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An approximate yield criterion for porous single crystals
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Abstract

This study is devoted to the derivation of an approximate yield function for voided single crystals
deforming by crystallographic slip. By making use of a regularized form of the Schmid law and solving
approximately the hydrostatic case with a limit-analysis calculation, a Gurson-type yield criterion is
proposed. It is obtained by a heuristic extension of existing limit-analysis results for a matrix obeying
a quadratic Hill-type criterion. The proposed yield function is successfully compared with numerical
results from the literature for face-centered cubic crystals.
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1. Introduction

The ductile fracture of crystalline materials is a classical subject in mechanics of materials which
still presents important challenges. It is driven by the process of growth and coalescence of voids and
thus calls for constitutive models of the plastic response of porous crystalline materials. In this context,
the consideration of the anisotropy, related to the single crystal response and the morphological and
crystallographic textures of polycrystals, is a key issue.

Important progresses have been made in the description of the plastic behaviour of polycrystals
containing cavities with mainly two different approaches. On the one hand, a large class of models has
been derived in the framework of limit-analysis, following the pioneering model of Gurson [1]. This
model has been obtained from homogenization, using a limit-analysis of a hollow sphere subjected
on its outer surface to homogeneous strain rate conditions [2, 3]. Many investigations have been
devoted to extend this model: (i) to include void shape effects by considering first spheroidal voids
[4, 5, 6] and then general ellipsoidal voids [7, 8] and (ii) to include crystallographic texture effects,
by considering a matrix material obeying an orthotropic Hill yield criterion [9, 10, 11]. The reader is
referred to [12, 13] for a critical assessment of these criteria. On the other hand, variational nonlinear
homogenization approaches [14, 15, 16, 17] have been applied to textured viscoplastic polycrystals
with intergranular cavities [18] and perfectly plastic voided polycrystals subjected to a hydrostatic
loading [19], among others. Besides, full-field numerical simulations have been performed to study
void growth and coalescence within polycrystalline aggregates [18, 20].

As compared to the studies on polycrystals, relatively few works exist on the constitutive response
of plastic single crystals containing voids. However, the importance of the crystalline anisotropy
to describe the stress state surrouding intragranular voids has been clearly evidenced analytically,
experimentally and numerically [21, 22, 23, 24, 25]. It is worth citing the study based on an improved
variational homogenization method [17] which has been undertaken to derive the effective flow stress
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of a model 2D single crystal containing cylindrical voids and subjected to antiplane shear [26]. Also,
a yield function for 3D porous single crystals has been recently derived by using the variational
homogenization method proposed in [27] and ad hoc modifications inspired by limit-analysis results
[28]. By making use of the Schmid law, the authors obtain a multi-criterion yield function.

The objective of the present study is to derive a Gurson-type yield function for porous single
crystals. Due to the widely spread finite-element (FE) implementations of the Gurson model, it
would present an obvious interest to consider the case of single crystals deforming by crystallographic
slip. With this aim in view, use is made of a regularization of the Schmid law [29, 30]. This key
ingredient allows us to obtain a single yield function defining the plastic strength domain of voided
single crystals. This feature is a definite advantage with respect to previous proposals. The proposed
criterion is assessed by comparison with results from unit-cell FE computations performed in [28] for
Face-Centered Cubic (FCC) single crystals with various orientations.

2. Plastic strength domain of the single crystal

We consider that the constitutive single crystal can undergo plastic deformation only by dislocation
glide on specific crystalline planes depending on the crystal structure. A slip system k is geometrically
characterized by the Schmid tensor µk

µk =
1

2
(mk ⊗ nk + nk ⊗ mk) (1)

with nk the unit normal to the slip plane and mk the unit slip direction.

2.1. Schmid yield criterion

According to the Schmid law [31], plastic deformation occurs on a slip system k, at a given point
x, if the absolute value of the resolved shear stress τk(x), defined by

τk(x) = µk : σ(x) with σ the Cauchy stress tensor, (2)

reaches a threshold value τ0
k . Consequently, the plastic strength domain C of a single crystal with K

slip systems is defined by a multi-criterion

C = {σ such that fk(σ) ≤ 0, ∀k = 1, . . . , K} (3)

with fk(σ) = |µk : σ| − τ0
k . The yield function of the single crystal is thus non regular and reads

f(σ) = sup
k=1,...,K

fk(σ) ≤ 0. (4)

Following the generalized normality rule, the plastic strain rate tensor d can be written as

d =
K∑

k=1

γ̇k
∂fk

∂σ
(σ), γ̇k ≥ 0, γ̇k = 0 if fk(σ) < 0. (5)

The plastic multipliers γ̇k are the slip rates on each slip system.

2



2.2. Regularized Schmid law

For practical purposes, it can be convenient to remove the yield surface singularities resulting from
the multi-criterion (3). This regularization of the Schmid law consists in approximating the multi-
criterion yield function f(σ) (4) by a differentiable and strictly convex single yield function freg(σ).
This has been initially proposed in [29, 30] with the following form

freg(σ) =

(
K∑

k=1

(
|µk : σ|

τ0
k

)n)1/n

− 1 ≤ 0, n ≥ 2. (6)

It can be noted for later reference that a similar approximation had been previously proposed in [32]
for the particular case n = 2 (i.e quadratic yield criterion). As n → +∞, the regularized function
freg(σ) tends to f(σ). With the normality rule, the plastic strain rate tensor d reads

d = λ̇
∂freg

∂σ
(σ), λ̇ ≥ 0, λ̇ = 0 if f(σ) < 0. (7)

In contradistinction to the non regular Schmid criterion, all slip systems are active when the yield
surface is reached (freg(σ) = 0). By noting that

∂freg

∂σ
=

K∑

k=1

∂freg

∂ τk

∂ τk

∂σ
, (8)

the slip rates on each slip system γ̇k are obtained as functions of the unique plastic multiplier λ̇

γ̇k = λ̇
∂freg

∂ τk
=

λ̇

τk
0

(
|τk|
τ0

k

)n−1

sgn(τk). (9)

It can be remarked that this expression is similar to the one corresponding to crystalline viscoplas-
ticity with a power-law flow rule. However, the n exponent has completely different meanings. In
the viscoplastic context, it corresponds to the coefficient of stress sensitivity and a rate-independent
behaviour is asymptotically obtained as n → +∞. In the present case, the n exponent is only related
to the geometrical approximation of the yield surface and the plastic behaviour is rate-independent
whatever the n value. Regularized yield functions, with a scaling ensuring a match with vertices of
the Schmid yield surface for all n values [32, 33], are shown on Figure 1.

3. Approximation of the yield function of voided single crystals

3.1. Description of the single hollow sphere

We aim to derive an approximation of the yield surface of rigid-perfectly plastic single crystals
containing spherical voids by taking advantage of the regularized Schmid law (6). To this end, it is
proposed to follow a kinematical limit-analysis approach on a hollow sphere. Following [1, 9] the cell
considered for the porous medium is a sphere Ω containing a confocal spherical void ω (Figure 2).
The interior radius is denoted a and the exterior one b. The porosity is defined by f = vol(ω)/vol(Ω)
with vol(Ω) = (4π/3)b3 the total volume and vol(ω) = (4π/3)a3 the cavity volume. The outer surface
of the sphere is ∂Ω and the surface of the pore is ∂ω.
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Figure 1: Section of regularized Schmid yield functions and the Bishop-Hill polyhedron [34] in the deviatoric stress plane
(s11, s22). The axial loading corresponding to the [100] crystalline direction is indicated.
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Figure 2: Cell considered for the porous material in the kinematical limit-analysis approach.

3.2. Kinematical limit-analysis approach

It is assumed that the cell is subjected on its outer boundary to homogeneous strain rate conditions,
that is

v(x) = D.x, ∀x ∈ ∂Ω, (10)

with v the velocity field and D the macroscopic strain rate tensor. The single crystal presents a convex
plastic strength domain C and, according to the principle of maximum plastic power, the local plastic
dissipation function (a.k.a support function) is defined by

π(d) = sup
σ

∗ ∈ C
σ

∗ : d, ∀x ∈ Ω − ω (11)
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with d the strain rate field (symmetric part of the gradient of the velocity field v). For the porous
material, the effective plastic dissipation function reads [35]

Π(D) = inf
v∈K(D)

〈π〉Ω = (1 − f) inf
v∈K(D)

〈π〉Ω−ω (12)

with K the set of kinematically admissible velocity field

K(D) = {v such that 〈d〉Ω = D, tr (d(x)) = 0, ∀x ∈ Ω − ω}. (13)

The upper-bound of the effective strength domain C̃ of the porous single crystal is defined as

C̃ = {Σ such that Σ : D ≤ Π(D), ∀D, div(σ) = 0, σ ∈ C, ∀x ∈ Ω − ω} (14)

with Σ the macroscopic stress tensor. The corresponding macroscopic yield surface, defined as the
boundary of the convex strength domain C̃, is thus given by

Σ =
∂Π

∂D
(D). (15)

Its derivation thus requires the determination of the support function π(d) and to minimize its integral
over the sphere volume with respect to the velocity field (12).

3.3. Gurson-type yield criterion using regularized Schmid law

For sake of simplicity, it is considered in the sequel that the critical shear stresses do not depend
on the slip system, that is τ0

k = τ0, ∀k. In this particular case, the regularized yield function (6) is
expressible as

freg(σ) =

[
K∑

k=1

|τk|n
]1/n

− τ0 ≤ 0, n ≥ 2, (16)

and the plastic dissipation of the single crystal reads

π(d) = sup
σ

∗, freg(σ∗)≤0
σ

∗ : d = sup
σ

∗, freg(σ∗)≤0
λ̇

∂freg

∂σ∗
: σ∗ = λ̇ τ0 (17)

with the plastic strain rate given by the normality rule (7)

d =
λ̇

(τ0)n−1

∑

k

|µk : σ|n−1
µk sgn(τk). (18)

By adopting a quadratic approximation for the regularized criterion (i.e n = 2), we get a Hill-type
anisotropic material, for which

d =
λ̇

τ0
M : σ with M =

K∑

k=1

µk ⊗ µk (19)

which leads to the expression of the plastic multiplier λ̇

λ̇ =
√

d : H : d. (20)

H is the inverse of the tensor M in the deviatoric space, that is H : M = M : H = K with K the
isotropic deviatoric projector. Thence, the support function of the single crystal is given by

π(d) =

{
τ0

√
d : H : d if tr (d) = 0,

+∞ if tr (d) 6= 0.
(21)

5



For single crystals presenting orthotropic or higher symmetry, the problem at hand defined by (12) is
therefore the one considered in [9, 10] for a porous material constituted of a plastic matrix obeying
the Hill yield criterion [36].

Hereafter, our analysis is restricted to the case of single crystals with cubic symmetry. The
anisotropic deviatoric tensor M can thus be written

M = α′K′ + α′′K′′ (22)

with K′ and K′′ the cubic deviatoric projectors which verify K′ + K′′ = K [37]. Since K′ and K′′ are
orthogonal and idempotent, the inverse tensor H simply reads

H =
1

α′
K′ +

1

α′′
K′′. (23)

In the case of FCC crystals with twelve octahedral slip systems {111} < 110 >, we have

M =
12∑

k=1

µk ⊗ µk = 2K′ +
2

3
K′′. (24)

However, this approximation provides a poor approximation of the Bishop-Hill polyhedron [34]. It
can be improved by minimizing the distance between the quadratic approximation and vertices of the
Bishop-Hill polyhedron. This alternative approach, which has been developed in [32] for the study of
the development of crystallographic texture of polycrystals, leads to

M =
1

4
K′ +

1

9
K′′. (25)

A section of the corresponding yield surface is shown in Figure 1. The definition (25) is adopted in
the following.

Since the regularized criterion adopted to describe the matrix is a particular case of an orthotropic
Hill criterion, we can make direct use of previous results from the limit-analysis of a hollow sphere
made of an anisotropic Hill matrix [9, 10]. The following quadratic criterion is thus obtained for single
crystals with cubic symmetry containing spherical voids (Appendix A)

(√
Σ : M : Σ

τ0

)2

+ 2 f cosh

(
κ

Σm

τ0

)
− 1 − f2 = 0 (26)

with κ an anisotropy coefficient defined by (A.6). For n > 2, the explicit expression for the local
plastic dissipation is not known yet. To address this case, we thus propose in the sequel a heuristic
extension of the quadratic criterion.

3.4. Improvements of the quadratic criterion

The quadratic criterion (26) is likely to suffer from the approximate description of the Bishop-Hill
polyhedron due to the quadratic regularization. In order to enhance this yield criterion, two distinct
modifications are proposed.

Improvement for deviatoric loadings. In the special case f = 0, the macroscopic criterion (26) reduces
to

Σ : M : Σ − τ2
0 = 0. (27)

It is clear from equation (27) that the sound material obeying Schmid criterion is not recovered in
general, due to the choice n = 2 in the regularization; however in some particular cases (e.g. the [100]
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crystalline direction), the regularized criterion coincides by construction with the Schmid criterion.
This discrepancy (see Figure 1) will impact the porous material, at least for deviatoric loadings when
the term in the hyperbolic cosine vanishes. In order to recover the sound material, it is proposed to
substitute to the quadratic form Σ : M : Σ the following quantity

Q(Σ) =

(
K∑

k=1

|µk : Σ|n
)2/n

(28)

where n is taken large enough to ensure coincidence between the regularized and the Schmid criteria.

Improvement for hydrostatic loadings. The anisotropy parameter κ (A.6), which affects the mean
stress Σm, corresponds to a quadratic yield criterion. In the sequel, we consider its determination
in the case of a face-centered cubic crystalline matrix obeying the Schmid law (multi-criterion yield
function). The following strain rate field is adopted [1]

d =
b3

r3
Dm G with G = −2er ⊗ er + eθ ⊗ eθ + eϕ ⊗ eϕ (29)

where (er, eθ, eϕ) is the local orthonormal basis for spherical symmetry. To determine the plastic
dissipation π(d), we can take advantage of the fact that the Schmid yield surface is a convex polyhe-
dron in the deviatoric stress space. As a consequence, the stress tensor which maximizes the plastic
dissipation necessarily corresponds to a vertex of the polyhedron, that is

π(d) = sup
σ

∗ ∈ C
σ

∗ : d = sup
σ

∗ ∈ V (C)
σ

∗ : d, ∀x ∈ Ω − ω (30)

with C the plastic strength domain of the single crystal (3) and V (C) the set of vertices of its boundary.
The macroscopic plastic dissipation

Π(D) =
1

vol(Ω)

∫

Ω
π(d)dΩ =

1

vol(Ω)

∫ b

r=a

∫ 2π

θ=0

∫ π

ϕ=0
π(d) r2 sin ϕ dϕ dθ dr (31)

then reads, by introducing (29) and (30),

Π(D) =
−Dm ln f

4π

∫ 2π

θ=0

∫ π

ϕ=0
sup

σ
∗ ∈ V (C)

σ
∗ : G sin ϕ dϕ dθ. (32)

By considering the set of vertices of the Bishop-Hill polyhedron, the double integral has been evaluated
numerically

Iπ =

∫ 2π

θ=0

∫ π

ϕ=0
sup

σ
∗ ∈ V (C)

σ
∗ : G sin ϕ dϕ dθ ≈ 74.56 τ0. (33)

The yield stress tensor for a hydrostatic loading reads

Σ =
∂Π

∂D
(D) =

−Iπ ln f

12π
i (34)

with i the second-order identity tensor. Besides, the form of the yield criterion (26) implies

Σm =
−τ0 ln f

κ′
. (35)

The sought parameter κ′ thus reads

κ′ =
12π τ0

Iπ
≈ 0.506 (36)
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Figure 3: Unit-cell considered for the porous material in the numerical simulations of [28].

Interestingly, the value we derive semi-analytically is close to the one which has been obtained by
parameter fitting in [28]. The value reported by Han et al. is κ′ = 1.325

√
(3/20) ≈ 0.513. By

taking account of the proposed improvements for purely deviatoric and purely hydrostatic loadings,
the generalization of the yield criterion (26) is




(∑K
k=1 |µk : Σ|n

)1/n

τ0




2

+ 2 f cosh

(
κ′ Σm

τ0

)
− 1 − f2 = 0. (37)

The evaluation of its relevance is considered hereafter.

4. Numerical assessment of the proposed criteria for FCC crystals

4.1. Generalities

In order to assess the criteria previously derived, numerical FE results on unit-cells composed of
FCC crystals obeying the Schmid law and containing a single void [28] will be used. The unit-cell
used in these numerical calculations is a cube of side l containing a spherical void of radius r (Figure
3). In the macroscopic reference frame (e1, e2, e3), the overall stress tensor reads

Σ = Σ1 (e1 ⊗ e1 + η2 e2 ⊗ e2 + η3 e3 ⊗ e3) (38)

and various orientations of the single crystal are considered (see Appendix C for the definition of the
orientation matrix).

Since the geometry considered in these numerical simulations differs from the one considered
theoretically, a consistent definition of the porosity has to be adopted [38, 39]. Indeed, the cubic
unit-cell loses its carrying capacity when the spherical void reaches the exterior boundary of the cube,
that is for f = π/6 ≃ 0.52; on the other hand, the spherical cell loses its carrying capacity for f = 1.
Following [38], the porosity f considered in the model is replaced by qf , q being a heuristic coefficient
which plays a role of adjustment of the porosity (the numerical value of this coefficient will be discussed
in the following). The general form of the proposed criterion finally reads




(∑K
k=1 |µk : Σ|n

)1/n

τ0




2

+ 2 qf cosh

(
κ′ Σm

τ0

)
− 1 − (qf)2 = 0. (39)

It has to be remarked that this criterion shares similarities with the yield function proposed in [28] by
using the variational homogenization method (Appendix B).
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4.2. Shortcomings of the quadratic criterion

To confirm the foreseen shortcomings of the criterion (26), axisymmetric loadings have been consi-
dered, that is η2 = η3 = η with η ranging from −0.5 (purely deviatoric loading) to 1 (purely hydrostatic
loading). Illustrative results are presented in Figure 4 for a porosity of 1%. To start with, it is
observed that the original criterion (26) does not agree with the unit-cell FE computations whatever
the crystalline orientation (comparisons have been made for numerous orientations which are not
reported here for conciseness). A clear improvement is obtained with a phenomenological extension
of the criterion (i.e f replaced by qf) by setting q = 2.2. A correct description of the yield stress is
obtained over the whole range of stress triaxiality when the axisymmetric loading direction is aligned
with the [100] crystalline direction. For this crystalline orientation, it is pointed out that the quadratic
approximation for the bulk single crystal coincides, by construction, with the Schmid criterion (Figures
1 and 4a). It has been observed that a good match is obtained for the yield stress of the porous material
when the axisymmetric loading direction corresponds to a vertex of the Bishop-Hill polyhedron of the
single crystal. By contrast, a poor description is obtained for crystalline orientations which do not
have this property (Figure 4b). It can be thus concluded that except for some specific orientations,
the criterion (26), even with an enhanced porosity qf , does not provide a correct description of the
yield surface of porous FCC single crystals.
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1
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0

FE (Han et al.)
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Schmid criterion
Regularized criterion

(a) [100] loading direction
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(b) [210] loading direction

Figure 4: Normalized yield stress Σ1/τ0 as a function of the axisymmetric loading parameter η = η2 = η3 for porous FCC
single crystals. The yield criterion using a quadratic regularized Schmid law (26) (solid lines) is compared to unit-cell
computations reported in [28] (points). Porosity f = 1%. The yield stress of the bulk single crystal according to the
standard and quadratic regularized Schmid law is indicated (dashed and dotted lines).

4.3. Numerical assessment of the generalized criterion

Following the disproof of the quadratic criterion, attention is now paid to the detailed assessment
of the generalized criterion (39). In the absence of porosity, this criterion is arbitrarily close to the
Schmid yield surface by considering n → +∞. In practice, it has been checked that n = 100 leads
to a correct description. The parameter q has been fitted for a fixed porosity f = 1% by considering
various crystalline orientations and macroscopic loadings (axisymmetric and non-axisymmetric). Use
has been made of the FE results of [28] for 32 different cases (8 crystalline orientations with 4 loading
conditions) and a correct agreement has been obtained with q = 1.59. It is pointed out that the
value of this correcting factor is consistent with previous studies for a porous material with a von
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Mises matrix [38, 40, 41, 42]. The comparisons are reported in Figure 5 for axisymmetric loadings
and Figure 6 for non-axisymmetric loadings. For the latter case, representative examples have been
chosen for illustration. For the axisymmetric loadings, two different representations of the results
are shown : (i) the yield stress Σ1 as a function of the loading parameter η and (ii) the von Mises
stress Σeq = Σ1(1 − η) as a function of the mean stress Σm = 1

3Σ1(1 + 2η). For the axisymmetric
loading cases, a smooth (differentiable) evolution of the yield stress with η is obtained. As noted in
[28], this is related to the activation of the same slip systems whatever the η value. An overall good
agreement is observed with a slightly less accurate description of the [111] loading case (Figure 5). For
non-axisymmetric loadings, different slip systems are activated depending on the value of the loading
parameter η3 (for a fixed value η2). This leads to discontinuities on the slope of the yield stress as
described by our criterion. In this case, a very good match is also obtained with the FE unit-cell
computations.

Finally, for a further assessment of the proposed criterion, we have also considered a variation of the
porosity. Following [28], three crystalline orientations have been considered with axisymmetric loadings
and porosities ranging from 0.5% to 10%. The comparisons are reported in Figure 7. As a whole, a
good description of the yield stress of the porous crystal is obtained for orientations corresponding to
single slip ([125] loading direction) or multiple slip ([100] and [111] loading directions). As with the
results for a porosity of 1%, a slightly higher discrepancy is observed for the [111] loading case.

5. Concluding remarks

This work represents a contribution to the study of the ductile failure of crystalline materials.
More precisely, it has been focused on the description of the yield function of voided single crystals,
a topic as yet little discussed despite its importance. By making use of a regularized form of the
Schmid law (yield function of the bulk single crystal), a Gurson-type model is proposed. It is obtained
by a phenomenological extension of the Benzerga-Besson criterion [9]. Besides, it makes use of the
limit-analysis calculation for a hollow sphere, whose matrix presents a Schmid yield locus, which
is subjected to a hydrostatic loading. This criterion has been successfully compared with reference
numerical results [28] for FCC crystals. Regarding this overall good agreement, it is worth noting that
a single fitting parameter has been introduced in our criterion.

These results offer an attractive framework to further envisage the study of crystals presenting
different families of slip systems (hexagonal crystalline structure, for instance) as well as the influence of
the shape of the void on the macroscopic yield surface. It is particularly suitable for an implementation
in FEM codes for structural computations involving crystalline materials (e.g. single crystal turbine
blades). Comparisons between the predictions of the model and micromechanical calculations of void
growth [see, for instance, 24] will be determinant in order to assess the complete constitutive model.
Efforts are currently underway to tackle these questions.

Appendix A. Limit-analysis for a hollow sphere made of an orthotropic Hill matrix

The main steps of the derivation of the yield criterion (26) are recalled. For further details, the
reader is referred to [9, 10].

Following [1], the trial velocity field adopted in [9] is of the form:

v =
b3

r2
Dmer + D

′

.x (A.1)
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Figure 5: Normalized yield stress Σ1/τ0 as a function of the axisymmetric loading parameter η = η2 = η3 (Left) and
correponding yield surface in the (Σeq, Σm) plane (Right) for porous FCC single crystals. The yield criterion using
a regularized Schmid law with n = 100 (solid lines) is compared to unit-cell computations reported in [28] (points).
Porosity f = 1%.
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Figure 6: Normalized yield stress Σ1/τ0 as a function of the loading parameter η3 with fixed value η2 = 0.4 for porous
FCC single crystals with different orientations. The yield criterion using a regularized Schmid law with n = 100 (solid
lines) is compared to unit-cell computations reported in [28] (points). Porosity f = 1%.
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(b) [111] loading direction
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Figure 7: Normalized yield stresses Σ1/τ0 as a function of the axisymmetric loading parameter η = η2 = η3 (Left)
and correponding yield surfaces in the (Σeq, Σm) plane (Right) for porous FCC single crystals with different loading
directions and porosities ranging from 0.5% to 10%. The yield criterion using a regularized Schmid law with n = 100
(lines) is compared to unit-cell computations reported in [28] (points).
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where Dm = 1
3tr (D) is the macroscopic mean strain rate and D

′

is the macroscopic deviatoric strain
rate tensor. The local strain rate tensor can be decomposed into d = dA + dB with

dA =
b3

r3
Dm(−2er ⊗ er + eθ ⊗ eθ + eϕ ⊗ eϕ) and dB = D

′

. (A.2)

The local plastic dissipation is thus given by

π(d) = τ0

√
dA : H : dA + dB : H : dB + 2dA : H : dB. (A.3)

The macroscopic plastic dissipation defined by

Π(D) =
1

vol(Ω)

∫

Ω
π(d)dΩ (A.4)

is rewritten, after some approximations, under the form

Π(D) =
τ0

b3

∫ ξf

ξ

√
1 + u2

du

u2
with ξ ≡ 3

κ

Dm

Deq
. (A.5)

Deq =
√

D : H : D is the macroscopic equivalent strain rate and κ is an anisotropy parameter defined
by

κ =
3

2

√
5

2h1 + h2 + 2h3
. (A.6)

The coefficients (h1, h2, h3) are related to the components of Hill’s anisotropic tensor H as follows

h1 =
3

8
(2H11 + 2H22 + 2H66 − H33), h2 =

9

4
H33 and h3 =

3

4
(H44 + H55) (A.7)

where use has been made of the Kelvin notation [43]. Finally, the definition (15) leads to the expression
of the approximate quadratic yield criterion (26). For cubic symmetry, we have H11 = H22 = H33

and H44 = H55 = H66. Besides, by using the cubic spectral decomposition (22), the coefficients can
alternatively be expressed as

h1 =
3

4

(
1

α′
+

1

α′′

)
, h2 =

3

2α′
and h3 =

3

2α′′
. (A.8)

In the isotropic case, that is M = 3
2K (α′ = α′′ = 3

2), the coefficients h1 = h2 = h3 = 1 and the
criterion reduces to the Gurson model [1].

Appendix B. Comparison of the criterion (39) with Han et al. yield function [28]

Han et al. [28] have derived a multi-criterion yield function for porous FCC single crystals from
the variational homogenization method. Inspired by limit-analysis results, the authors have proposed
its generalization into a phenomenological yield function. Han et al. criterion reads

sup
k=1,...,K

τ∗
k − τ0 = 0 (B.1)

with τ∗
k an effective resolved stress on slip system k defined by

(
µk : Σ

τ∗
k

)2

+ αf
2

45

(
Σeq

τ∗
k

)2

+ 2q1f cosh

(
q2

√
3

20

Σm

τ∗
k

)
− 1 − (q1f)2 = 0 (B.2)

where α, q1 and q2 are parameters which needs to be adjusted. It is thus closely related to the yield
function that we propose although obtained by a different approach. Our criterion (39) can be seen as
a regularized version of a particular case of Han’s criterion (α = 0). The following differences between
the criterions are worth mentioning:
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• Han et al. derived a multi-criterion yield function whereas we propose a single yield function.

• The Han et al. criterion presents a dependence on the equivalent macroscopic stress.

• The Han et al. proposal involves an additional adjusted parameter α. It is thus expected to
lead, in general, to a better agreeement with unit-cell computations.

Appendix C. Crystalline orientation and rotation matrix

Throughout the article, the orientation of the single crystal is described by using the so-called
Miller indices notation. This description, which is equivalent to an inverse pole figure representation,
expresses the unit vectors of the macroscopic frame in the crystalline frame.

Let (e1, e2, e3) an orthonormal basis of the macroscopic reference frame and (e′
1, e′

2, e′
3) an

orthonormal basis of the crystalline frame. A crystalline orientation denoted [uvw] − [mnp] − [hkl]
thus corresponds to 




e1 =
1√

u2 + v2 + w2
(u e′

1 + v e′
2 + w e′

3),

e2 =
1√

m2 + n2 + p2
(m e′

1 + n e′
2 + p e′

3),

e3 =
1√

h2 + k2 + l2
(h e′

1 + k e′
2 + l e′

3)

(C.1)

and its orientation matrix P reads

P =




u√
u2 + v2 + w2

m√
m2 + n2 + p2

h√
h2 + k2 + l2

v√
u2 + v2 + w2

n√
m2 + n2 + p2

k√
h2 + k2 + l2

w√
u2 + v2 + w2

p√
m2 + n2 + p2

l√
h2 + k2 + l2




. (C.2)

Let Tij the components of a second order tensor T in the macroscopic refence frame and T ′
kl its

components in the crystalline reference frame. They are related by

Tij = PkiPljT ′
kl and T ′

kl = PkiPljTij . (C.3)
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