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Adaptive high gain observer for uniformly observable systems with
nonlinear parametrization

T. Ménard1, A. Maouche1, B. Targui1, I. Bouraoui1,2, M. Farza1, M. M’Saad1

Abstract— In this paper, an adaptive observer is proposed
for a class of uniformly observable nonlinear systems with
nonlinear parametrization. The main novelty of the proposed
observer is the introduction of characteristic indices, which
allow a natural construction of the gain matrix. The main prop-
erties of the proposed observer are highlighted in simulation
through an example dealing with the identification of an engine
transient fuel characterized by a delay on the input.

I. INTRODUCTION

Over the last decades, adaptive observers design has
become a wide and active research field. Generally, the
aim of adaptive observers is to simultaneously provide
an estimation of the non measured state variables and
the unknown (constant) parameters. These observes are
particularly used in challenging applications, namely the
adaptive control and fault detection and isolation (see for
instance [1] and [25]). The seminal contributions related
to adaptive observers design have been devoted to linear
time invariant systems (see for instance [14] and [12]). The
case of linear time varying systems has been investigated
in recent works within a deterministic and stochastic
contexts [24], [18]. Several approaches have been adopted
to tackle the adaptive observer design for nonlinear systems.
The usual approach is based on appropriate coordinate
transformation which allows to obtain linear error dynamics
up to output injection [2], [15], [16], [19]. An optimization
based approach has been presented in [6], the existence of
the underlying adaptive observer depends on the feasibility
of a set of linear matrix inequalities. Some results have
been proposed in [3], [5] and [21] without requiring the
considered nonlinear systems to be linearizable. These
results have been established assuming the existence of
some Lyapunov functions satisfying particular conditions.
A switching variable structure approach has been pursued
in [17]. Adaptive versions of high gain observers have been
proposed in [4] and [7]. Though most results on adaptive
(nonlinear) observer design deal with linear parametrization,
some results dealing with nonlinear parameterizations are
available in the literature [13], [11], [20], [10], [7], [23], [22].

In this paper, we propose an adaptive observer for
nonlinearly parameterized systems. The class of systems
considered is the same than that given in [7]. The main
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novelty of the proposed observer design with respect to
that proposed in [7] is the introduction of the characteristic
indices associated to the unknown parameters which
allows to derive a new persistent excitation condition more
admissible than that considered in [7].

The paper is organized as follows. In the next section, we
introduce the class of considered systems and the notations
used throughout the paper. Section III is dedicated to the
observers design. We first define the characteristic indices
associated to the unknown parameters and then the observer
design is detailed with a full convergence analysis. In section
IV, the performances of the proposed observer and its main
properties are illustrated in simulation through an example
dealing with an identification problem involving a linear
system with delayed input. Finally, concluding remarks are
given in section V.

II. PRELIMINARIES

We present first the class of systems which will be in
consideration in the paper and the notations that will be used
throughout the paper.

A. Presentation of the class of systems

Consider the class of single input single ouput systems
which are diffeomorphic to the following form:{

ẋ = Ax+ ϕ(u, x, ρ)
y(t) = Cx(t) = x1(t)

(1)

with

A =

(
0 In−1

0 0

)
, C =

(
1 0 . . . 0

)
(2)

where x(t) =

 x1

...
xn

 ∈ Rn and ρ =

 ρ1

...
ρm

 ∈ Rm

denote the state and the unknown parameters of the system
respectively, u(t) ∈ D a compact subset of R is the input
of the system and y(t) ∈ R denotes the systems output. The
function ϕ has the following structure:

ϕ(u, x, ρ) =


ϕ1(u, x1, ρ)

ϕ2(u, x1, x2, ρ)
...

ϕn−1(u, x1, . . . , xn−1, ρ)
ϕn(u, x, ρ)

 (3)



The adaptive observer design needs the adoption of some
hypothesis that shall be stated at due courses. At this step,
we assume the following:
(A1) The state x(t), the control u(t) and the unknown
parameters ρ are bounded, i.e. x(t) ∈ X , u(t) ∈ U and
ρ ∈ Ω where X ⊂ Rn, U ⊂ R and Ω ∈ Rm are compacts
sets.

(A2) The function ϕ is continuous on U ×X × Ω.

(A3) The function ϕ is Lipschitz with respect to x and ρ,
uniformly in u, where u ∈ U , x ∈ X and ρ ∈ Ω and its
Lipschitz constant will be denoted Lϕ.

B. Notations

Throughout the paper, we denote:
• ρM the upper bound of ρ, i.e.

ρM = max
1≤i≤m

|ρi|. (4)

• λm(A) and λM (A) are respectively the lowest and the
greatest eigenvalues of A, where A is a square matrix.

• ∆θ the diagonal matrix defined by:

∆θ = diag

[
1,

1

θ
, . . . ,

1

θn−1

]
(5)

where θ > 0 is a real number. Classical computations
allow to check the following identities:

∆θA∆θ = θA

C∆−1
θ = C (6)

where the matrices A and C are defined in (2).
• S the unique solution of the algebraic Lyapunov equa-

tion:

S +ATS + SA− CTC = 0 (7)

It has been shown in [8] that S is Symmetric Positive
Definite (SPD) and that the matrix (A − S−1CTC) is
Hurwitz.

III. OBSERVERS DESIGN

One of the novelty of this paper lies in the introduction
of m characteristic indices νj associated to the m unknown
parameters ρj for j = 1, . . . ,m.

Definition 1: The characteristic index νj associated to the
parameter ρj for system (1) is the smallest integer i such
that

∂ϕi
∂ρj

(u, x, ρ) 6= 0,

that is:
∂ϕk
∂ρj

(u, x, ρ) = 0 for k = 1, . . . , νj − 1,

∂ϕνj
∂ρj

(u, x, ρ) 6= 0.

This allows to introduce the following diagonal m×m matrix

Ωθ = diag

[
1

θν1
,

1

θν2
, . . . ,

1

θνm

]
(8)

According to the structure of ∆θ and Ωθ respectively given
by (5) and (8), one has

∆θ
∂ϕ(u, x, ρ)

∂ρ
Ω−1
θ = θΦ(u, x, ρ) +R

(
u, x, ρ,

1

θ

)
(9)

where Φ(u, x, ρ) and R
(
u, x, ρ,

1

θ

)
are n×m rectangular

matrices whose respective entries Φij(u, x) and Rij
(
u, x, 1

θ

)
,

for (i, j) ∈ [1, n]× [1,m], are defined as follows:

Φij(u, x, ρ) = 0 if i 6= νj (10)

Φ
νj
j (u, x, ρ) =

∂ϕνj

∂ρj
(u, x, ρ) (11)

Rij

(
u, x, ρ,

1

θ

)
= 0 if i ≤ νj (12)

Rij

(
u, x, ρ,

1

θ

)
=

1

θi−1−νj
∂ϕi
∂ρj

(u, x, ρ) otherwise(13)

The matrix Φ(u, x, ρ) does not depend on θ at all while this
parameter appears with non positive powers in the entries of
the matrix R

(
u, x, ρ, 1

θ

)
. Moreover, these matrices verifiy

the following property:

∆θΦ(u, x, ρ)Ω−1
θ = θΦ(u, x, ρ)

R1
j

(
u, x, ρ,

1

θ

)
= 0 for j = 1, . . . ,m (14)

The candidate adaptive observer for sytem (1) is given by
the following dynamical system:

˙̂x(t) = Ax̂(t) + ϕ(u(t), x̂(t), ρ̂(t))

−θ∆−1
θ

(
S−1 + Υ(t)P (t)ΥT (t)

)
CT (Cx̂(t)− y(t))

˙̂ρ(t) = −θΩ−1
θ P (t)ΥT (t)CT (Cx̂(t)− y(t))

Υ̇(t) = θ(A− S−1CTC)Υ(t) + θΦ(u(t), x̂(t), ρ̂(t))

Υ(0) = 0

Ṗ (t) = −θP (t)ΥT (t)CTCΥ(t)P (t) + θP (t)

P (0) = PT (0) > 0
(15)

where x̂ ∈ Rn and ρ̂ ∈ Rm respectively denote the state
and parameter estimates, Φ(u, x̂, ρ̂), S, C and ∆θ are
respectively given by (11), (7), (2) and (5) and θ is a positif
scalar which is the sole observer design parameter.

In order to prove the convergence of the observer, we need
the following assumption:
(A4) The input u is such that for any trajectory of system
(15) starting from (x̂(0), ρ̂(0)) ∈ X × Ω, the matrix CΥ(t)
is persistently exciting i.e.

∃δ1, δ2 > 0;∃T > 0;∀t ≥ 0 :

δ1Im ≤
∫ t+T
t

ΥT (τ)CTCΥ(τ)dτ ≤ δ2Im
Now, due to the nonlinear parametrization, the following
additional assumption is also needed:



(A5) The function Φ(u, x, ρ) satisfies the following condi-
tion:

∀ (u, x̂) ∈ U ×X, ∀ (ρ̂, ρ) ∈ Ω2 :

|Φ(u, x̂, ρ̂)− Φ(u, x̂, ρ)| ≤ ν
√

λm(P )
λM (S) (16)

where S and P are respectively given by (7) and (15) and
ν0 belongs to ]0, 1[.

One now states the following.
Theorem 1: Consider the system (1) subject to assump-

tions (A1) to (A5). Then, for every bounded input, there
exists a constant θo such that for every θ > θo, system (15)
is an adaptive observer for system (1) with an exponential
error convergence to the origin.

Remark 1:

• The persistent excitation condition considered in As-
sumption (A4) involves the observers states, unlike
classical assumptions where the state of the system is
generally considered. Such a formulation renders the
underlying condition checkable on line.

• Assumption (A5) reveals the local nature of the adaptive
observer (15) since inequality (16) cannot generally be
satisfied if the initial observation error related to the
unknown parameter has a high magnitude. However,
in practice, the observer (15) still work with relatively
high values of these initial observation error, miming the
behaviour of global observers, as it shall be illustrated
through simulation results given in the next section.
Note that in the case of a linearly parameterized system,
assumption (A5) is always satisfied.

The proof of this theorem is given after some comments
and facts that will be used throughout the proof.

• The matrix Υ(t) is bounded with upper and lower
bounds that do not depend on θ. To prove this, let
us change the time scale by setting τ = t/θ and let
Ῡ(t) = Υ

(
t
θ

)
. From equations (15), one has:

˙̄Υ(t) = (A− S−1CTC)Ῡ(t) + Φ

(
u

(
t

θ

)
, x̂

(
t

θ

)
, ρ̂

(
t

θ

))
(17)

Since the matrix A − S−1CTC is Hurwitz and from
the fact that Φ

(
u
(
t
θ

)
, x̂
(
t
θ

)
, ρ̂
(
t
θ

))
is bounded with

bounds independent of θ, one naturally concludes
that Υ(t) is bounded with upper and lower bounds
independent of θ. In fact, the matrix Υ is a filtered
version of Φ. The initial condition of Υ is taken equal
to zero in order to make shorter the transient behavior.

• Under assumption (A4), the matrix P (t) governed by
the ordinary differential equation described in (15) is
SPD and bounded. Moreover, its corresponding upper
and lower bounds are independent of θ. To prove this,
let us again change the time scale by setting τ = t/θ

and let P̄ (t) = P
(
t
θ

)
. Then, one has:

˙̄P (t) = −P̄ (t)ΥT

(
t

θ

)
CTCΥ

(
t

θ

)
P̄ (t) + P̄ (t)

P̄ (0) = P̄T (0) > 0 (18)

Under assumption (A4), it has been shown in [25] that
P̄ is SPD and bounded and its corresponding bounds
(obviously) do not depend on θ. The same result is
trivially valid for P (t).

Proof: [Proof of theorem 1] Set x̃(t) = x̂−x and ρ̃(t) =
ρ̂(t)− ρ. Using (1) and (15), one has

˙̃x = Ax̃− θ∆−1
θ S−1CTCx̃+ ∆−1

θ Υ(t)Ωθ ˙̃ρ(t)

+(ϕ(u, x̂, ρ̂)− ϕ(u, x, ρ)) (19)
˙̃ρ = −θΩ−1

θ P (t)ΥT (t)CTCx̃ (20)

Set x̄ = ∆θx̃ and ρ̄ = Ωθρ̃. Using the identities (6), one
obtains:

˙̄x = ∆θA∆−1
θ x̄− θS−1CTC∆−1

θ x̄+ Υ(t) ˙̄ρ(t)

+∆θ(ϕ(u, x̂, ρ̂)− ϕ(u, x, ρ))

= θ(A− S−1CTC)x̄+ Υ(t) ˙̄ρ(t) (21)
+θΦ(u, x̂, ρ̂)ρ̄

+θ(Φ(u, x̂, ρξ)− Φ(u, x̂, ρ̂))ρ̄

+R

(
u, x̂, ρξ,

1

θ

)
ρ̄

+∆θ(ϕ(u, x̂, ρ)− ϕ(u, x, ρ))

˙̄ρ = −θP (t)ΥT (t)CTC∆−1
θ x̄

= −θP (t)ΥT (t)CTCx̄

The equality (21) results from the following decomposition
of ϕ, which uses the mean value theorem and property (9):

∆θ(ϕ(u, x̂, ρ̂)− ϕ(u, x, ρ))

= ∆θ(ϕ(u, x̂, ρ̂)−ϕ(u, x̂, ρ)) + ∆θ(ϕ(u, x̂, ρ)−ϕ(u, x, ρ))

= θ(Φ(u, x̂, ρ̂))ρ̄+ θ(Φ(u, x̂, ρξ)− Φ(u, x̂, ρ̂))ρ̄

+R
(
u, x̂, ρξ,

1
θ

)
ρ̄+ ∆θ(ϕ(u, x̂, ρ)− ϕ(u, x, ρ))

Now, set:

η(t) = x̄(t)−Υ(t)ρ̄(t) (22)

For writing convenience and as long as there is no
ambiguity, the time variable t shall be omitted in the
sequel. One gets:

η̇(t) = θ(A− S−1CTC) (η + Υρ̄) + Υ ˙̄ρ+ θΦ(u, x̂, ρ̂)ρ̄

+θ(Φ(u, x̂, ρξ)− Φ(u, x̂, ρ̂))ρ̄+R(u, x̂, ρ̂,
1

θ
)

+∆θ(ϕ(u, x̂, ρ)− ϕ(u, x, ρ))−Υ ˙̄ρ− Υ̇ρ̄

= θ(A− S−1CTC)η +R

(
u, x̂, ρξ,

1

θ

)
ρ̄

+θ(Φ(u, x̂, ρξ)− Φ(u, x̂, ρ̂))ρ̄

+∆θ (ϕ(u, x̂, ρ)− ϕ(u, x, ρ))



Note that the last equality comes from the fact that Υ is
governed by the ordinary differential equation given in (15).
Set V1(η(t)) = ηT (t)Sη(t), V2(ρ̄(t)) = ρ̄T (t)P−1(t)ρ̄(t)
where S and P (t) are respectively given by (7) and (15)
and let V (η(t), ρ̄(t)) = V1(η(t)) + V2(ρ̄(t)) be the
Lyapunov candidate function. Using (7), one gets:

V̇1(η) = 2θηTS(A− S−1CTC)η

+2ηTSR

(
u, x̂, ρξ

1

θ

)
ρ̄

+2θηTS(Φ(u, x̂, ρξ)− Φ(u, x̂, ρ̂))ρ̄

+2ηTS∆θ (ϕ(u, x̂, ρ)− ϕ(u, x, ρ))

= −θV1(η)− θηTCTCη

+2ηTSR

(
u, x̂, ρξ,

1

θ

)
ρ̄

+2θηTS(Φ(u, x̂, ρξ)− Φ(u, x̂, ρ̂))ρ̄

+2ηTS∆θ (ϕ(u, x̂, ρ)− ϕ(u, x, ρ))

It is clear from (22) that

|x̄| ≤ |η|+ |Υ(t)||ρ̄| ≤ |η|+ γM |ρ̄| (23)

where

γM = sup
t≥0
|Υ(t)| (24)

Proceeding as in [7], one can show that for θ ≥ 1:

2ηTS∆θ(ϕ(u, x̂, ρ)− ϕ(u, x, ρ))

≤ 2
√
λM (S)

√
V1(η)Lϕ|x̄|

≤ k1V1 + c1
√
V1

√
V2

2θηTS (Φ(u, x̂, ρξ)− Φ(u, x, ρ)) ρ̄ ≤ 2νθ
√
V1(η)

√
V2(ρ̄)

2ηTSR

(
u, x̂, ρξ,

1

θ

)
ρ̄ ≤ 2

√
λM (S)

√
V1(η)RM |ρ̄|

≤ c2
√
V1

√
V2

where k1, k2, c1, c2 and c3 are defined as:

k1 = 2
√

λM (S)
λm(S)Lϕ, c1 = 2

√
λM (S)
λm(P )LϕγM ,

c2 = 2
√

λM (S)
λm(P )RM

with λm(P ) = mint≥0 λm(P (t))

and RM = supt≥0 |R(
(
u(t), x̂(t), ρξ(t),

1
θ

)
)|

where Lϕ is the Lipschitz constants of ϕ as stated in
assumption (A3) and ΨM , ρM and γM are the upper
bounds of Ψ, ρ and Υ given by (4) and (24), respectively.
According to the above developments, one gets:

V̇1(η) ≤ −(θ−k)V1−θηTCTCη+(c+2νθ)
√
V 1

√
V 2 (25)

where k = k1 and c = c1 + c2.

Let us now derive the time derivative of V2. From (15), one
gets:

V̇2(ρ̄) = 2ρ̄TP−1(t) ˙̄ρ− ρ̄TP−1(t)Ṗ (t)P−1(t)ρ̄

= −2θρ̄T ΥTCTCx̄− θρ̄TP−1(t)ρ̄

+θρ̄TΥTCTCΥρ̄

= −θV2 − 2θρ̄T ΥTCTCx̄+ θρ̄TΥTCTCΥρ̄

= −θV2 − 2θρ̄T ΥTCTC (η + Υρ̄)

+θρ̄TΥTCTCΥρ̄

= −θV2 − θρ̄TΥTCTCΥρ̄− 2θρ̄T ΥTCTCη

(26)

Hence, using (25) and (26), one obtains

V̇ (t) = V̇1(η) + V̇2(ρ̄)

≤ −(θ − k)V1 − θV2 + (c+ 2θν)
√
V 1

√
V 2

−θηTCTCη − θρ̄TΥTCTCΥρ̄

−2θρ̄T ΥTCTCη

= −(θ − k)V1 − θV2 + (c+ 2θν)
√
V 1

√
V 2

−θ(η + Υρ̄)TCTC(η + Υρ̄)

≤ −(θ − k)V1 + (c+ 2θν)
√
V 1

√
V 2 − θV2

≤ −(θ − k)(V1 + V2) +
(c+ 2θν)

2
(V1 + V2)

= −((1− ν)θ − k − c

2
)V (27)

Now, it suffices to choose θ such that (1− ν)θ > k + c/2,
which is always possible since ν < 1. This ends the proof.

IV. EXAMPLE: ENGINE TRANSIENT FUEL
IDENTIFICATION

This example deals with the identification of the transient
fuel in a port fuel injected internal combustion engine which
can be described by the following second order linear time-
delay system [9]:

ż1(t) = z2(t)
ż2(t) = ρ1u̇(t− ρ5) + ρ2u(t− ρ5)

−ρ3z2(t)− ρ4z1(t)
y(t) = z1(t)

where the output y(t) is the measured fuel-to-air ratio and
the input u(t) is the injected fuel over air ratio. It is assumed
that this system is internally asymptotically stable whereas
the unknown parameters {ρi}i∈[1,5] are constant and positive.
This system has been considered in [9] where the authors
proposed an on-line identification procedure to estimate the
model parameters. The main drawback of the previously
proposed procedure lies in the fact that the delay, i.e. ρ5,
can be estimated provided that its possible value belongs to
a set of finite numbers of known values. Such a prerequisite
is not necessary with the approach proposed in this paper
since system (28) is under form (1) with

A
∆
=

(
0 1
0 0

)
(28)



and

ϕ(u, z, ρ)

∆
=

(
0

ρ1u̇(t− ρ5) + ρ2u(t− ρ5)− ρ3z2(t)− ρ4z1(t)

)
(29)

and one can then use an observer of the form (15) for
the estimation of the parameters {ρi}i∈[1,5] as well as the
missing state z2.

In this case, all the unknown parameters appear for the first
time in the second equation and hence all the characteristic
indices are equal to 2. So, one has Ωθ = θ−2I5 and the

matrix Φ(u, ẑ, ρ̂) coincides with
∂ϕ

∂ρ
(u, ẑ, ρ̂), i.e.

Φ(u, ẑ, ρ̂) =

(
0 0 0 0

u̇(t− ρ̂5) u(t− ρ̂5) −ẑ2 −ẑ1

0
− (ρ̂1ü(t− ρ̂5) + ρ̂2u̇(t− ρ̂5))

)
(30)

The input u(t) was particularly generated as the output of a
second order filter with a double pole p1 = p2 = −5 and an
input v(t) chosen as a normally distributed white noise. This
allowed to simultaneously obtain the time derivatives u̇(t)
and ü(t). The simulation was carried out under MATLAB
environment and the input of the second order filter was
chosen through the following call of MATLAB standard
function

v(t) = 0.012(4 + randn([0 : 0.1 : tf ], 1)); (31)

where tf denotes the final time of simulation (tf = 40s
in simulation). This input generator allowed to obtain an
output varying in the normal engine operating range, i.e.
about 0.08 (see figure 1).

The true values of the parameters used in the model simula-
tion are those given in [9], namely

ρ1 = 4, ρ2 = 12.5, ρ3 = 12.5, ρ4 = 7.5 and ρ5 = 0.3

The state variables of the engine and observer were initial-
ized as follows:

z1(0) = ẑ1(0) = 0.068, z2(0) = 0.1, and ẑ2(0) = 0

while the parameter estimates were arbitrarily initialized to
zero.

The choice of the tuning parameter θ is achieved through
a trial-and-error approach. This value has been fixed to 3
when simulating observer (15).

The parameter estimates {ρ̂i}i∈[1,5] as well as those the state
estimates {ẑi}i∈[1,2] provided by the observer are compared
with their true values (issued from the model simulation) in
figures 2 and 3. Again, these results clearly show the good
performance of the observer which provides satisfactory
estimates of the states as well as of the unknown parameters.

0 10 20 30 40
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

TIME (s)

v

Fig. 1. Exemple - Time evolution of the input generator, v(t)
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Fig. 2. Exemple - State and estimates of the system

V. CONCLUSION

In this paper, we have improved the adaptive high gain
observer proposed in [7] thanks to the introduction of some
characteristic indices. Indeed, these indices allowed to for-
mulate a new persistent excitation condition which is more
admissible than that condidered in [7], providing thereby
a natural construction of the gain matrix. The performance
of the proposed observer and its main properties have been
highlighted in simulation through an example dealing with
the identification of a delay input linear system.
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