A barrier-free computation is implemented in
BitDew simulation as can be seen in section V.

C. Additional BIGhybrid Modules

In BIGhybrid, the Global Dispatcher is manual or auto-
matic. In the manual version, the user defines a function for
data distributions and a job configuration for each system for
both Cloud-BlobSeer and BitDew-MapReduce, such as, input
data, data size, chunk size and so on. In automatic release,
one Orchestrator manages user queries and distributes tasks
to systems. A Global Storage maintain data users, so the
Orchestrator could be initialize a new job, if it is necessary.

The results of the Global Aggregator module are imple-
mented as a single Reduce task after the last current Reduce
task has been completed. The processing results are tracked
and saved in a file for future analysis.

A toolkit for system execution analysis was implemented to
assist on creating platforms homogeneous and heterogeneous,
and make execution traces based on visualization traces sup-
ported from SimGrid. This toolkit enable to users analyze all
system execution and change the strategies as needed. The
traces can be both individual systems as for all simulation.

V. EVALUATION

This section describes the environment setup and results of
evaluation in order to demonstrate the features and scalability
of simulator.

A. Environment Setup

Two environments have been considered. The first, in a
small scale servers is a proof of concept. The second considers
a cluster of 2,000 nodes and evaluates the simulator ability
to replicate results obtained in previous work. The proof-of-
concept first simulated a homogeneous 5-node cluster with 2
cores each, 5.54 GFlops of processing capacity and 1 Gbps net-
work. This cluster was used to process 2GB of data, 36 maps
and 5 reduces. The second cluster contains 5 heterogeneous
machines with 2 CPU cores each, which process capacity is
drawn from a log-normal distribution according to [20] from
4.76 GFlops to 6.89 GFlops, network of 10 Mbps. This cluster
is used to process 1.1 GB of data, 36 maps and 30 reduces.



To define the large scale setup, we used characterization of
MR applications performed by Chen [21]. Chen examined
MR traces from two production environments from Yahoo and
Facebook.

The traces obtained from Yahoo comes from a 2,000 node
cluster and contains 30,000 jobs spanning over 3 weeks. The
cluster was used to run applications that require bash, inter-
active and semi-streaming computations. For present work,
we model the Yahoo cluster and consider the “aggregate, fast
job” applications characterized by Chen. Table II shows the
details of these applications, including number of jobs, input
data size, job duration, Map time and Reduce time.

B. Results and Analysis

The first experiment is a proof-of-concept introduced by
Figures 4, 5 and 6. Figure 4 shows an execution of Cloud-
BlobSeer on the homogeneous cluster. The Map tasks produce
intermediary keys that are sent during the shuffle phase, and
Reduce tasks initialize once the Map tasks are finished.

Fig. 4. Job MR on Cloud-BlobSeer simulation

The results of BitDew-MapReduce execution on heteroge-
neous cluster are show in Figure 5. The Reduce tasks start
as soon as machines have data to process. It is possible to
view that, as the link is 10 Mbps, data transfers take longer
to complete during the shuffle phase. Execution time is similar
to the first cluster because the data chunk size on BitDew-
MapReduce is 32 MB instead of 64 MB as Cloud-BlobSeer.

Figure 6 shows the execution of BIGhybrid taking into
account the two clusters. This figure is specially interesting
as it demonstrates the task execution parallelism and the
beginning of intermediate data transfers.

Figure 7 shows a job execution of BIGhybrid, for a
homogeneous execution, following the specifications of the
2,000 node cluster and application is detailed in Table II. The
runtime is 305.13 s to Map and 673.32 s to Reduce, the and
simulation error is ≅ 5% related to one job in Table II. This
demonstrates the scalability of the simulator, reproducibility
capacity and its suitability to research of new strategies on
hybrid infrastructure.

Fig. 5. Job MR on BitDew-MapReduce simulation

Fig. 6. Job MR on BIGhybrid

VI. CONCLUSION

The rapid increase in the amount of data produced and
current structures will stretch current infrastructure to its limits.
Merging both Cloud and DG in hybrid infrastructures can be
a feasible low-cost alternative to purely Cloud environments.

BIGhybrid simulator enables the study of strategies for
MR in hybrid infrastructures. Initial experiments demonstrate
good performance of the simulator and indicate that initial
goals have been achieved. However, it is necessary to conduct
more experiments to compare the configuration strategies with
results from real systems.

The next steps include improving volatility, fault tolerance
mechanisms and disk simulation. We also intend to implement
virtualization support.
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TABLE II. YAHOO TRACES ( 2,000 MACHINES CLUSTER )

# Jobs Input Shuffle Output Duration Map Time Reduce Time Label

21,981 174 MB 73 MB 6 MB 1 min 412 740 Small jobs

838 568 GB 76 GB 3.9 GB 35 min 270,376 589,385 Agregate, fast job

91 206 GB 1.5 TB 133 MB 40 min 983,998 1,425,941 Expand and aggregate jobs

35 4.9 TB 78 GB 775 MB 3 hs 45 min 4,481,926 1,663,358 Data summary

5 31 TB 937 GB 475 MB 8 hs 35 min 33,606,055 31,884,004 Data summary, large

1,330 36 GB 15 GB 4 GB 1 hr 15,021 13,614 Data transformation

Fig. 7. Job MR on Bighydrid simulation with 2000 hosts
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