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Adaptive high gain observer for uniformly observable systems with nonlinear parametrization

In this paper, an adaptive observer is proposed for a class of uniformly observable nonlinear systems with nonlinear parametrization. The main novelty of the proposed observer is the introduction of characteristic indices, which allow a natural construction of the gain matrix. The main properties of the proposed observer are highlighted in simulation through an example dealing with the identification of an engine transient fuel characterized by a delay on the input.

I. INTRODUCTION

Over the last decades, adaptive observers design has become a wide and active research field. Generally, the aim of adaptive observers is to simultaneously provide an estimation of the non measured state variables and the unknown (constant) parameters. These observes are particularly used in challenging applications, namely the adaptive control and fault detection and isolation (see for instance [START_REF] Astolfi | Nonlinear and adaptive control with applications[END_REF] and [START_REF] Zhang | Adaptive observer with exponential forgetting factor for linear time-varying systems[END_REF]). The seminal contributions related to adaptive observers design have been devoted to linear time invariant systems (see for instance [START_REF] Lüders | An adaptive observer and identifier for a linear system[END_REF] and [START_REF] Kreisselmeier | Adaptive observers with exponential rate of convergence[END_REF]). The case of linear time varying systems has been investigated in recent works within a deterministic and stochastic contexts [START_REF] Zhang | Adaptive observers for mimo linear time-varying systems[END_REF], [START_REF] Perabò | Adaptive observers for linear stochastic timevariant systems with disturbances[END_REF]. Several approaches have been adopted to tackle the adaptive observer design for nonlinear systems. The usual approach is based on appropriate coordinate transformation which allows to obtain linear error dynamics up to output injection [START_REF] Bastin | Stable adaptive observers for nonlinear time varying systems[END_REF], [START_REF] Marino | Global adaptive observers for nonlinear systems via filtered transformations[END_REF], [START_REF] Marino | Nonlinear Control Design : Geometric, Adaptive and Robust[END_REF], [START_REF] Santosuosso | Global adaptive output feedback controllers with application to nonlinear friction compensation[END_REF]. An optimization based approach has been presented in [START_REF] Cho | A systematic approach to adaptive observer synthesis for nonlinear systems[END_REF], the existence of the underlying adaptive observer depends on the feasibility of a set of linear matrix inequalities. Some results have been proposed in [START_REF] Besançon | Remarks on nonlinear adaptive observers design[END_REF], [START_REF] Besançon | Further developments on adaptive observers for nonlinear systems with application in fault detection[END_REF] and [START_REF] Stamnes | Redesign of adaptive observers for improved parameter identification in nonlinear systems[END_REF] without requiring the considered nonlinear systems to be linearizable. These results have been established assuming the existence of some Lyapunov functions satisfying particular conditions. A switching variable structure approach has been pursued in [START_REF] Martínez | Switching structure state and parameter estimator for mimo non-linear robust control[END_REF]. Adaptive versions of high gain observers have been proposed in [START_REF] Besançon | High-gain observer based and parameter estimation in nonlinear systems[END_REF] and [START_REF] Farza | Adaptive observers for nonlinearly parameterized class of nonlinear systems[END_REF]. Though most results on adaptive (nonlinear) observer design deal with linear parametrization, some results dealing with nonlinear parameterizations are available in the literature [START_REF] Loh | Adaptation in the presence of a general nonlinear parameterization: an error model approach[END_REF], [START_REF] Kojić | Adaptive control of a class of nonlinear systems with convex/concave parameterization[END_REF], [START_REF] Skantze | Adaptive estimation of discrete-time systems with nonlinear parameterization[END_REF], [START_REF] Kojić | Adaptive control of nonlinearly parameterized systems with a triangular structure[END_REF], [START_REF] Farza | Adaptive observers for nonlinearly parameterized class of nonlinear systems[END_REF], [START_REF] Yan | State and parameter estimation for nonlinear delay systems using sliding mode techniques[END_REF], [START_REF] Tyukin | Adaptive observers and parameter estimation for a class of systems nonlinear in the parameters[END_REF].

In this paper, we propose an adaptive observer for nonlinearly parameterized systems. The class of systems considered is the same than that given in [START_REF] Farza | Adaptive observers for nonlinearly parameterized class of nonlinear systems[END_REF]. The main novelty of the proposed observer design with respect to that proposed in [START_REF] Farza | Adaptive observers for nonlinearly parameterized class of nonlinear systems[END_REF] is the introduction of the characteristic indices associated to the unknown parameters which allows to derive a new persistent excitation condition more admissible than that considered in [START_REF] Farza | Adaptive observers for nonlinearly parameterized class of nonlinear systems[END_REF].

The paper is organized as follows. In the next section, we introduce the class of considered systems and the notations used throughout the paper. Section III is dedicated to the observers design. We first define the characteristic indices associated to the unknown parameters and then the observer design is detailed with a full convergence analysis. In section IV, the performances of the proposed observer and its main properties are illustrated in simulation through an example dealing with an identification problem involving a linear system with delayed input. Finally, concluding remarks are given in section V.

II. PRELIMINARIES

We present first the class of systems which will be in consideration in the paper and the notations that will be used throughout the paper.

A. Presentation of the class of systems

Consider the class of single input single ouput systems which are diffeomorphic to the following form:

ẋ = Ax + ϕ(u, x, ρ) y(t) = Cx(t) = x 1 (t) (1) 
with

A = 0 I n-1 0 0 , C = 1 0 . . . 0 (2) 
where

x(t) =    x 1 . . . x n    ∈ R n and ρ =    ρ 1 . . . ρ m    ∈ R m
denote the state and the unknown parameters of the system respectively, u(t) ∈ D a compact subset of R is the input of the system and y(t) ∈ R denotes the systems output. The function ϕ has the following structure:

ϕ(u, x, ρ) =        ϕ 1 (u, x 1 , ρ) ϕ 2 (u, x 1 , x 2 , ρ)
. . .

ϕ n-1 (u, x 1 , . . . , x n-1 , ρ) ϕ n (u, x, ρ)        (3) 
The adaptive observer design needs the adoption of some hypothesis that shall be stated at due courses. At this step, we assume the following: (A1) The state x(t), the control u(t) and the unknown parameters ρ are bounded, i.e. x(t) ∈ X, u(t) ∈ U and ρ ∈ Ω where X ⊂ R n , U ⊂ R and Ω ∈ R m are compacts sets.

(A2) The function ϕ is continuous on U × X × Ω.

(A3) The function ϕ is Lipschitz with respect to x and ρ, uniformly in u, where u ∈ U , x ∈ X and ρ ∈ Ω and its Lipschitz constant will be denoted L ϕ .

B. Notations

Throughout the paper, we denote:

• ρ M the upper bound of ρ, i.e.

ρ M = max 1≤i≤m |ρ i |. (4) 
• λ m (A) and λ M (A) are respectively the lowest and the greatest eigenvalues of A, where A is a square matrix.

• ∆ θ the diagonal matrix defined by:

∆ θ = diag 1, 1 θ , . . . , 1 θ n-1 (5) 
where θ > 0 is a real number. Classical computations allow to check the following identities:

∆ θ A∆ θ = θA C∆ -1 θ = C (6) 
where the matrices A and C are defined in (2).

• S the unique solution of the algebraic Lyapunov equation:

S + A T S + SA -C T C = 0 (7) 
It has been shown in [START_REF] Gauthier | A simple observer for nonlinear systems -application to bioreactors[END_REF] that S is Symmetric Positive Definite (SPD) and that the matrix (A -S -1 C T C) is Hurwitz.

III. OBSERVERS DESIGN

One of the novelty of this paper lies in the introduction of m characteristic indices ν j associated to the m unknown parameters ρ j for j = 1, . . . , m.

Definition 1:

The characteristic index ν j associated to the parameter ρ j for system (1) is the smallest integer i such that ∂ϕ i ∂ρ j (u, x, ρ) = 0, that is:

∂ϕ k ∂ρ j (u, x, ρ) = 0 for k = 1, . . . , ν j -1, ∂ϕ νj ∂ρ j (u, x, ρ) = 0.
This allows to introduce the following diagonal m×m matrix

Ω θ = diag 1 θ ν1 , 1 θ ν2 , . . . , 1 θ νm (8)
According to the structure of ∆ θ and Ω θ respectively given by ( 5) and ( 8), one has

∆ θ ∂ϕ(u, x, ρ) ∂ρ Ω -1 θ = θΦ(u, x, ρ) + R u, x, ρ, 1 θ (9) 
where Φ(u, x, ρ) and R u, x, ρ,

1 θ are n × m rectangular matrices whose respective entries Φ i j (u, x) and R i j u, x, 1 θ , for (i, j) ∈ [1, n] × [1, m],
are defined as follows:

Φ i j (u, x, ρ) = 0 if i = ν j (10) 
Φ νj j (u, x, ρ) = ∂ϕ νj ∂ρ j (u, x, ρ) (11) 
R i j u, x, ρ, 1 θ = 0 if i ≤ ν j (12) 
R i j u, x, ρ,

1 θ = 1 θ i-1-νj ∂ϕ i ∂ρ j (u, x, ρ) otherwise (13)
The matrix Φ(u, x, ρ) does not depend on θ at all while this parameter appears with non positive powers in the entries of the matrix R u, x, ρ, 1 θ . Moreover, these matrices verifiy the following property:

∆ θ Φ(u, x, ρ)Ω -1 θ = θΦ(u, x, ρ) R 1 j u, x, ρ, 1 θ = 0 f or j = 1, . . . , m (14) 
The candidate adaptive observer for sytem (1) is given by the following dynamical system:

                       ẋ(t) = Ax(t) + ϕ(u(t), x(t), ρ(t)) -θ∆ -1 θ S -1 + Υ(t)P (t)Υ T (t) C T (C x(t) -y(t)) ρ(t) = -θΩ -1 θ P (t)Υ T (t)C T (C x(t) -y(t)) Υ(t) = θ(A -S -1 C T C)Υ(t) + θΦ(u(t), x(t), ρ(t)) Υ(0) = 0 Ṗ (t) = -θP (t)Υ T (t)C T CΥ(t)P (t) + θP (t) P (0) = P T (0) > 0 (15 
) where x ∈ R n and ρ ∈ R m respectively denote the state and parameter estimates, Φ(u, x, ρ), S, C and ∆ θ are respectively given by ( 11), ( 7), ( 2) and ( 5) and θ is a positif scalar which is the sole observer design parameter.

In order to prove the convergence of the observer, we need the following assumption: (A4) The input u is such that for any trajectory of system (15) starting from (x(0), ρ(0)) ∈ X × Ω, the matrix CΥ(t) is persistently exciting i.e. ∃δ 1 , δ 2 > 0; ∃T > 0; ∀t ≥ 0 :

δ 1 I m ≤ t+T t Υ T (τ )C T CΥ(τ )dτ ≤ δ 2 I m
Now, due to the nonlinear parametrization, the following additional assumption is also needed:

(A5) The function Φ(u, x, ρ) satisfies the following condition: [START_REF] Marino | Nonlinear Control Design : Geometric, Adaptive and Robust[END_REF] where S and P are respectively given by ( 7) and ( 15) and ν0 belongs to ]0, 1[.

∀ (u, x) ∈ U × X, ∀ (ρ, ρ) ∈ Ω 2 : |Φ(u, x, ρ) -Φ(u, x, ρ)| ≤ ν λ m (P ) λ M (S)

One now states the following.

Theorem 1: Consider the system (1) subject to assumptions (A1) to (A5). Then, for every bounded input, there exists a constant θ o such that for every θ > θ o , system ( 15) is an adaptive observer for system [START_REF] Astolfi | Nonlinear and adaptive control with applications[END_REF] with an exponential error convergence to the origin.

Remark 1:

• The persistent excitation condition considered in Assumption (A4) involves the observers states, unlike classical assumptions where the state of the system is generally considered. Such a formulation renders the underlying condition checkable on line.

• Assumption (A5) reveals the local nature of the adaptive observer (15) since inequality ( 16) cannot generally be satisfied if the initial observation error related to the unknown parameter has a high magnitude. However, in practice, the observer (15) still work with relatively high values of these initial observation error, miming the behaviour of global observers, as it shall be illustrated through simulation results given in the next section. Note that in the case of a linearly parameterized system, assumption (A5) is always satisfied. The proof of this theorem is given after some comments and facts that will be used throughout the proof.

• The matrix Υ(t) is bounded with upper and lower bounds that do not depend on θ. To prove this, let us change the time scale by setting τ = t/θ and let Ῡ(t) = Υ t θ . From equations ( 15), one has:

Υ(t) = (A -S -1 C T C) Ῡ(t) + Φ u t θ , x t θ , ρ t θ (17) 
Since the matrix A -S -1 C T C is Hurwitz and from the fact that Φ u t θ , x t θ , ρ t θ is bounded with bounds independent of θ, one naturally concludes that Υ(t) is bounded with upper and lower bounds independent of θ. In fact, the matrix Υ is a filtered version of Φ. The initial condition of Υ is taken equal to zero in order to make shorter the transient behavior.

• Under assumption (A4), the matrix P (t) governed by the ordinary differential equation described in [START_REF] Marino | Global adaptive observers for nonlinear systems via filtered transformations[END_REF] is SPD and bounded. Moreover, its corresponding upper and lower bounds are independent of θ. To prove this, let us again change the time scale by setting τ = t/θ and let P (t) = P t θ . Then, one has:

Ṗ (t) = -P (t)Υ T t θ C T CΥ t θ P (t) + P (t) P (0) = P T (0) > 0 (18) 
Under assumption (A4), it has been shown in [START_REF] Zhang | Adaptive observer with exponential forgetting factor for linear time-varying systems[END_REF] that P is SPD and bounded and its corresponding bounds (obviously) do not depend on θ. The same result is trivially valid for P (t).

Proof: [Proof of theorem 1] Set x(t) = x-x and ρ(t) = ρ(t)ρ. Using (1) and ( 15), one has

ẋ = Ax -θ∆ -1 θ S -1 C T C x + ∆ -1 θ Υ(t)Ω θ ρ(t) +(ϕ(u, x, ρ) -ϕ(u, x, ρ)) (19) ρ = -θΩ -1 θ P (t)Υ T (t)C T C x (20) 
Set x = ∆ θ x and ρ = Ω θ ρ. Using the identities (6), one obtains:

ẋ = ∆ θ A∆ -1 θ x -θS -1 C T C∆ -1 θ x + Υ(t) ρ(t) +∆ θ (ϕ(u, x, ρ) -ϕ(u, x, ρ)) = θ(A -S -1 C T C)x + Υ(t) ρ(t) (21) +θΦ(u, x, ρ)ρ +θ(Φ(u, x, ρ ξ ) -Φ(u, x, ρ))ρ +R u, x, ρ ξ , 1 θ ρ +∆ θ (ϕ(u, x, ρ) -ϕ(u, x, ρ)) ρ = -θP (t)Υ T (t)C T C∆ -1 θ x = -θP (t)Υ T (t)C T C x
The equality [START_REF] Stamnes | Redesign of adaptive observers for improved parameter identification in nonlinear systems[END_REF] results from the following decomposition of ϕ, which uses the mean value theorem and property (9):

∆ θ (ϕ(u, x, ρ) -ϕ(u, x, ρ)) = ∆ θ (ϕ(u, x, ρ) -ϕ(u, x, ρ)) + ∆ θ (ϕ(u, x, ρ) -ϕ(u, x, ρ)) = θ(Φ(u, x, ρ))ρ + θ(Φ(u, x, ρ ξ ) -Φ(u, x, ρ))ρ +R u, x, ρ ξ , 1 θ ρ + ∆ θ (ϕ(u, x, ρ) -ϕ(u, x, ρ)) Now, set: η(t) = x(t) -Υ(t)ρ(t) (22) 
For writing convenience and as long as there is no ambiguity, the time variable t shall be omitted in the sequel. One gets:

η(t) = θ(A -S -1 C T C) (η + Υρ) + Υ ρ + θΦ(u, x, ρ)ρ +θ(Φ(u, x, ρ ξ ) -Φ(u, x, ρ))ρ + R(u, x, ρ, 1 θ ) +∆ θ (ϕ(u, x, ρ) -ϕ(u, x, ρ)) -Υ ρ -Υρ = θ(A -S -1 C T C)η + R u, x, ρ ξ , 1 θ ρ +θ(Φ(u, x, ρ ξ ) -Φ(u, x, ρ))ρ +∆ θ (ϕ(u, x, ρ) -ϕ(u, x, ρ))
Note that the last equality comes from the fact that Υ is governed by the ordinary differential equation given in [START_REF] Marino | Global adaptive observers for nonlinear systems via filtered transformations[END_REF].

Set V 1 (η(t)) = η T (t)Sη(t), V 2 (ρ(t)) = ρT (t)P -1 (t)ρ(t)
where S and P (t) are respectively given by ( 7) and ( 15) and let V (η(t), ρ(t)) = V 1 (η(t)) + V 2 (ρ(t)) be the Lyapunov candidate function. Using [START_REF] Farza | Adaptive observers for nonlinearly parameterized class of nonlinear systems[END_REF], one gets:

V1 (η) = 2θη T S(A -S -1 C T C)η +2η T SR u, x, ρ ξ 1 θ ρ +2θη T S(Φ(u, x, ρ ξ ) -Φ(u, x, ρ))ρ +2η T S∆ θ (ϕ(u, x, ρ) -ϕ(u, x, ρ)) = -θV 1 (η) -θη T C T Cη +2η T SR u, x, ρ ξ , 1 θ ρ +2θη T S(Φ(u, x, ρ ξ ) -Φ(u, x, ρ))ρ +2η T S∆ θ (ϕ(u, x, ρ) -ϕ(u, x, ρ))
It is clear from [START_REF] Tyukin | Adaptive observers and parameter estimation for a class of systems nonlinear in the parameters[END_REF] that

|x| ≤ |η| + |Υ(t)||ρ| ≤ |η| + γ M |ρ| (23) 
where

γ M = sup t≥0 |Υ(t)| (24) 
Proceeding as in [START_REF] Farza | Adaptive observers for nonlinearly parameterized class of nonlinear systems[END_REF], one can show that for θ ≥ 1:

2η T S∆ θ (ϕ(u, x, ρ) -ϕ(u, x, ρ)) ≤ 2 λ M (S) V 1 (η)L ϕ |x| ≤ k 1 V 1 + c 1 √ V 1 √ V 2 2θη T S (Φ(u, x, ρ ξ ) -Φ(u, x, ρ)) ρ ≤ 2νθ V 1 (η) V 2 (ρ) 2η T SR u, x, ρ ξ , 1 θ ρ ≤ 2 λ M (S) V 1 (η)R M |ρ| ≤ c 2 V 1 V 2
where k 1 , k 2 , c 1 , c 2 and c 3 are defined as:

k 1 = 2 λ M (S) λm(S) L ϕ , c 1 = 2 λ M (S) λ m (P ) L ϕ γ M , c 2 = 2 λ M (S) λ m (P ) R M with λ m (P ) = min t≥0 λ m (P (t))
and R M = sup t≥0 |R( u(t), x(t), ρ ξ (t), 1 θ )| where L ϕ is the Lipschitz constants of ϕ as stated in assumption (A3) and Ψ M , ρ M and γ M are the upper bounds of Ψ, ρ and Υ given by ( 4) and [START_REF] Zhang | Adaptive observers for mimo linear time-varying systems[END_REF], respectively. According to the above developments, one gets:

V1 (η) ≤ -(θ-k)V 1 -θη T C T Cη+(c+2νθ) √ V 1 √ V 2 (25) 
where

k = k 1 and c = c 1 + c 2 .
Let us now derive the time derivative of V 2 . From [START_REF] Marino | Global adaptive observers for nonlinear systems via filtered transformations[END_REF], one gets:

V2 (ρ) = 2ρ T P -1 (t) ρ -ρT P -1 (t) Ṗ (t)P -1 (t)ρ = -2θ ρT Υ T C T C x -θ ρT P -1 (t)ρ +θ ρT Υ T C T CΥρ = -θV 2 -2θ ρT Υ T C T C x + θ ρT Υ T C T CΥρ = -θV 2 -2θ ρT Υ T C T C (η + Υρ) +θ ρT Υ T C T CΥρ = -θV 2 -θ ρT Υ T C T CΥρ -2θ ρT Υ T C T Cη (26) 
Hence, using ( 25) and ( 26), one obtains

V (t) = V1 (η) + V2 (ρ) ≤ -(θ -k)V 1 -θV 2 + (c + 2θν) √ V 1 √ V 2 -θη T C T Cη -θ ρT Υ T C T CΥρ -2θ ρT Υ T C T Cη = -(θ -k)V 1 -θV 2 + (c + 2θν) √ V 1 √ V 2 -θ(η + Υρ) T C T C(η + Υρ) ≤ -(θ -k)V 1 + (c + 2θν) √ V 1 √ V 2 -θV 2 ≤ -(θ -k)(V 1 + V 2 ) + (c + 2θν) 2 (V 1 + V 2 ) = -((1 -ν)θ -k - c 2 )V (27) 
Now, it suffices to choose θ such that (1ν)θ > k + c/2, which is always possible since ν < 1. This ends the proof.

IV. EXAMPLE: ENGINE TRANSIENT FUEL

IDENTIFICATION

This example deals with the identification of the transient fuel in a port fuel injected internal combustion engine which can be described by the following second order linear timedelay system [START_REF] Gomez | On-line identification of SISO linear time-invariant delay systems from output measurements[END_REF]:

       ż1 (t) = z 2 (t) ż2 (t) = ρ 1 u(t -ρ 5 ) + ρ 2 u(t -ρ 5 ) -ρ 3 z 2 (t) -ρ 4 z 1 (t) y(t) = z 1 (t)
where the output y(t) is the measured fuel-to-air ratio and the input u(t) is the injected fuel over air ratio. It is assumed that this system is internally asymptotically stable whereas the unknown parameters {ρ i } i∈ [START_REF] Astolfi | Nonlinear and adaptive control with applications[END_REF][START_REF] Besançon | Further developments on adaptive observers for nonlinear systems with application in fault detection[END_REF] are constant and positive. This system has been considered in [START_REF] Gomez | On-line identification of SISO linear time-invariant delay systems from output measurements[END_REF] where the authors proposed an on-line identification procedure to estimate the model parameters. The main drawback of the previously proposed procedure lies in the fact that the delay, i.e. ρ 5 , can be estimated provided that its possible value belongs to a set of finite numbers of known values. Such a prerequisite is not necessary with the approach proposed in this paper since system (28) is under form [START_REF] Astolfi | Nonlinear and adaptive control with applications[END_REF] with

A ∆ = 0 1 0 0 (28) 
and ϕ(u, z, ρ)

∆ = 0 ρ 1 u(t -ρ 5 ) + ρ 2 u(t -ρ 5 ) -ρ 3 z 2 (t) -ρ 4 z 1 (t) (29) 
and one can then use an observer of the form [START_REF] Marino | Global adaptive observers for nonlinear systems via filtered transformations[END_REF] for the estimation of the parameters {ρ i } i∈ [START_REF] Astolfi | Nonlinear and adaptive control with applications[END_REF][START_REF] Besançon | Further developments on adaptive observers for nonlinear systems with application in fault detection[END_REF] as well as the missing state z 2 .

In this case, all the unknown parameters appear for the first time in the second equation and hence all the characteristic indices are equal to 2. So, one has Ω θ = θ -2 I 5 and the matrix Φ(u, ẑ, ρ) coincides with ∂ϕ ∂ρ (u, ẑ, ρ), i.e.

Φ(u, ẑ, ρ) = 0 0 0 0 u(t -ρ5 ) u(t -ρ5 ) -ẑ 2 -ẑ 1 0 -(ρ 1 ü(t -ρ5 ) + ρ2 u(t -ρ5 )) (30) 
The input u(t) was particularly generated as the output of a second order filter with a double pole p 1 = p 2 = -5 and an input v(t) chosen as a normally distributed white noise. This allowed to simultaneously obtain the time derivatives u(t) and ü(t). The simulation was carried out under MATLAB environment and the input of the second order filter was chosen through the following call of MATLAB standard function v(t) = 0.012(4 + randn([0 : 0.1 :

t f ], 1)); (31) 
where t f denotes the final time of simulation (t f = 40s in simulation). This input generator allowed to obtain an output varying in the normal engine operating range, i.e. about 0.08 (see figure 1).

The true values of the parameters used in the model simulation are those given in [START_REF] Gomez | On-line identification of SISO linear time-invariant delay systems from output measurements[END_REF], namely ρ 1 = 4, ρ 2 = 12.5, ρ 3 = 12.5, ρ 4 = 7.5 and ρ 5 = 0.3

The state variables of the engine and observer were initialized as follows:

z 1 (0) = ẑ1 (0) = 0.068, z 2 (0) = 0.1, and ẑ2 (0) = 0 while the parameter estimates were arbitrarily initialized to zero.

The choice of the tuning parameter θ is achieved through a trial-and-error approach. This value has been fixed to 3 when simulating observer [START_REF] Marino | Global adaptive observers for nonlinear systems via filtered transformations[END_REF].

The parameter estimates {ρ i } i∈ [START_REF] Astolfi | Nonlinear and adaptive control with applications[END_REF][START_REF] Besançon | Further developments on adaptive observers for nonlinear systems with application in fault detection[END_REF] as well as those the state estimates {ẑ i } i∈ [START_REF] Astolfi | Nonlinear and adaptive control with applications[END_REF][START_REF] Bastin | Stable adaptive observers for nonlinear time varying systems[END_REF] provided by the observer are compared with their true values (issued from the model simulation) in figures 2 and 3. Again, these results clearly show the good performance of the observer which provides satisfactory estimates of the states as well as of the unknown parameters. In this paper, we have improved the adaptive high gain observer proposed in [START_REF] Farza | Adaptive observers for nonlinearly parameterized class of nonlinear systems[END_REF] thanks to the introduction of some characteristic indices. Indeed, these indices allowed to formulate a new persistent excitation condition which is more admissible than that condidered in [START_REF] Farza | Adaptive observers for nonlinearly parameterized class of nonlinear systems[END_REF], providing thereby a natural construction of the gain matrix. The performance of the proposed observer and its main properties have been highlighted in simulation through an example dealing with the identification of a delay input linear system. 
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