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Abstract

We consider a class of low Reynolds number swimmers, of prolate spheroidal shape, which
can be seen as simplified models of ciliated microorganisms. Within this model, the form of the
swimmer does not change, the propelling mechanism consisting in tangential displacements of the
material points of swimmer’s boundary. Using explicit formulas for the solution of the Stokes
equations at the exterior of a translating prolate spheroid the governing equations reduce to a
system of ODE’s with the control acting in some of its coefficients (bilinear control system). The
main theoretical result asserts the exact controllability of the prolate spheroidal swimmer. In the
same geometrical situation, we define a concept of efficiency which reduces to the classical one in
the case of a spherical swimmer and we consider the optimal control problem of maximizing this
efficiency during a stroke. Moreover, we analyse the sensitivity of this efficiency with respect to the
eccentricity of the considered spheroid. We provide semi-explicit formulas for the Stokes equations
at the exterior of a prolate spheroid, with an arbitrary tangential velocity imposed on the fluid-
solid interface. Finally, we use numerical optimization tools to investigate the dependence of the
efficiency on the number of inputs and on the eccentricity of the spheroid. The “best” numerical
result obtained yields an efficiency of 30.66% with 13 scalar inputs. In the limiting case of a sphere
our best numerically obtained efficiency is of 30.4%, whereas the best computed efficiency previously
reported in the literature is of 22%.

1 Introduction and statement of the main results

Ciliates are swimming microorganisms which exploit the bending of a large number of small and
densely packed organelles, termed cilia, in order to propel themselves in a viscous fluid. In this work
we consider an envelope model for such ciliary locomotion, where the dynamics of the individual
cilia are replaced by time periodic tangential displacements of the points on the boundary of the
microorganism. We refer to the works of Taylor [18], Blake [4], Childress [5], Ishikawa, Simmonds and
Pedley [10] or to the recent review paper of Lauga and Powers [12] for a detailed description of this
model. The aim of this work is to study the locomotion mechanism of these organisms, combining
classical tools of low Reynolds number flow theory with the modern techniques of optimal control.

∗The last two authors acknowledge the support of the French National Research Agency (ANR) via the grant 11-
BS03-0002 HAMECMOPSYS.
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The main novelty we bring is the analysis of a non spherical case, which is closer to the elongated
form of most ciliated microorganisms than the spherical one previously considered in the literature.

Our main theoretical result gives the controllability of the considered system (roughly speaking, this
means that for every initial position P1 and every final position P2 there exists a time-periodic motion
of the cilia steering the organism from P1 to P2). We also consider the optimal control problem, with
state and control constraints. This problem is to maximize the efficiency of the swimmer. Tackling
this optimal control problem with a reasonable computational cost requires semi-explicit formulas for
the solutions of the Stokes system in the exterior of a prolate spheroid, with boundary conditions
which correspond either to a translation of the spheroid or to an arbitrary tangential velocity field
on the surface. The first type of boundary conditions have been tackled in classical reference such as
Happel and Brenner [9] whereas tackling the tangential boundary conditions requires very technical
calculations involving Gegenbauer functions. Moreover, the study of the problem for spheroids close
to a sphere requires a careful asymptotic analysis of these special functions. Our results can be seen as
extensions of those from the spherical case obtained, from a control theoretic viewpoint, in San Mart́ın,
Takahashi and Tucsnak [15], Sigalotti and Vivalda [17] and of those obtained, from an optimization
perspective, in Lauga and Michelin [14]. Related results, namely considering swimmers with shapes
which change during the stroke, have been obtained in Shapere and Wilczek [16], Alouges, DeSimone
and Lefebvre [2, 3], Lohéac, Scheid and Tucsnak [13].

To give the precise statement of our results we need some notation from spheroidal geometry. We
first recall that a spheroid is a revolution ellipsoid. In Cartesian coordinates (x1, x2, x3), the equation
of a spheroid with Ox3 as the symmetry axis is

x21 + x22
a21

+
x23
a23

= 1. (1.1)

The spheroid is called prolate if a1 < a3 and oblate if a1 > a3. To study the Stokes equations at
the exterior of a prolate spheroid, it is convenient to use prolate spheroidal coordinates, denoted by
(η, θ, ϕ). Following, for instance, Dassios et al. [6] or [9], these coordinates are related to the usual
Cartesian ones by

x1 = c sinh η sin θ cosϕ, x2 = c sinh η sin θ sinϕ, x3 = c cosh η cos θ, (1.2)

where the focal distance c is a fixed positive number and

0 6 η <∞, 0 6 θ 6 π, 0 6 ϕ < 2π.

The level lines θ = θ0, η > 0, ϕ = 0 and θ ∈ [0, π], η = η0, ϕ = 0 are described in Figure 1, for various
values of θ0, η0 and for a fixed value of the focal distance c.

To each η0 ∈ (0,∞) there corresponds the prolate spheroid of equation η = η0. This equation
writes, in Cartesian coordinates, in the form (1.1), with

a1 = c sinh η0, a3 = c cosh η0. (1.3)

Figure 2 represents a family of spheroids for various values of c and of η0 such that a3 = c cosh η0 = 1.
In the limit case c→ 0 (so that η0 → ∞), we recover the unit sphere of R3.

Assume that at t = 0 the swimmer occupies the closed bounded set S0 delimited by the spheroid,
centered at the origin, of equation η = η0, for some η0 > 0. For t > 0 we denote by S(t) the closed
set occupied by the swimmer at instant t. Within Blake’s envelope model, the propelling mechanism
of ciliates consists of time periodic tangential displacements of the points on the swimmer’s boundary.
For the sake of simplicity, we assume that these displacements are azimuthally symmetric with respect
to the axis Ox3 of the unit vector e3. This implies, in particular, that at each instant t, the position
of the center of mass of the swimmer is h(t)e3, where h a real valued function, and that the domain
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Figure 1: Level lines for prolate spheroidal coordinates
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Figure 2: A family of prolate spheroids converging to the unit sphere

S(t) occupied by the swimmer at instant t is simply obtained by a translation of the vector h(t)e3 of
S0, i.e., we have

S(t) = h(t)e3 + S0 (t > 0).

Let ṽ (respectively by p̃) be the Eulerian velocity (respectively the pressure) field in the fluid at
instant t. These fields are defined, for each instant t, in the time dependent domain R3 \S(t). For the
remaining part of this work, we choose to work, instead of ṽ and p̃, with the fields defined by

v(x, t) = ṽ(x+ h(t)e3, t), p(x, t) = p̃(x+ h(t)e3, t) (x ∈ R3 \ S0, t > 0). (1.4)

This allows us to take the space variable x in the fixed domain R3 \ S0.
The model that we consider for the displacements of the boundary points of S0 is the following:

for each t > 0, the point x ∈ ∂S0, of prolate spheroidal coordinates (η0, ξ, ϕ), is displaced to a point
of ∂S0 whose prolate spheroidal coordinates are (η0, θ, ϕ), where

θ = χ(ξ, t) (ξ ∈ [0, π], t > 0), (1.5)
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and where χ(·, t) is a diffeomorphism from [0, π] onto itself.
In what follows, we suppose that the function χ in (1.5) can be written as

θ = χ(ξ, t) = ξ +
N∑

i=1

αi(t)gi(ξ) (ξ ∈ [0, π], t > 0), (1.6)

where N is a positive integer and the given functions (gi)16i6N are supposed to be smooth, with
gi(0) = gi(π) = 0 for every i ∈ {1, . . . , N}. Consequently, the input functions at the disposal of the
swimmer are supposed to be (αi)16i6N , where N is a positive integer. Moreover, we assume, in order
to ensure the fact that χ(·, t) is a diffeomorphism, that

N∑

i=1

αi(t)g
′
i(ξ) > −1 (t > 0). (1.7)

Denoting by x1(t), x2(t) and x3(t) the Cartesian coordinates corresponding to the motion defined
by (1.6), we have, using (1.2), that

x1(t) = c sinh η0 sinχ(ξ, t) cosϕ, x2(t) = c sinh η0 sinχ(ξ, t) sinϕ, x3(t) = c cosh η0 cosχ(ξ, t).

Differentiating the above formula with respect to t, the velocity field v defined in (1.4) of a point on
∂S0 is given by

v(η0, θ, ϕ, t) = ḣ(t)e3 + c

√
cosh2 η0 − cos2 θ

∂χ

∂t
(χ−1(θ, t), t) eθ (θ ∈ [0, π], ϕ ∈ [0, 2π), t > 0),

(1.8)
where, for each point P of coordinates (η0, θ0, ϕ0) of the spheroid, eθ(η0, θ0, ϕ0) is the unit tangent
vector at P to the curve of parametric equation λ 7→ (η0, θ0 + λ, ϕ0).

The full system describing the coupled motion of the swimmer and of the surrounding fluid writes

−µ∆v +∇p = 0, div v = 0 (η > η0, θ ∈ [0, π], ϕ ∈ [0, 2π), t > 0), (1.9)

lim
η→∞

v(η, θ, ϕ, t) = 0 (θ ∈ [0, π], ϕ ∈ [0, 2π), t > 0), (1.10)

v(η0, θ, ϕ, t) = ḣe3 + c

√
cosh2 η0 − cos2 θ

(
N∑

i=1

βigi(χ
−1(θ, t))

)
eθ (θ ∈ [0, π], ϕ ∈ [0, 2π), t > 0),

(1.11)
α̇i(t) = βi(t) (i ∈ {1, . . . , N}, t > 0), (1.12)

∫

∂S0

σ(v, p)ndΓ = 0 (t > 0), (1.13)

h(0) = 0, α(0) = 0. (1.14)

where the function χ is defined by (1.6) and α stands for the vector valued function (αi)16i6N . In the
above system, we have denoted by µ the viscosity coefficient of the fluid, and we have assumed that
the mass center of the swimmer is at the origin for t = 0. We denote by σ(v, p) the field of Cauchy
stress tensors in the fluid defined by

σ(v, p) = −p Id3+µ [(∇v) + (∇v)∗] . (1.15)

Moreover, as in the remaining part of this work, we have denoted by n the unit normal vector field to
∂S0 directed to the interior of S0.
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Remark 1.1. Note that, in the system (1.9)-(1.14), we have used the low Reynolds number approxima-
tion, in which all the inertia terms are neglected. Moreover, the equilibrium condition for the angular
momentum is automatically satisfied due to the azimuthal symmetry of the problem. Since we want to
control the final value of the functions (αi) (which should vanish at the end of the motion), it is more
convenient to use the derivatives (βi) of these functions with respect to time as inputs of our system.
This fact motivates the occurrence of (1.12) as one of the governing equations.

As we shall see in Section 3, equations (1.9)-(1.14) uniquely determine v, p, (αi)16i6N and h from
the knowledge of the input functions (βi)16i6N .

We are now in a position to state our main controllability result.

Theorem 1.2. Assume that N > 2 and that there exist i, j ∈ {1, . . . , N}, i ̸= j such that

∫ π

0
[g′j(ξ)gi(ξ)− g′i(ξ)gj(ξ)] sin

2 ξ dξ ̸= 0,

where the functions (gi) have been introduced in (1.6).
Then for every h0 ∈ R and ε > 0, there exist T > 0 and β ∈ C∞([0, T ],RN

)
such that the solution

(v, p, h, α) of (1.9)-(1.14) satisfies:

1. h(0) = 0, α(0) = 0,

2. h(T ) = h0 and α(T ) = 0,

3. |β(t)| 6 1 and |α(t)| 6 ε for every t ∈ [0, T ].

In the above theorem and in all what follows, we denote by | · | the Euclidean norm of Rk, k > 0.
Note that, for ε small enough the third condition in the above theorem implies condition (1.6).

An important part of this work is devoted to the maximization of swimmer’s efficiency, which is
classically defined (see, for instance, [4]) as the ratio between the average power that an external force
would spend to translate the system rigidly at the same average speed and the average power expended
by the swimmer during a stroke starting and ending at the undeformed shape.

More precisely, let us consider the solution (v(0), p(0)) of

−µ∆v(0) +∇p(0) = 0 in R3 \ S0, div v(0) = 0 in R3 \ S0, (1.16)

lim
|x|→∞

v(0) = 0, v(0) = e3 on ∂S0, (1.17)

and assume that v, p, h, (αi)16i6N is the solution of (1.9)–(1.14) associated with β. Then the
efficiency eff of a motion driving the mass center from the origin to the final position h0 e3, with
h0 ̸= 0, in time T is given by

eff(β; c, η0) =

∫ T

0

∫

∂S0

σ(v(0), p(0))n ·
(
h0
T

)2

e3 dΓdt

∫ T

0

∫

∂S0

σ(v, p)n · v dΓdt

, (1.18)

To derive the formula for the numerator in the right hand side of (1.18) we have used the fact that the
mean velocity necessary to swim from the origin to h0e3 in time T is h0

T e3, so that the work needed
to translate the prolate spheroid from the origin to a position centered in h0 e3 in time T is given by

W0 =

∫ T

0

∫

∂S0

σ

(
h0
T
v(0),

h0
T
p(0)
)
n · h0

T
e3 dΓdt =

∫ T

0

∫

∂S0

σ(v(0), p(0))n ·
(
h0
T

)2

e3 dΓdt. (1.19)
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As suggested by the above notation, if we fix the final position h0 and the final time T , this
efficiency depends on the input β and on the geometric parameters c and η0. If the geometry is fixed
and if there is no risk of confusion, we simply denote the efficiency defined in (1.18) by eff(β)

An important problem is to maximize the efficiency eff with respect to the input β which varies in
a set of admissible controls. In the present case, given T > 0 and h0 ∈ R, we choose the set Uh0,T of
admissible controls to be the subset of all the functions in β ∈ L∞((0,∞),RN ) satisfying condition 2
in Theorem 1.2, together with (1.6). The result in Theorem 1.2 can be rephrased to say that for every
h0 there exists T > 0 such that Uh0,T ̸= ∅.

We investigate in Section 6 the influence of the focal distance c on swimmers efficiency. More
precisely, we consider the family of spheroids in Figure 2 for which a3 = 1. For these spheroids we
have, according to (1.3) that

η0 = cosh−1

(
1

c

)
,

so that the efficiency defined above depends only on β and on c. However, obtaining a simple formula
for this efficiency defined in (1.18) seems much more complicated than in the spherical case. Therefore,
for the above mentioned family of spheroids, we introduce a modified efficiency concept, which can be
expressed as function of β and e = c2 only, denoted by effK(β; e). This efficiency coincides when e→ 0
(so that the family in Figure 2 tends to the unit sphere) to the swimming efficiency of a spherical
ciliate (called a squirmer). Using this definition, we show that the efficiency of the swimmer increases
when the sphere deforms to a prolate spheroid. Finally, in Section 7 we propose a methodology to
solve the above mentioned optimal control problem numerically and we provide some of the results of
our simulations. One of the main difficulty we had to tackle is the presence of constraints on the state
and on the control. The maximum efficiency obtained numerically is of 30.66%, in the case in which
13 scalar input functions are used. In the limiting case of a sphere our best numerically obtained
efficiency is of 30.4%, whereas the best computed efficiency previously reported in the literature, see
[14], is of 22%.

2 The Stokes problem at the exterior of a prolate spheroidal obstacle

in translation

In this section, we first recall some known results on the exterior Stokes problem for a fluid filling the
exterior of a prolate spheroidal obstacle and then we derive an explicit formula for the shear stress on
the surface of the prolate spheroid in the case of an obstacle translating with constant velocity.

Consider the Stokes system, with Dirichlet boundary conditions, posed in Ω = R3 \ S0, where S0
is the closed bounded set delimited by a prolate spheroid.

We consider the classical homogeneous Sobolev space

D1,2(Ω) =
{
v ∈ L1

loc(Ω), ∇v ∈ L2(Ω)
}
,

endowed with the norm
|v|1,2 = ∥∇v∥L2(Ω) (v ∈ D1,2(Ω)) .

The following well-posedness result for the exterior Stokes system is well-known (see, for instance,
Galdi, [7, chap. 5, Theorem 2.1, p. 251]).
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Theorem 2.1. Let V ∈ H
1

2 (∂Ω). Then there exists a unique solution (v, p) ∈ D1,2(Ω)× L2(Ω) of:





−µ∆v +∇p = 0 , in Ω ,
div v = 0 , in Ω ,

v = V , on ∂S0 ,

lim
r→+∞

∫ π

0

∫ 2π

0
|v(r, θ, ϕ)| sin θ dϕ dθ = 0 .

(2.1)

Moreover, there exists c(Ω) > 0 such that:

|v|1,2 + ∥p∥L2(Ω) 6 c(Ω)∥V ∥
H

1

2 (∂S0)
(V ∈ H

1

2 (∂S0)) .

Finally, if V ∈ C∞(∂S0) then (u, p) ∈ C∞(Ω).

In the above theorem H
1

2 (∂S0) is, as usual, the fractional order Sobolev space as defined, for
instance, in Grisvard [8, Ch.1]. Moreover, the theorem holds for every S0 which is the closure of an
open bounded subset of R3 with smooth boundary.

In the case of an obstacle S0 which is the closure of the interior of a prolate spheroid, more detailed
information on the solution (v, p) of (2.1) can be obtained by using special functions.

To this aim, following Dassios et al. [6] and [9], we modify the prolate spheroidal coordinates which
have been introduced in (1.2) and we set

ζ = cos θ, τ = cosh η, (2.2)

so that we have
−1 6 ζ 6 1, 1 6 τ <∞.

With this modification, the change of coordinates (1.2) becomes

x1 = c
√
τ2 − 1

√
1− ζ2 cosϕ, x2 = c

√
τ2 − 1

√
1− ζ2 sinϕ, x3 = cτζ, (2.3)

with
−1 6 ζ 6 1, 1 6 τ <∞, 0 6 ϕ 6 2π. (2.4)

Writing x = (x1, x2, x3) with xi given by (2.3), the natural basis corresponding to the above coordinate
system is given by

gζ =
∂x

∂ζ
, gτ =

∂x

∂τ
, gϕ =

∂x

∂ϕ
.

Moreover, the Lamé coefficients (also called scale factors) corresponding to the change of coordinates
(2.3) are given by

hζ =

∥∥∥∥
∂x

∂ζ

∥∥∥∥ = c

√
τ2 − ζ2

1− ζ2
, hτ =

∥∥∥∥
∂x

∂τ

∥∥∥∥ = c

√
τ2 − ζ2

τ2 − 1
, hϕ =

∥∥∥∥
∂x

∂ϕ

∥∥∥∥ = c
√
τ2 − 1

√
1− ζ2 . (2.5)

It can be easily checked that {gζ , gτ , gϕ} form an orthogonal basis in R3. Writing

eζ =
1

hζ
gζ , eτ =

1

hζ
gτ , eϕ =

1

hϕ
gϕ,

we obtain a right-handed orthonormal basis {eζ , eτ , eϕ} expressed by

eζ = − ζ
√
τ2 − 1√
τ2 − ζ2

cosϕe1 −
ζ
√
τ2 − 1√
τ2 − ζ2

sinϕe2 +
τ
√

1− ζ2√
τ2 − ζ2

e3, (2.6)
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eτ =
τ
√

1− ζ2√
τ2 − ζ2

cosϕe1 +
τ
√

1− ζ2√
τ2 − ζ2

sinϕe2 +
ζ
√
τ2 − 1√
τ2 − ζ2

e3, (2.7)

eϕ = −(sinϕ) e1 + (cosϕ) e2.

Note that the prolate spheroid equation (1.1) can be rewritten as

x21 + x22
c2(τ20 − 1)

+
x23
c2τ20

= 1, (2.8)

where τ0 > 1 is fixed.
A simple calculation shows that the surface element of the prolate spheroid obtained by taking

τ = τ0 in (2.3) is given by

dΓ = c2
√

(τ20 − 1)(τ20 − ζ2) dζ dϕ. (2.9)

In this work we are interested in solutions of (2.1) which are axisymetrical with respect to Ox3.
This means, in particular that the velocity field v writes

v = v(ζ, τ) = vζ(ζ, τ)eζ + vτ (ζ, τ)eτ ,

where eζ and eτ have been introduced in (2.6) and (2.7) and the pressure satisfies p = p(ζ, τ). It is
not difficult to check that the (τ, ζ) and (ζ, τ) components of the gradient of v are given by

(∇v)τ,ζ =
1

hτ

∂vζ
∂τ

− 1

hτhζ

∂hτ
∂ζ

vτ , (∇v)ζ,τ =
1

hζ

∂vτ
∂ζ

− 1

hτhζ

∂hζ
∂τ

vζ ,

where the Lamé coefficients hτ and hζ are given by (2.5). Inserting the expression of hτ and hζ from
(2.5) in the last formula, we obtain

(∇v)τ,ζ =
1

c

√
τ2 − 1

τ2 − ζ2
∂vζ
∂τ

+
ζ
√

1− ζ2

c(τ2 − ζ2)
3

2

vτ , (∇v)ζ,τ =
1

c

√
1− ζ2

τ2 − ζ2
∂vτ
∂ζ

− τ
√
τ2 − 1

c(τ2 − ζ2)
3

2

vζ . (2.10)

It follows that the component στ,ζ := (σeτ ) · eζ of the corresponding stress tensor is given by

στ,ζ(τ, ζ) =
µ

c
√
τ2 − ζ2

[√
1− ζ2

∂vτ
∂ζ

(ζ, τ) +
√
τ2 − 1

∂vζ
∂τ

(ζ, τ)

]

+
µ

c(τ2 − ζ2)
3

2

[
ζ
√

1− ζ2vτ (ζ, τ)− τ
√
τ2 − 1vζ(ζ, τ)

]
(τ > τ0, −1 6 ζ 6 1, 0 6 ϕ < 2π).

(2.11)

The axisymmetrical case is characterized (see [9]) by the existence of a stream function ψ. According
to [6] this function is related to the velocity field v by

vζ(ζ, τ) = − 1

c2
√

(τ2 − ζ2)(1− ζ2)

∂ψ

∂τ
(ζ, τ). (2.12)

vτ (ζ, τ) =
1

c2
√
τ2 − ζ2

√
τ2 − 1

∂ψ

∂ζ
(ζ, τ), (2.13)

Moreover, the stream function ψ lies in a kernel of a relatively simple differential operator. More
precisely, consider the differential operator E2 which associates to each smooth function f of variables
ζ and τ the function E2f defined by

E2f =
1

c2(τ2 − ζ2)

[
(1− ζ2)

∂2f

∂ζ2
+ (τ2 − 1)

∂2f

∂τ2

]
. (2.14)
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Then (see, for instance, [9, p.104]) the fact that (v, p) satisfies the Stokes system is equivalent to the
fact that ψ satisfies the equation

E4ψ = 0, (2.15)

where E4 is the square of the operator E2 introduced in (2.14).
In the case of a prolate spheroid translating with a constant velocity equal to e3 we have the

following result.

Proposition 2.2. Assume that S0 is the closure of the interior of the prolate spheroid in R3 defined
by equation (2.3). Then a stream function ψ(0) corresponding to the unique solution (v(0), p(0)) ∈
D1,2(Ω)× L2(Ω) of (1.16)–(1.17) is given, using prolate spheroidal coordinates, by

ψ(0)(τ, ζ, ϕ) =
2c2
[
(τ20 + 1)H2(τ)− τ

]

(τ20 + 1) coth−1(τ0)− τ0
G2(ζ), (2.16)

where G2 and H2 are the second order Gegenbauer functions defined in Appendix A. Moreover, the
corresponding stress tensor σ(0) satisfies, on ∂S0,

σ
(0)
ζ,τ (ζ, τ0) = − 2µτ0

c
√
τ20 − 1

[
(τ20 + 1) coth−1 τ0 − τ0

]
√

1− ζ2

τ20 − ζ2
(ζ ∈ [−1, 1]). (2.17)

Finally, the force exerted by the solid on the fluid is
∫

∂S0

σ(0)ndΓ =
8πµc

(τ20 + 1) coth−1 τ0 − τ0
e3. (2.18)

Proof. We refer to [9, Section 4.30] for the formula of the stream function (2.16) and for the formula
(2.18). More precisely, it is proved in [9, Section 4.30] that

ψ(0)(ζ, τ) = −c
2

2
(τ2 − 1)(1− ζ2)

τ2
0
+1

τ2
0
−1

coth−1 τ − τ
τ2−1

τ2
0
+1

τ2
0
−1

coth−1 τ0 − τ0
τ2
0
−1

(τ > τ0, ζ ∈ [−1, 1]). (2.19)

satisfies (2.15) and that the velocity v(0) associated to ψ(0) satisfies v(0)(ζ, τ0) = e3. A simple calcula-
tion and (A.19), (A.25), show that the function ψ(0) can be written as (2.16)

Therefore, we only prove here (2.17). To do this, we use formula (2.11).
First note that, using (2.7) and (2.6), we have

v(0)(ζ, τ0) = e3 =
τ0
√

1− ζ2√
τ20 − ζ2

eζ +
ζ
√
τ20 − 1√
τ20 − ζ2

eτ (−1 < ζ < 1), (2.20)

By inserting (2.20) in the last term in the right hand side of (2.11) we obtain

µ

c(τ20 − ζ2)
3

2

(
ζ
√

1− ζ2v(0)τ − τ0

√
τ20 − 1v

(0)
ζ

)
=

µ

c(τ20 − ζ2)
3

2

√
(τ20 − 1)(1− ζ2)

τ20 − ζ2
(ζ2 − τ20 )

= −µ
√

(τ20 − 1)(1− ζ2)

c(τ20 − ζ2)
(−1 6 ζ 6 1). (2.21)

Concerning the first term in the right hand side of (2.11), we first tackle the part which can be
evaluated directly using (2.20), i.e., we write

µ
√

1− ζ2

c
√
τ20 − ζ2

∂v
(0)
τ

∂ζ
(ζ, τ0) =

µ
√

1− ζ2

c
√
τ20 − ζ2

[ √
τ20 − 1√
τ20 − ζ2

+
ζ2
√
τ20 − 1

(τ20 − ζ2)
3

2

]

=
µ
√

(τ20 − 1)(1− ζ2)

c(τ20 − ζ2)

(
1 +

ζ2

τ20 − ζ2

)
(−1 6 ζ 6 1). (2.22)
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Finally, we note that (2.12) implies that

µ
√
τ20 − 1

c
√
τ20 − ζ2

∂v
(0)
ζ

∂τ
(ζ, τ0)

= − µ
√
τ20 − 1

c3
√

(τ20 − ζ2)(1− ζ2)

(
1√

τ20 − ζ2
∂2ψ(0)

∂τ2
(ζ, τ0)−

τ0

(τ20 − ζ2)
3

2

∂ψ(0)

∂τ
(ζ, τ0)

)
(−1 6 ζ 6 1),

(2.23)

where ψ(0) is given by (2.16). Using next (2.16), together with the fact (following from (A.28)) that

H ′′
2 (τ) =

2H2(τ)

τ2 − 1
(τ ∈ R),

we obtain

∂2ψ(0)

∂τ2
(ζ, τ0) = −c2(1− ζ2)

(τ20 + 1)
[
(τ20 − 1) coth−1 τ0 − τ0

]

(τ20 − 1)
[
(τ20 + 1) coth−1 τ0 − τ0

] (−1 6 ζ 6 1).

On the other hand, (2.12) and (2.20) imply that

∂ψ(0)

∂τ
(ζ, τ0) = c2

√
τ20 − ζ2

√
τ20 − 1 v

(0)
ζ (ζ, τ0) = −c2τ0(1− ζ2) (−1 6 ζ 6 1).

Using the last two formulas in (2.23), it follows that

∂v
(0)
ζ

∂τ
(ζ, τ0) = −τ

2
0

√
1− ζ2

(τ20 − ζ2)
3

2

+

(
coth−1 τ0 − τ0

τ2
0
−1

)√
1− ζ2

(
coth−1 τ0 − τ0

τ2
0
+1

)√
τ20 − ζ2

(−1 6 ζ 6 1).

The above formula, (2.21), (2.22) and (2.11) imply, after some some calculation, the conclusion (2.17).

Remark 2.3. By using (1.19) and (2.18), it follows that the work needed to translate the prolate
spheroid from the origin to a position centered in (0, 0, h0) in time T is given by

W0 =

∫ T

0

∫

∂S0

σ(v(0), p(0))n ·
(
h0
T

)2

e3 dΓdt =
8πµch20

T [(τ20 + 1) coth−1 τ0 − τ0]
.

3 The controllability result

The aim of this section is to prove Theorem 1.2. As a first step, we show that equations (1.9)-(1.14)
can be written in a form which allows the application of some classical control theoretical tools.

Proposition 3.1. Let β = (βi)16i6N in L∞([0,∞),RN ) and (gi)16i6N in C∞[0, π]∩H1
0 (0, π) be such

that
N∑

i=1

gi(ξ)

∫ t

0
βi(s) ds > −1 (ξ ∈ [0, π], t > 0). (3.1)

Then equations (1.9)-(1.14) admit a unique solution (v, p, h, α). More precisely, the function h is
obtained by solving the initial value problem

ḣ(t) =

N∑

i=1

βi(t)Fi(α1(t), . . . , αN (t)), (3.2)

α̇i(t) = βi(t) (i ∈ {1, . . . , N}), (3.3)

h(0) = 0, α(0) = 0, (3.4)
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where

Fi(α1, . . . , αN ) = cτ0

∫ π

0
g′i(ξ)F(χ(ξ, t)) dξ (i ∈ {1, . . . , N)), (3.5)

F(x) =
1

8
(sin(2x)− 2x) (x ∈ R), (3.6)

and χ has been defined in (1.6). The solution (v, p) can be decomposed as

v = ḣ(t)v(0) + v(1), p = ḣ(t)p(0) + p(1), (3.7)

where (v(0), p(0)) is the solution of the Stokes system (1.16)–(1.17) whereas (v(1), p(1)) is the solution
of the Stokes system

−µ∆v(1) +∇p(1) = 0 in R3 \ S0, div v(1) = 0 in R3 \ S0, (3.8)

lim
|x|→∞

v(1) = 0, v(1) = V on ∂S0, (3.9)

with

V (ζ, t) = −c
√
τ20 − ζ2

(
N∑

i=1

βigi(χ
−1(arccos ζ, t)

)
eζ (ζ ∈ [−1, 1], t > 0). (3.10)

Proof. For t > 0, we set α(t) =
∫ t
0 β(s) ds. Using (3.1), it follows that χ defined in (1.6) is one to

one from [0, π] onto [0, π]. Let us fix, for a moment, h ∈ W 1,∞
loc (0,∞). One can see that if we define

(v, p) by (3.7), (3.8)–(3.9), (3.10), then (v, p) satisfies (1.9)–(1.11). Therefore, (v, p, h, α) is solution of
(1.9)–(1.14) if and only if (1.13) holds. This equation can be written as

ḣ(t)

∫

∂S0

σ(v(0), p(0))n dΓ +

∫

∂S0

σ(v(1), p(1))n dΓ = 0 (t > 0). (3.11)

At this point it is useful to note, using a simple integration by parts, that we have the reciprocity
relation ∫

∂S0

σ(v(0), p(0))n · V dΓ =

∫

∂S0

σ(v(1), p(1))n · e3 dΓ

where V is given in (3.10). Taking the inner product of (3.11) with e3, using the above reciprocity
relation and (2.18), formula (3.11) is equivalent to

ḣ(t) = −(τ20 + 1) coth−1 τ0 − τ0
8πµc

∫

∂S
σ(v(0), p(0))n · V (ζ, t) dΓ (t > 0).

Combining the above formula with (2.9), (2.17) and with n = −eτ implies

ḣ(t) =
cτ0
2

N∑

i=1

βi

∫ 1

−1
gi(χ

−1(arccos ζ, t))
√
1− ζ2 dζ (t > 0). (3.12)

Relations (3.2), (3.5) and (3.6) follow now by making the change of variables ξ = χ−1(arccos ζ, t)),
followed by an integration by parts, in the above formula.

Remark 3.2. Using the Gegenbauer functions introduced in Appendix A and the relation (3.12) ob-
tained in the above proof, the equation for h can be written in a useful alternative form. Indeed, since
the Gegenbauer functions of the first kind (Gn)n>2 (defined by formulae (A.17), (A.18) in Appendix
1) form a basis in L2[−1, 1], we can write

−
√

1− ζ2
N∑

i=1

βigi(χ
−1(arccos ζ, t), t) =

∑

n>2

An(t)Gn(ζ) (ζ ∈ [−1, 1]), (3.13)
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where (An)n>1 is a sequence in C([0,∞), l2) . Plugging (3.13) into (3.12) , and using (A.19), we
obtain

ḣ(t) = −cτ0
∫ 1

−1

∑

n>2

An(t)Gn(ζ)G2(ζ)
1

1− x2
dζ.

The above equation and (A.21) imply that the equation governing the motion of the mass center of the
swimmer simply writes

ḣ(t) = −cτ0A2(t)

3
(t > 0). (3.14)

Since we reduced the governing equations to a finite dimensional bilinear control system, we are
now in a position to use a well known result due to Chow. We recall this result below and we refer,
for instance, to [19, chap. 5, Proposition 5.14, p. 89] or [11]) for more information on this theorem.

Theorem 3.3. Let m, n ∈ N∗ and let (fi)i=1,...,n be C∞ vector fields on Rn. Consider the control
system, of state trajectory X,

Ẋ =
m∑

i=1

uifi(X), (3.15)

with input function u = (ui)i=1,...,m ∈ C∞([0,+∞[, Br

)
, where r > 0 and Br is the closed ball of radius

r and centered at the origin in Rm. Let O an open and connected set of Rn and assume that

LieX{f1, . . . , fm} = Rn (X ∈ O).

Then the system (3.15) is controllable, i.e., for every X0, X1 ∈ O there exist T > 0 and u ∈
C∞([0, T ], Br) such that X(0) = X0 and X(T ) = X1 and X(t) ∈ O for every t ∈ [0, T ].

In the above theorem, the Lie-bracket of two N dimensional smooth vector fields f1, f2 is a new
vector field defined by

[f1, f2](X) = Df2(X)(f1(X))−Df1(X)(f2(X)) (X ∈ RN ). (3.16)

We recall that a Lie-algebra is a space closed for the Lie-bracket [·, ·] and that
(
Lie{f1, . . . , fm}, [·, ·]

)

is the smallest Lie-algebra containing {f1, . . . , fm}. Moreover, LieX{f1, . . . , fm} is the subspace of Rn

spanned by all the values in X of the vector fields in Lie{f1, . . . , fm}.
We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. It clearly suffices to prove the result for N = 2 and

∫ π

0
[g′2(ξ)g1(ξ)− g′1(ξ)g2(ξ)] sin

2 ξ dξ ̸= 0. (3.17)

We first remark that, for N = 2, equations (3.2)-(3.3) can be written in the form (3.15), provided that

we set X =

[
h
α

]
and

f1(X) =



F1(α)
1
0


 , f2(X) =



F2(α)
0
1


 , (3.18)

where the functions F1 and F2 have been defined in (3.5) and (3.6). It is easily checked that

Dfk(X) =



0 ∂Fk

∂α1
(α) ∂Fk

∂α2
(α)

0 0 0
0 0 0


 (k ∈ {1, 2}, X ∈ R3).
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The above formula, (3.16) and (3.18) yield that

[f1, f2](X) =




∂F2

∂α1
(α)− ∂F1

∂α2
(α)

0
0


 (X ∈ R3). (3.19)

On the other hand, going back to (3.5) and (3.6) and using the fact that F ′(x) = − sin2 x
2 , we obtain

that
∂Fi

∂αj
(0) = −cτ0

2

∫ π

0
g′i(ξ)gj(ξ) sin

2(ξ) dξ (i, j ∈ {1, 2}).

The above formula and (3.19) imply that

[f1, f2]

[
h
0

]
= −cτ0

2



∫ π
0 [g

′
2(ξ)g1(ξ)− g′1(ξ)g2(ξ)] sin

2(ξ) dξ
0
0


 (h ∈ R).

Using (3.17) and (3.18) it follows that if X =

[
h
0

]
with h ∈ R then f1(X), f2(X) and [f1, f2](X) span

R3. By continuity, there exists ε̃ ∈ (0, ε] such that the same property holds for X =

[
h
α

]
, with |α| < ε̃.

We can thus conclude the proof by using Theorem 3.3 with O = R× {α ∈ R2 ; |α| < ε̃}.

4 The Stokes problem at the exterior of a prolate spheroid with a

tangential velocity on the boundary

In order to tackle the second term in the right hand side of the boundary condition (1.11) we
investigate in this section the problem (2.1), with S0 being the prolate spheroid of equations (2.3)
and with the boundary velocity V is azimuthally symmetric with respect to e3 and tangential to
∂S0. Unlike in the case of a spherical swimmer, studied in [4], we have no longer a separation of
variables (see [6]). Therefore there is no simple way of expressing the solution of (2.1) in function of
the coefficients occurring in the decomposition of V in an appropriate basis. This leads us to consider
an approximation of the exact solution involving several tridiagonal matrices.

To describe this approximation we use the prolate spheroidal coordinates introduced in (2.2), (2.3),
(2.4) to write the boundary condition (1.11) as

v(ζ, τ0, ϕ, t) = ḣe3 − c
√
τ20 − ζ2

(
N∑

i=1

βigi(χ
−1(arccos ζ, t)

)
eζ .

Section 2 was devoted to solving (2.1) with V = e3 and the main aim of this section is to provide an
approximate solution of (2.1) with

V = −u(ζ)eζ ζ ∈ [−1, 1], (4.1)

where u is a smooth function.
We first give, following [6], an exact formula for a class of fields (v, p) satisfying the Stokes equation

outside S0 and with the normal component of v vanishing on ∂S0. We next show that for every small
enough value of the the geometric parameter e = c2 we can choose one of the fields (v, p) in the above
mentioned family such that the tangential trace of v on ∂S0 has, up to an error term of order O(e), is
equal to u in (4.1).
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Let us consider the functions ψn defined by

ψn(τ, ζ) =
αn

2(2n− 3)

[
Hn(τ0)

(
Hn(τ)

Hn(τ0)
− Hn−2(τ)

Hn−2(τ0)

)
Gn−2(ζ)

+Hn−2(τ0)

(
Hn−2(τ)

Hn−2(τ0)
− Hn(τ)

Hn(τ0)

)
Gn(ζ)

]

− βn
2(2n+ 1)

[
Hn+2(τ0)

(
Hn+2(τ)

Hn+2(τ0)
− Hn(τ)

Hn(τ0)

)
Gn(ζ)

+Hn(τ0)

(
Hn(τ)

Hn(τ0)
− Hn+2(τ)

Hn+2(τ0)

)
Gn+2(ζ)

]
(τ > τ0, ζ ∈ [−1, 1]), (4.2)

for n > 4 and

ψn(τ, ζ) =
αn

2(2n− 3)

[
Hn−2(τ0)

(
Hn−2(τ)

Hn−2(τ0)
− Hn(τ)

Hn(τ0)

)
Gn(ζ)

]

− βn
2(2n+ 1)

[
Hn+2(τ0)

(
Hn+2(τ)

Hn+2(τ0)
− Hn(τ)

Hn(τ0)

)
Gn(ζ)

+Hn(τ0)

(
Hn(τ)

Hn(τ0)
− Hn+2(τ)

Hn+2(τ0)

)
Gn+2(ζ)

]
(τ > τ0, ζ ∈ [−1, 1]), (4.3)

for n = 2, 3, where Hn are the Gegenbauer functions of the second kind defined by (A.23)–(A.24),
where Gn are the Gegenbauer functions of the first kind defined by (A.17)–(A.18), and where αn and
βn are coefficients related to Gn and Hn that are defined by (A.35)–(A.36).
Lemma 4.1. Assume n > 2 and consider ψn defined by (4.2) with vn associated with ψn through
(2.12)–(2.13). Then there exists pn such that (vn, pn) satisfies (1.9)–(1.10). Moreover,

vn(ζ, τ0) = − 1

c2
√

(τ20 − ζ2)(1− ζ2)
[anGn−2(ζ) + bnGn(ζ) + cnGn+2(ζ)] eζ (ζ ∈ [−1, 1]), (4.4)

with

a2 = a3 = 0 and for n > 4, an = − αn

2(2n− 3)
Hn(τ0)

(
Qn−1(τ0)

Hn(τ0)
− Qn−3(τ0)

Hn−2(τ0)

)
, (4.5)

bn = − αn

2(2n− 3)
Hn−2(τ0)

(
Q̂n−3(τ0)

Hn−2(τ0)
− Qn−1(τ0)

Hn(τ0)

)
+

βn
2(2n+ 1)

Hn+2(τ0)

(
Qn+1(τ0)

Hn+2(τ0)
− Qn−1(τ0)

Hn(τ0)

)
,

(4.6)

cn =
βn

2(2n+ 1)
Hn(τ0)

(
Qn−1(τ0)

Hn(τ0)
− Qn+1(τ0)

Hn+2(τ0)

)
. (4.7)

Here Qn are the Legendre functions of the second kind defined by (A.7)–(A.8), and Q̂n = Qn for n > 1,
Q̂0 = 0, Q̂−1 = 1.

Proof. Let us first prove that ψn defined by (4.2) satisfies (2.15). In order to do this, we use (A.22)
and (A.28) to deduce that

c2(τ2 − ζ2)E2(Hn(τ)Gm(ζ)) = (n−m)(m+ n− 1)Hn(τ)Gm(ζ). (4.8)

In particular, for n > 2,

c2(τ2 − ζ2)E2(Hn(τ)Gn(ζ)) = 0, (4.9)

c2(τ2 − ζ2)E2(Hn+2(τ)Gn(ζ)) = 2(2n+ 1)Hn+2(τ)Gn(ζ), (4.10)

c2(τ2 − ζ2)E2(Hn(τ)Gn+2(ζ)) = −2(2n+ 1)Hn(τ)Gn+2(ζ), . (4.11)
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Using (4.9), we obtain, for n > 4,

c2(τ2 − ζ2)E2(ψn) =
αn

2(2n− 3)

[
E2Hn(τ)Gn−2(ζ) + E2Hn−2(τ)Gn(ζ)

]

− βn
2(2n+ 1)

[
E2Hn+2(τ)Gn(ζ) + E2Hn(τ)Gn+2(ζ)

]
(τ > τ0, ζ ∈ [−1, 1]).

Then, combining the above equality with (4.10) and (4.11) we obtain

c2(τ2 − ζ2)E2(ψn) = αn [Hn(τ)Gn−2(ζ)−Hn−2(τ)Gn(ζ)]

− βn [Hn+2(τ)Gn(ζ)−Hn(τ)Gn+2(ζ)] (τ > τ0, ζ ∈ [−1, 1]).

The recurrence relations (A.38) and (A.39) transform the above relation into

c2(τ2 − ζ2)E2(ψn) = (ζ2 − τ2)Hn(τ)Gn(ζ) (τ > τ0, ζ ∈ [−1, 1]),

from which we deduce (2.15) (using again (4.9)).
For n = 2, 3, similar calculations give the same result (we use (A.37) instead of (A.38)).
It remains to show (4.4). Since ψn is constant on S0 = {τ = τ0}, we deduce from (2.12), (2.13)

that

vn(ζ, τ0) = − 1

c2
√

(τ20 − ζ2)(1− ζ2)

∂ψn

∂τ
(ζ, τ0)eζ .

Then for n > 4, we use (4.2) to deduce

an =
αn

2(2n− 3)
Hn(τ0)

(
H ′

n(τ0)

Hn(τ0)
− H ′

n−2(τ0)

Hn−2(τ0)

)
,

bn =
αn

2(2n− 3)
Hn−2(τ0)

(
H ′

n−2(τ0)

Hn−2(τ0)
− H ′

n(τ0)

Hn(τ0)

)
− βn

2(2n+ 1)
Hn+2(τ0)

(
H ′

n+2(τ0)

Hn+2(τ0)
− H ′

n(τ0)

Hn(τ0)

)
,

cn = − βn
2(2n+ 1)

Hn(τ0)

(
H ′

n(τ0)

Hn(τ0)
− H ′

n+2(τ0)

Hn+2(τ0)

)
.

Combining (A.27) (since n− 2 > 2) and the three above equations, we deduce (4.5)-(4.7).
For the particular case n = 2, 3, we get directly an = 0 and we also use (A.27) with

H ′
n = −Q̂n−1

for n = 0, 1.

If the shape of the prolate is close to a ball, one can obtain asymptotic formulas of the above
results. More precisely, in what follows, we set

e := c2,

and we assume cτ0 = 1 so that

e =
1

τ20
.

We next study the above formulas and their consequences when e → 0. We first normalize the
functions ψn defined in (4.2), (4.3) by setting

ψ̃n =
(2n− 3)

Kne(n−3)/2
ψn, (4.12)
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with Kn defined by (A.33) and we define the velocity ṽn associated to ψ̃n through (2.12)–(2.13).
Let us define

Cn(e) =
1

2



(n+ 1)Q̃n+1

(
1√
e

)

H̃n+2

(
1√
e

) −
(n− 1)Q̃n−1

(
1√
e

)

H̃n

(
1√
e

)


 (n > 0), (4.13)

with Q̃n and H̃n defined by (A.14), (A.29) and with Q̃−1 = 1.

Lemma 4.2. Assume vn and ψn are defined as in Lemma 4.1. Then

ṽn(ζ, τ0) = − 1√
(1− eζ2)(1− ζ2)

[
ãnGn−2(ζ) + b̃nGn(ζ) + c̃nGn+2(ζ)

]
eζ , (4.14)

with
ãn = −eαnH̃n(1/

√
e)Cn−2(e), (4.15)

b̃n = H̃n−2(1/
√
e)Cn−2(e) + e2

βnαn+2(2n− 3)

(2n+ 1)
H̃n+2(1/

√
e)Cn(e), (4.16)

c̃n = −eβn(2n− 3)

(2n+ 1)
H̃n(1/

√
e)Cn(e). (4.17)

Proof. Using (A.29), (A.31), (A.14), we obtain that

Qn−1(τ0)

Hn(τ0)
=

√
e
(n− 1)Q̃n−1(1/

√
e)

H̃n(1/
√
e)

.

Then using the definition (4.13) of Cn and (A.29), we deduce that an, bn, cn defined by (4.5)–(4.7)
satisfy for n > 4

an = − αn

2n− 3
Kne

n/2H̃n(1/
√
e)Cn−2(e), (4.18)

and for n > 2

bn =
αn

(2n− 3)
Kn−2e

(n−2)/2H̃n−2(1/
√
e)Cn−2(e) +

βn
(2n+ 1)

Kn+2e
(n+2)/2H̃n+2(1/

√
e)Cn(e), (4.19)

cn = − βn
(2n+ 1)

Kne
n/2H̃n(1/

√
e)Cn(e). (4.20)

By combining (A.39) with (A.29)–(A.32) it follows that

Kn = αnKn−2 (n > 2). (4.21)

Using the above equation, we deduce that

bn =
Kn

(2n− 3)
e(n−2)/2H̃n−2(1/

√
e)Cn−2(e) +

βnαn+2

(2n+ 1)
Kne

(n+2)/2H̃n+2(1/
√
e)Cn(e). (4.22)

Let us note that (4.22) holds true in particular for n = 2, 3 with the definition of Q̂n and Q̃n for
n = 0,−1.

In particular, we deduce from (4.12) that

ṽn(ζ, τ0) = − 1√
(1− eζ2)(1− ζ2)

1√
e

(2n− 3)

Kne(n−3)/2
[anGn−2(ζ) + bnGn(ζ) + cnGn+2(ζ)] eζ

= − 1√
(1− eζ2)(1− ζ2)

[
ãnGn−2(ζ) + b̃nGn(ζ) + c̃nGn+2(ζ)

]
eζ ,

with (4.15)–(4.17).
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Now, we want to consider a linear combination of the ṽn in order to approximate the boundary
condition (1.11). More precisely, we will choose (Bn)n∈{2,...,K} so that

K∑

n=2

Bnṽn

is close to velocity produced by the cilia motions, that is

−c
√
τ20 − ζ2

(
N∑

i=1

βigi(χ
−1(arccos ζ, t)

)
eζ = −

√
1− eζ2

(
N∑

i=1

βigi(χ
−1(arccos ζ, t)

)
eζ .

In order to do this, we use that (Gn)n>2 is an orthonormal basis of L2(−1, 1) (for the weight w(x) =
1/(1− x2)) to write

√
1− ζ2

(
N∑

i=1

βigi(χ
−1(arccos(ζ), t))

)
=

∞∑

n=2

AnGn(ζ). (4.23)

With this decomposition, the velocity produced by the cilia motions can be written as

−c
√
τ20 − ζ2

(
N∑

i=1

βigi(χ
−1(arccos ζ, t)

)
eζ = −

√
1− eζ2√
1− ζ2

∞∑

n=2

AnGn(ζ)eζ . (4.24)

More precisely, one has the following result (whose proof is classical and omitted).

Lemma 4.3. Assume (4.23). Then the coefficients An are given by

An =
n(n− 1)(2n− 1)

2

N∑

i=1

βi

∫ π

0
gi(ξ)Gn(cos(χ(ξ, t)))

∂χ

∂ξ
(ξ, t) dξ (4.25)

Let us fix for all what follows
K ∈ N, K > 4. (4.26)

Let us define the matrices L and M as

Mn,n(e) = 1− eγn (2 6 n 6 K), (4.27)

Mn,n+2(e) = −eαn+2 (2 6 n 6 K − 2), (4.28)

Mn,n−2(e) = −eβn−2 (4 6 n 6 K), (4.29)

Mn,m(e) = 0 (|m− n| /∈ {0, 2}) (4.30)

and

Ln,n−2(e) = −e2n− 7

2n− 3
βn−2H̃n−2

(
1√
e

)
Cn−2(e) (4 6 n 6 K), (4.31)

Ln,n+2(e) = −eαn+2H̃n+2

(
1√
e

)
Cn(e) (2 6 n 6 K − 2), (4.32)

Ln,n(e) = H̃n−2

(
1√
e

)
Cn−2(e) + e2

2n− 3

2n+ 1
βnαn+2H̃n+2

(
1√
e

)
Cn(e) (2 6 n 6 K), (4.33)

Ln,m(e) = 0 (|m− n| ̸∈ {0, 2}). (4.34)

We notice that L(e) goes to the identity matrix IK as e → 0 so that L(e) is invertible for e small
enough.

The result below provides a relatively simple approximation (for small values of e) of the stream
function associated to the boundary value problem (2.1).
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Proposition 4.4. Assume β ∈ RN and let consider A = (An)n=2,...,K defined by (4.25). Suppose
B = (Bn)n=2,...,K is given by

B = L(e)−1M(e)A. (4.35)

Then

ψ(1) =

K∑

n=2

Bnψ̃n

is a stream function corresponding to a solution (v(1), p(1)) of

−µ∆v(1) +∇p(1) = 0 in R3 \ S0, div v(1) = 0 in R3 \ S0, (4.36)

lim
|x|→∞

v(1) = 0, v(1) = −
√

1− eζ2√
1− ζ2

(
K∑

n=2

AnGn(ζ) +RK(e)

)
eζ on ∂S0, (4.37)

where the remaining term RK(e) is such that

RK(e) ∈ O(e), RK(e) ∈ span{GK+1, GK+2}. (4.38)

Proof. Using (A.37) and (A.38), we deduce that for K > 4,

ζ2
K∑

n=2

AnGn(ζ) =

K∑

n=2

An (α̂nGn−2(ζ) + γnGn(ζ) + βnGn+2(ζ))

where α̂n = αn for n > 4 and α̂2 = α̂3 = 0. The above relation can be transformed as

ζ2
K∑

n=2

AnGn(ζ) =

K−2∑

n=2

An+2αn+2Gn(ζ) +

K∑

n=2

AnγnGn(ζ) +

K+2∑

n=4

An−2βn−2Gn(ζ). (4.39)

In particular, using the definition (4.27)–(4.30) of M , we deduce

√
1− eζ2√
1− ζ2

K∑

n=2

AnGn(ζ)

=
1√

(1− eζ2)(1− ζ2)

(
K∑

n=2

(MA)nGn(ζ)− eAK−1βK−1GK+1(ζ)− eAKβKGK+2(ζ)

)
. (4.40)

On the other hand, applying Lemma 4.2, we have on ∂S0

K∑

n=2

Bnṽn = − 1√
(1− eζ2)(1− ζ2)

K∑

n=2

Bn

[
ãnGn−2(ζ) + b̃nGn(ζ) + c̃nGn+2(ζ)

]
eζ ,

and thus

K∑

n=2

Bnṽn = − 1√
(1− eζ2)(1− ζ2)

(
K∑

n=2

(LB)nGn(ζ) +BK−1c̃K−1GK+1(ζ) +BK c̃KGK+2(ζ)

)
.

We conclude by using (4.17).
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5 The modified swimming efficiency

In this section, we define and study a notion of efficiency for the prolate. Let us recall that

η0 = cosh−1

(
1

c

)
. (5.1)

We also recall (see Section 1) that the motion of the points on the swimmers surface is defined,
using prolate spheroidal coordinates, by

θ = χ(ξ, t) = ξ +

N∑

i=1

αi(t)gi(ξ) (ξ ∈ [0, π], t > 0), (5.2)

and that the input functions of the considered system are the functions

βi(t) = α̇i(t) (i ∈ {1, . . . , N}).

Given the function (βi)16i6N and an eccentricity e, the corresponding efficiency eff
(
β;

√
e, cosh−1

(
1√
e

))

is defined by (1.18). For K ∈ N we approximate the efficiency defined in (1.18) by the function[
β
e

]
7→ effK(β, e) by

effK(β; e) =

∫ T

0

∫

∂S0

σ(v(0), p(0))n ·
(
h0
T

)2

e3 dΓdt

∫ T

0

∫

∂S0

σ(ḣ(t)v(0) + v(1), ḣ(t)p(0) + p(1))n · (ḣ(t)v(0) + v
(1)
K ) dΓ dt

, (5.3)

where

• (An)26n6K is defined from β by (4.25);

• (v(0), p(0)) is the solution of (1.16)–(1.17);

• (v(1), p(1)) is the solution of (4.36)–(4.37) considered in Proposition 4.4;

• v
(1)
K := −

√
1− eζ2√
1− ζ2

K∑

n=2

AnGn(ζ)eζ is a truncation of the trace of v(1) on ∂S0;

• h is defined by (3.11).

The approximate character of effK is due to the replacement of the last occurrence of v(1) by

its truncation v
(1)
K in the definition (1.18) of eff

(
β;

√
e, cosh−1

(
1√
e

))
. This allows us to express effK

using the coefficients (An)26n6K defined by (4.25). To accomplish this goal we first prove the following
result.

Proposition 5.1. Let (v(1), p(1)) be the solution of (4.36)–(4.37) considered in Proposition 4.4 and

let v
(1)
K be defined as above. Then

∫

∂S0

σ(v(1), p(1)))n · v(1)K dΓ = 4πµ

K∑

n=2

Anfn + 2(1− e)A2
n

n(n− 1)(2n− 1)
(5.4)

where f = MDB, where B is defined by (4.35), where M is the matrix defined by (4.27)–(4.30) and
where

Dmn(e) = H̃n(1/
√
e)(2n− 3)δmn (m > 2, n > 2). (5.5)
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Proof. Using (2.11) and the fact that v
(1)
τ = 0 on ∂S0 it follows that

σ
(1)
τ,ζ (τ0, ζ, ϕ) =

µ
√
τ20 − 1

c
√
τ20 − ζ2

∂v
(1)
ζ

∂τ
(τ0, ζ)−

µτ0
√
τ20 − 1

c(τ20 − ζ2)
3

2

v
(1)
ζ (τ0, ζ) (−1 6 ζ 6 1). (5.6)

On the other hand, using (2.12) and (5.1), it follows that

σ
(1)
τ,ζ (τ0, ζ) = − µ

√
1− e

e(1− eζ2)
√

1− ζ2
∂2ψ(1)

∂τ2
(τ0, ζ)−

2µ
√
1− e

(1− eζ2)
3

2

v
(1)
ζ (τ0, ζ) (−1 6 ζ 6 1). (5.7)

Using (2.9) and the fact that n = −eτ , it follows from the above relation that

∫

∂S0

σ(v(1), p(1))n · v(1)K dΓ = −2πµ
1− e

e

∫ 1

−1

1

1− ζ2
∂2ψ

∂τ2
(τ0, ζ)

(
K∑

n=2

AnGn(ζ)

)
dζ

− 4πµ(1− e)

∫ 1

−1

v
(1)
ζ (τ0, ζ)

(
K∑

n=2

AnGn(ζ)

)

√
1− eζ2

√
1− ζ2

dζ. (5.8)

For the second integral in the right hand side of (5.8), we use (A.21) and (4.37), (4.38) to get

−4πµ(1− e)

∫ 1

−1

v
(1)
ζ (τ0, ζ)

(
K∑

n=2

AnGn(ζ)

)

√
1− eζ2

√
1− ζ2

dζ = 8πµ(1− e)
K∑

n=2

A2
n

n(n− 1)(2n− 1)
. (5.9)

For the first integral in the right hand side of (5.8), we differentiate (4.2) and (4.3) two times with
respect to τ and we use (A.28):

∂2ψn

∂τ2
(ζ, τ0) =

1

τ20 − 1

(
αnHn(τ0)Gn−2(ζ)− αnHn−2(τ0)Gn(ζ)− βnHn+2(τ0)Gn(ζ)

+ βnHn(τ0)Gn+2(ζ)
)

(5.10)

for n > 4 and

∂2ψn

∂τ2
(ζ, τ0) =

1

τ20 − 1

(
− αnHn−2(τ0)Gn(ζ)− βnHn+2(τ0)Gn(ζ) + βnHn(τ0)Gn+2(ζ)

)
(5.11)

for n = 2, 3. Inserting (A.39) into (5.10) and (5.11) yields that ψ̃n defined by (4.12) satisfies

∂2ψ̃n

∂τ2
(ζ, τ0) = e

2n− 3

1− e
H̃n(1/

√
e)
(
αneGn−2(ζ) + (eγn − 1)Gn(ζ) + eβnGn+2(ζ)

)
(5.12)

for n > 4 and

∂2ψ̃n

∂τ2
(ζ, τ0) = e

2n− 3

1− e
H̃n(1/

√
e)
(
(eγn − 1)Gn(ζ) + eβnGn+2(ζ)

)
(5.13)

for n = 2, 3. We deduce from (5.12) and (5.13) that

∂2ψ(1)

∂τ2
(τ0, ζ) = − e

1− e
(MDB)nGn(ζ) +

e2

1− e

K∑

n=K−1

(2n− 3)H̃n(1/
√
e)BnβnGn+2(ζ). (5.14)
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Combining the last formula with (A.21), we obtain that

−2πµ
1− e

e

∫ 1

−1

1

1− ζ2
∂2ψ

∂τ2
(τ0, ζ)

(
K∑

n=2

AnGn(ζ)

)
dζ = 4πµ

K∑

n=2

Anfn
n(n− 1)(2n− 1)

.

Inserting the last formula and (5.9) in (5.8) we obtain the conclusion.

The result below provides an useful expression for the efficiency defined in (5.3).

Proposition 5.2. Let (βi)16i6N be a family of functions in L∞(0,∞). Then the swimmer’s efficiency,
defined by (5.3), is given by:

effK(β; e) =

(∫ T

0
A2 dt

)2

T

∫ T

0

(
−A2

2 +
9
[
(1 + e) tanh−1(

√
e)−√

e
]

2e
3

2

K∑

n=2

Anfn + 2(1− e)A2
n

n(n− 1)(2n− 1)

)
dt

. (5.15)

Proof. We first note that, applying (2.18), the numerator of the right hand side of (1.18) writes

∫ T

0

∫

∂S0

σ(v(0), p(0))n ·
(
h0
T

)2

e3 dΓdt =
1

T

8πµch20
(τ20 + 1) coth−1 τ0 − τ0

.

On the other hand, from (3.14) it follows that

h0 = −cτ0
3

∫ T

0
A2(s) ds .

The last two formulas imply that

∫ T

0

∫

∂S0

σ(v(0), p(0))n ·
(
h0
T

)2

e3 dΓdt =
1

9T

8πµc3τ20
(τ20 + 1) coth−1 τ0 − τ0

[∫ T

0
A2(s) ds

]2
. (5.16)

To compute the denominator of the right hand side of (1.18) we first note that

∫

∂S0

σ(ḣv(0)+ v(1), ḣp(0)+ p(1))n · ḣv(0) dΓ = ḣe3 ·
(∫

∂S0

σ(ḣv(0) + v(1), ḣp(0) + p(1))n dΓ

)
= 0 (5.17)

from (1.13).
On the other hand, by linearity,

∫

∂S0

σ(ḣv(0) + v(1), ḣp(0) + p(1))n · v(1)K dΓ = ḣ

∫

∂S0

σ(v(0), p(0))n · v(1)K dΓ

+

∫

∂S0

σ(v(1), p(1))n · v(1)K dΓ. (5.18)

Using (2.9), that n = −eτ , (2.17), (3.14) and Proposition 5.1, it follows that

∫

∂S0

σ(ḣv(0) + v(1), ḣp(0) + p(1))n · v(1)K dΓ = − 8πµc3τ20A
2
2

9
[
(1 + τ20 ) coth

−1 τ0 − τ0
]

+ 4πµ

K∑

n=2

Anfn + 2(1− e)A2
n

n(n− 1)(2n− 1)
. (5.19)
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The last formula, (5.16) and (5.3) clearly imply that

effK(β; e) =

8πµc3τ20

(∫ T
0 A2 dt

)2

9T
(
(τ20 + 1) coth−1 τ0 − τ0

)

∫ T

0

(
−8πµc3τ20A

2
2

9
[
(1 + τ20 ) coth

−1 τ0 − τ0
] + 4πµ

K∑

n=2

Anfn + 2τ0(τ
2
0 − 1)c3A2

n

n(n− 1)(2n− 1)

)
dt

,

which yields the conclusion.

6 Sensitivity with respect to the focal distance

In this section, we study the behavior of the function effK defined in (5.3) when e → 0. This means
that we consider a family of prolate spheroids like those in Figure 2, i.e., with

e = c2 → 0, cosh η0 = τ0 =
1

c
.

An important role in the proofs below will be played by the behavior when e→ 0 of the matrices
M , L and D defined by (4.27)–(4.30), by (4.31)–(4.34) and by (5.5). Let us define the matrices M (1),
D(0), D(1) and L(1) by

M (1)
nn = −γn, M

(1)
n,n+2 = −αn+2, M

(1)
n+2,n = −βn (n > 2), (6.1)

M (1)
n,m = 0 (n > 2, |m− n| ̸∈ {0, 2}), (6.2)

D(0)
nm = (2n− 3)δnm, D(1)

n,m =
n(n− 1)(2n− 3)

2(2n+ 1)
δnm (n, m > 2), (6.3)

L(1)
nn =

n(n− 1)

2(2n+ 1)
, L

(1)
n,n+2 = −αn+2, L

(1)
n+2,n = −2n− 3

2n+ 1
βn (n > 2), (6.4)

L(1)
n,m = 0 (n > 2, |m− n| ̸∈ {0, 2}). (6.5)

Lemma 6.1. With the above notation, we have the following estimates as e→ 0:

M(e) = I + eM (1), (6.6)

D(e) = D(0) + eD(1) +O(e2), (6.7)

L(e) = I + eL(1) +O(e2). (6.8)

We are now in a position to state and to prove our result of dependence of effK with respect to e.

Theorem 6.2. The efficiency effK defined by (5.3) satisfies

effK(e) =

(∫ T

0
A2 dt

)2

T

∫ T

0

(
2A2

2 + 6

K∑

n=3

A2
n

n(n− 1)

)
dt

(
1 + e eff

(1)
K +O(e2)

)
,

with eff
(1)
K > 0.
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Remark 6.3. Let us emphasize that the quantity

(∫ T

0
A2 dt

)2

T

∫ T

0

(
2A2

2 + 6
∑

n>3

A2
n

n(n− 1)

)
dt

is the efficiency of the spherical swimmer. More precisely, if S0 is the sphere centered at the origin
and of radius 1, then one can consider the same problem as for the prolate:

−µ∆v +∇p = 0 in R3 \ S0, div v = 0 in R3 \ S0, (6.9)

lim
|x|→∞

v = 0, v = ė3 +

(
N∑

i=1

βigi(χ
−1(θ, t))

)
eθ on ∂S0, (6.10)

α̇i(t) = βi(t) (i ∈ {1, . . . , N}, t > 0), (6.11)∫

∂S0

σ(v, p)n dΓ = 0 (t > 0), (6.12)

h(0) = 0, α(0) = 0, (6.13)

θ = χ(ξ, t) = ξ +

N∑

i=1

αi(t)gi(ξ) (ξ ∈ [0, π], t > 0). (6.14)

Then, one can decompose

N∑

i=1

βigi(χ
−1(θ, t)) =

1

sin θ

∞∑

n=2

An(t)Gn(cos θ) (6.15)

and in that case one can obtain (see, for instance, [14]) that the efficiency defined by (1.18) satisfies

eff(β) =

(∫ T

0
A2 dt

)2

T

∫ T

0

(
2A2

2 + 6
∑

n>3

A2
n

n(n− 1)

)
dt

. (6.16)

Let us note that in [14], the tangential velocity is written by using the Legendre function of first
kind θ 7→ P 1

n(cos(θ)) (n > 1), but that the obtained formulas can be seen as a particular case of the
corresponding results for the prolate spheroidal case (see (A.5)). Indeed, it suffices to note that, using
(A.20) and (A.22), we have

P 1
n(cos(θ)) =

n(n+ 1)

sin(θ)
Gn+1(cos(θ)) (n > 1).

Finally, it is easy to check that the efficiency in (6.16) is less than 1/2 (see [14]). Obtaining such
a theoretical upper bound is an interesting open question in the prolate spheroidal case. From the
numerical point of view, see Section 7, getting close to the theoretical upper bound seems difficult
because of the singular behavior of the optimal stroke (we refer again to [14]).

Proof of Theorem 6.2. Assume β ∈ L∞((0, T );RN ). Then α is given by (1.12) and χ by (1.6). As a
consequence, we note from (4.25) that the functions (An)n>2, do not depend on e
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We next can check by simple calculation that

9
[
(1 + e) tanh−1(

√
e)−√

e
]

2e
3

2

= 6 +
12

5
e+O(e2). (6.17)

Recalling that f =MDB (Proposition 5.1) and that B = L−1MA (see (4.35)), we obtain that

f =MDL−1MA.

The above relation and (6.6), (6.7), (6.8) yield

f = D(0)A+ eEA+O(e2), (6.18)

with E =M (1)D(0) +D(1) −D(0)L(1) +D(0)M (1).
After some calculations using (6.1), (6.2), (6.3), (6.4) and (6.5), together with (A.35) and (A.36),

we obtain

Enn = −2
2n2 − 2n− 3

2n+ 1
, En,n+2 = −n(n− 1)

2n+ 3
, En+2,n = −(n+ 1)(n+ 2)

2n− 1
(n > 2), (6.19)

En,m = 0 (n > 2, |m− n| ̸∈ {0, 2}). (6.20)

Combining (5.15) with (6.17) and (6.18), we deduce

effK(β; e) =

(∫ T

0
A2 dt

)2

T

∫ T

0

(
2A2

2 + 6
∑

n>3

A2
n

n(n− 1)

)
dt

(
1 + eff

(1)
K (β) +O(e2)

)
,

with

eff
(1)
K (β) = −

∫ T

0

(
∑

n>2

12

5

A2
n

n(n− 1)
+ 6

An(EA)n − 2An

n(n− 1)(2n− 1)

)
dt

∫ T

0

(
2A2

2 + 6
∑

n>3

A2
n

n(n− 1)

)
dt

.

Some calculation gives

eff
(1)
K (β) =

12

5

∫ T

0

K∑

n=2

A2
n(6n

2 − 9)

n(n− 1)(2n− 1)(2n+ 1)
+

K−2∑

n=2

5AnAn+2

(2n− 1)(2n+ 3)
dt

∫ T

0

(
2A2

2 + 6
∑

n>3

A2
n

n(n− 1)

)
dt

. (6.21)

In order to conclude, we show now that there exists c > 0 such that for any (An) ∈ RK−2,

K∑

n=2

A2
n(6n

2 − 9)

n(n− 1)(2n− 1)(2n+ 1)
+

K−2∑

n=2

5AnAn+2

(2n− 1)(2n+ 3)
> c

K∑

n=2

A2
n

(2n− 1)2
. (6.22)

To prove (6.22), one can, for instance, perform the change of variables Ãn := An/(2n− 1) so that

K∑

n=2

A2
n(6n

2 − 9)

n(n− 1)(2n− 1)(2n+ 1)
+

K−2∑

n=2

5AnAn+2

(2n− 1)(2n+ 3)

=

K∑

n=2

Ãn
2
(6n2 − 9)(2n− 1)

n(n− 1)(2n+ 1)
+

K−2∑

n=2

5ÃnÃn+2. (6.23)
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Some calculation gives that the sequence κn := (6n2−9)(2n−1)
n(n−1)(2n+1) is such that

κ2 >
5

2
, κ3 >

5

2
,

κn > 5 (n > 4).

We deduce from these properties that the quadratic form

(Ãn) 7→
K∑

n=2

Ãn
2
(6n2 − 9)(2n− 1)

n(n− 1)(2n+ 1)
+

K−2∑

n=2

5ÃnÃn+2

is positive definite. This property, (6.22) and (6.23) imply the result.

Proof of Lemma 6.1. Relation (6.6) is only a consequence of the definition (4.27)–(4.30) of M .
Using Lemma A.1, we have

H̃n

(
1√
e

)
= 1 +

(n− 1)n

2(2n+ 1)
e+O(e2). (6.24)

The above relation and (5.5) imply (6.7).
In order to obtain (6.8), we need first several preliminary results. Combining (A.14), (A.27),

(A.29), and (A.31), we deduce

Q̃n(x) = H̃n+1(x)−
x

n
H̃ ′

n+1(x) (x > 1).

The above relation and (4.13) yield

Cn(e) = 1− 1

2
√
e

H̃ ′
n+2(1/

√
e)

H̃n+2(1/
√
e)

+
1

2
√
e

H̃ ′
n(1/

√
e)

H̃n(1/
√
e)

(n > 2).

We deduce from this equality and Lemma A.1 that

Cn(e) =
(
1 +

(2n2 + 6n+ 1)

(2n+ 1)(2n+ 5)
e+O(e2)

)
(n > 2). (6.25)

On can check that the same formula holds for n = 0 and n = 1.
Combining (6.25) and (6.24), we obtain that L satisfies (6.8).

7 Numerical computation of the prolate spheroidal swimmer effi-

ciency

We first recall the main steps to obtain the efficiency effK defined in (5.3). We fix gi, i = 1, . . . , N
such that the hypothesis of Theorem 1.2 holds true.

Then, for β ∈ L∞(0, T ;RN ), we compute

α(t) :=

∫ t

0
β(s) ds, χ(ξ, t) = ξ +

N∑

i=1

αi(t)gi(ξ) (ξ ∈ [0, π], t > 0).

Then we use formula (4.25)

An(t) =
n(n− 1)(2n− 1)

2

N∑

i=1

βi(t)

∫ π

0
gi(ξ)Gn(cos(χ(ξ, t)))

∂χ

∂ξ
(ξ, t) dξ
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that gives in particular (see (3.14))

h(t) = −1

3

∫ t

0
A2(s) ds.

Then we compute L, M and D defined by (4.27)–(4.30), by (4.31)–(4.34) and by (5.5) and

f =MDL−1MA.

Using (5.15), we can finally compute the approximate efficiency

effK(β; e) =

(∫ T

0
A2 dt

)2

T

∫ T

0

(
−A2

2 +
9
[
(1 + e) tanh−1(

√
e)−√

e
]

2e
3

2

K∑

n=2

Anfn + 2(1− e)A2
n

n(n− 1)(2n− 1)

)
dt

.

One of the difficulties in computing the efficiency of the prolate spheroidal swimmer is to evaluate
formulas containing Hn(1/

√
e) which, for small e, may lead to important numerical errors. Therefore,

for small e, we use the asymptotic formula (derived in Theorem 6.2),

effK(β; e) ≈

(∫ T

0
A2 dt

)2

T

∫ T

0

(
2A2

2 + 6
∑

n>3

A2
n

n(n− 1)

)
dt

(
1 + e eff

(1)
K (β)

)
,

with

eff
(1)
K (β) = −

∫ T

0

(
∑

n>2

12

5

A2
n

n(n− 1)
+ 6

An(EA)n − 2An

n(n− 1)(2n− 1)

)
dt

∫ T

0

(
2A2

2 + 6
∑

n>3

A2
n

n(n− 1)

)
dt

and with E given by (6.19)–(6.20).
To evaluate effK , for given β and e, we discretize the time interval [0, T ] and the angle interval

[0, π] by using uniform meshes of size NT and Nξ. With this full discretization the original optimal
control problem, of input function β, reduces to an optimal control problem where the unknown is a
matrix of size N×NT . The constraints in this problem are the injectivity of χ and the periodicity of α
(i.e. α(T ) = 0). This maximization is performed using the IPOPT (Interior Point Optimizer) package.

We take
gi(ξ) = sin(iξ), i > 1.

Table 1 contains the results of numerical computations of the optimal efficiency for various values of the
number of scalar controls and with the discretization parameters K = 50, NT = 250, Nξ = 500. The
above values of K, NT and Nξ are large enough (for the considered values of N) to make the results
stable (not more than 0.05% of modification of the efficiency) with respect to coherent augmentations of
these parameters. In the above statement the term “coherent augmentations” signifies that increasing
the number K of basis functions implies (due to high frequency oscillations) a significant augmentation
of Nξ.

In Figure 3 we describe the evolution of h with respect to time and the evolution of the cilia (of
χ) at several times: t = 0, t = T/16, t = T/8 et t = 3T/16.
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e = 0 e = 1.0 10−3 e = 5.0 10−3 e = 1.0 10−2 e = 1.5 10−2

N = 2 7.91% 7.92% 7.94% 7.96% 7.99%

N = 5 21.02% 21.04% 21.09% 21.15% 21.22%

N = 13 30.4% 30.41% 30.49% 30.57% 30.66%

Table 1: Optimal values of effK obtained for different values of N and e.

N = 2 max |χ− id | = 58.43◦

N = 5 max |χ− id | = 102.89◦

N = 13 max |χ− id | = 104◦

Table 2: Maximum displacement for the optimal effK for different values of N .
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Figure 3: Trajectory of the prolate and evolution of the cilia (N = 2)
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Figure 4: Trajectory of the prolate and evolution of the cilia (N = 5)

We also represent in Figure 4 the evolution for N = 5 of h with respect to time and the evolution
of the cilia (of χ) at several times: t = 0, t = T/4, t = T/2 et t = 3T/4. The same graphics are drawn
in Figure 5 for N = 13.

Our first conclusion is that, in the spherical case, we obtain numerically an efficiency of 30.4%,
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Figure 5: Trajectory of the prolate and evolution of the cilia (N = 13)

with 13 scalar input functions and a maximum displacement of 104◦. We remark in Figure 5 that the
obtained displacement field has similar features with the “shock structure” obtained in [14] (where the
maximal obtained efficiency is 22% with a maximal displacement 52.6◦). We believe that obtaining
numerically, in the spherical case, an efficiency closer to the theoretical bound of 50% requires to
increase the number of modes N and, consequently, refining the discretization. Accomplishing this
program by using the full-discretization and the standard optimization algorithms proposed in this
paper seems a difficult computational issue.

For the prolate spheroidal ciliate we have shown, both analytically and numerically, that the
optimal efficiency increases by small augmentations of the eccentricity e. It would be interesting
to perform similar computations for larger values of e. From a theoretical view-point, the main
difficulty in this case would be to establish that the matrix L in (4.31)-(4.34) is invertible, whereas
computationally one should use “exact” formulas instead of the asymptotic ones in order to evaluate
the Gegenbauer functions.

Finally, let us mention that, according to the left pictures in Figures 3, 4, 5 the position of the
mass center of the ciliate goes backward at a certain stage of the stroke. We think that this feature
should appear independently of the number of modes (although in a less obvious manner, as we can
see in Figure 5) and that a mathematical proof of this assertion is an interesting challenge.

A Some background on Legendre and Gegenbauer functions

We gather in this section some definitions and properties of functions of Legendre and Gegenbauer
type. For details on this rich topic, including the proofs of the results we state here, we refer, for
instance, to Abramowitz and Stegun [1] or Whittaker and Watson [20].

We first recall some classical special functions. An important role will be played by the Legendre
polynomials (Pn)n>0 which are defined by

Pn(x) =
1

2nn!

dn

dxn
[
(x2 − 1)n

]
(n > 0, x ∈ R). (A.1)

We have, in particular,

P0(x) = 1, P1(x) = x, P2(x) =
3x2 − 1

2
(x ∈ R). (A.2)
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It is well-known that the Legendre polynomials satisfy the differential equation

(
(1− x2)P ′

n(x)
)′
= −n(n+ 1)Pn(x) (A.3)

and that they satisfy the orthogonality conditions

∫ 1

−1
Pn(x)Pm(x) dx =

2

2m+ 1
δnm (n, m > 1). (A.4)

We also need the associated function of the first kind, denoted by (P 1
n)n>1 which are defined by

P 1
n(x) =

√
1− x2P ′

n(x) (n > 1, x ∈ [−1, 1]). (A.5)

According to classical results, the functions

θ 7→ P 1
n(cos θ) (n > 1),

form a complete set in L2[0, π] and they satisfy the orthogonality conditions

∫ π

0
P 1
n(cos θ)P

1
m(cos θ) sin θ dθ =

2m(m+ 1)

2m+ 1
δnm (n, m > 1). (A.6)

The Legendre functions of the second kind (Qn)n>0 can be defined by

Q0(x) = coth−1 x, Q1(x) = x coth−1 x− 1, (A.7)

where

coth−1 x =
1

2
log

x+ 1

x− 1
(x ∈ (1,∞)),

and then recursively by

Qn+1(x) =
(2n+ 1)xQn(x)− nQn−1(x)

n+ 1
(n > 1). (A.8)

In particular, we have

Q2(x) = P2(x) coth
−1 x− 3x

2
, (A.9)

Q3(x) = P3(x) coth
−1 x− 5

2
x2 +

2

3
, (A.10)

Q4(x) = P4(x) coth
−1 x− 35

8
x3 +

55

24
x. (A.11)

The Legendre functions of the second kind satisfy the recurrence relation

(2n+ 1)Qn =
d

dx

(
Qn+1 −Qn−1

)
(A.12)

and the differential equation
d

dx

(
(1− x2)Q′

n

)
= −n(n+ 1)Qn. (A.13)

The behavior of Qn(x) when x→ ∞ plays an important role in our calculation and it is given by (see,
for instance, [20, Section 15.31])

Qn(x) =
Mn

xn+1
Q̃n(x). (A.14)
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where

Mn =
1

2n

∫ 1

0
(1− t2)n dt (n > 1), (A.15)

and

Q̃n(x) = 1 +O
(

1

x2

)
(x→ ∞). (A.16)

Within this work, the functions (Q̃n) will be calle normalized Legendre functions of the second kind.
The Gegenbauer functions of the first kind (Gn)n>0 are defined by

G0(x) = 1, G1(x) = −x (x ∈ R), (A.17)

Gn(x) =
Pn−2(x)− Pn(x)

2n− 1
(n > 2, x ∈ R). (A.18)

In particular, using the last formula and (A.2), we have

G2(x) =
1− x2

2
(x ∈ R). (A.19)

Among the useful properties of these functions, we recall the formulas

G′
n(x) = −Pn−1(x) (n > 1, x ∈ R), (A.20)

∫ 1

−1

Gn(x)Gm(x)

1− x2
dx =

2

n(n− 1)(2n− 1)
δnm (n,m > 2), (A.21)

δnm being the Kronecker delta. In particular, the Gegenbauer polynomials (Gn)n>2 form an orthogonal
basis of L2[−1, 1] for the scalar product associated to the weight w(x) = 1/(1 − x2). Moreover the
Gegenbauer functions of the first kind satisfy the differential equation

(x2 − 1)G′′
n(x) = n(n− 1)Gn(x). (A.22)

The Gegenbauer functions of the second kind (Hn)n>0 are defined by

H0(x) = −x, H1(x) = −1 (x ∈ R), (A.23)

Hn(x) =
Qn−2(x)−Qn(x)

2n− 1
(n > 2, x > 1). (A.24)

In particular,

H2(x) =
1− x2

2
Q0(x) +

x

2
(x > 1). (A.25)

By combining (A.24) and (A.8) it follows that

Hn(x) =
1

n
(Qn−2(x)− xQn−1(x)). (A.26)

Among the useful properties of the Gegenbauer functions of the second kind we note that

H ′
n(x) = −Qn−1(x) (n > 2), (A.27)

and that Hn satisfies the differential equation

H ′′
n(x) =

n(n− 1)

x2 − 1
Hn(x) (n > 0). (A.28)
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Using formula (A.26) is very inaccurate for large values of x. In this case we need a formula taking
explicitly in consideration the behavior of Hn when x → ∞. To reach this aim, we combine (A.14)
and (A.27) to obtain that

Hn(x) =
Kn

xn−1
H̃n(x) (n > 0). (A.29)

where
K0 = K1 = −1. (A.30)

Kn =
Mn−1

n− 1
(n > 2), (A.31)

with (Mn) defined in (A.15) and

H̃n(x) = 1 +O
(

1

x2

)
(x→ ∞). (A.32)

The functions (H̃n) are called normalized Gegenbauer functions of the second kind. Note that

K2 = 1/3 Kn+1 =
n− 1

2n+ 1
Kn (n > 2) (A.33)

It is useful in the context of this work to have a more detailed description of the behavior of H̃nwhen
x→ ∞.

Lemma A.1. The normalized Gegenbauer functions of the second kind (H̃n)n>2 satisfy

H̃n(x) =

∞∑

k=0

an,kx
−2k (x > 1),

where, for each n > 2, the sequence (an,k)k>0 is defined by an,0 = 1, together with

an,k+1 =
(n+ 2k − 1)(n+ 2k)

2(k + 1)(2n+ 2k + 1)
an,k (k > 0). (A.34)

Proof. We know (see, for instance [20, Section 15.31]) that Qn(x) admits, for each n > 0 an expansion
as a power-series in x−1 of the form

Qn(x) =
1

xn+1

∑

k>0

bn,kx
−2k (x > 1).

Combining the last formula with (A.14), it follows that we have the expansion

Qn(x) =
Mn

xn+1


1 +

∑

k>1

cn,kx
−2k


 (x > 1).

The last formula, combined with (A.24) and (A.31), implies that we have the expansion

Hn(x) =
Kn

xn−1


1 +

∑

k>1

an,kx
−2k


 (x > 1).

Using the fact that Hn satisfies the differential equation (A.28) we can see, after some calculation,
that (an,k) satisfy (A.34). Finally, the conclusion is obtained by simply using (A.29).
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An important role in this work is played by the recurrence relation satisfied by (Gn) and (Hn).
These formulas involve the sequences (αn)n>2, (βn)n>2 and (γn)n>2 defined by

α2 = −1

3
, α3 = − 1

15
, αn =

(n− 3)(n− 2)

(2n− 3)(2n− 1)
(n > 4), (A.35)

βn =
(n+ 1)(n+ 2)

(2n− 1)(2n+ 1)
, γn =

2n2 − 2n− 3

(2n+ 1)(2n− 3)
(n > 2). (A.36)

With the above notation, the recurrence relation for Gn are

x2Gn(x) = γnGn(x) + βnGn+2(x) (n = 2, 3), (A.37)

x2Gn(x) = αnGn−2(x) + γnGn(x) + βnGn+2(x) (n > 4), (A.38)

whereas the recurrence relation for (Hn) writes

x2Hn(x) = αnHn−2(x) + γnHn(x) + βnHn+2(x) (n > 2). (A.39)
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