Abderrahim Lamara 
email: abderrahim.lamara@d2t.fr
  
Patrick Lanusse 
  
Alain Charlet 
  
Dominique Nelson Gruel 
  
Guillaume Colin 
  
Antoine Lesobre 
  
Alain Oustaloup 
  
Yann Chamaillard 
  
D Nelson Gruel 
  
High Dynamic Engine-Dynamometer Identification and Control

Keywords: Identification, multivariable control, CRONE, nonlinear systems, robust control. 

la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION

The need to reduce pollutant emissions and improve vehicle performances involves the development of new strategies for engine control. At present, the engine performance is checked and validated step by step throughout the whole development process of the engine and its integration in a completed vehicle. Subsequently, the engine is calibrated on-board the vehicle. However, a failure in one step of the development process means a new test process. Today, the automotive industry needs a simpler and shorter process to reduce the development time and hence the cost. To deal with this challenge, a high dynamic test-bed is required, in order to reproduce the road behavior and the gearbox ratio change. The control system should ensure good tracking of speed and torque.

Several aspects of test bed control have tackled in previous studies. In [START_REF] Chauvin | Dynamic periodic observer for a combustion engine test bench[END_REF], the system is firstly modeled by physical equations and then an observer is developed for dynamic estimation of the torque produced by the engine. [START_REF] Priesner | Predictive Control With Active Disturbance Rejection for Elastic Drive Systems[END_REF] presented a model predictive disturbance compensation control concept for an industrial combustion engine test-bed. As the torque control of the vibrating shaft requires a high bandwidth, a short sampling time was used. Based on an approximate model of the test-bed, modified in order to cope with non-modeled dynamics and nonlinearities, Passenbrunner et al. (2011) designed a dynamic control law for the speed and torque control of an internal combustion engine test-bed. Discretetime control design was studied in Shona [START_REF] Laila | Discrete-time control design for setpoint tracking of a combustion engine test bench[END_REF], where a model reference approach was used for the systemcontrol design, to make the controller less sensitive to sampling and to keep sampled-data tracking performance as close as possible to the continuous-time tracking performance. [START_REF] Gruenbacher | Robust Inverse Control for Combustion Engine Test Benches[END_REF] presented a robust inverse control for a combustion engine test-bed. [START_REF] Gruenbacher | Idle Mode Control on a Combustion Engine Test Bench via Internal Mode Control[END_REF] developed an adaptive internal model in order to control a combustion engine testbed in idle mode. In this case the combustion engine is declutched from the power train and hence its only load is the drag (friction) torque. An inverse control torque of hydrodynamic dynamometers for a combustion engine testbed was presented in Passenbrunner et al. (2011), where the dynamometer is modeled by a nonlinear static map combined with linear dynamics, and the model obtained gives the relation between the valve position and the dynamometer torque, using the nonlinear static map as a feed-forward to define the valve position based on the torque demand. Then, a feedback controller is used to compensate uncertainties and disturbance effects. [START_REF] Bunker | Robust Multivariable Control of an Engine-Dynamometer System[END_REF] developed a robust multivariable controller to control a highly coupled Diesel engine-dynamometer system. As the load has a faster dynamic behavior than the combustion engine, the high dynamics of the speed control loop is naturally filtered by the torque control loop. However, the speed is highly affected by the torque variation. A large change in load command would cause engine stall. This paper proposes a faster methodology for test-bed identification and control. For a set of operating points, the dynamics of the system are approximated to a set of linear plants using a fast frequency-domain method. The defined perturbed frequency-domain plant is then used to design a multivariable robust controller.

The test-bed system is described in section 2, and the frequency-domain methodology is presented and then used to approximate the system dynamics to a linear perturbed plant. Section 3 explains how the CRONE Control-System Design (CSD) methodology uses the perturbed plant to design a robust multivariable controller. In the last section, results from experiments are compared and discussed.

SYSTEM IDENTIFICATION

System description

The test-bed used in this paper consists of a simulated engine to be tested and a load, which can be provided by a brake or a dynamometer. It uses a classic configuration (fig. 1) with two real asynchronous machines. The first one simulates a dynamometer. The second machine is associated to a nonlinear model with a variable time constant and variable time-delay, which simulates the behavior of a combustion engine.

The power of the asynchronous machines is about 11 kW, with a max speed of 1500 rpm. The two machines are connected via a transmission and power is supplied by the ACS800 ABB drive. The whole system is piloted by the MORPHEE simulator. MORPHEE is a D2T automation system able to execute automatic cycles, save data during tests and integrate Simulink and AMEsim models to be executed in real time.

Fig. 1: Test-bed configuration

Dynamic combustion engine test-beds are used for many purposes, such as calibration, driving cycles, control development and research. In industry, engineers need to change the engine and the test-bed configuration several times, and then new controllers are required to deal with new challenges. The classical solution is PID tuning around some operating points, but robustness is not guaranteed and such a procedure is very time consuming. In [START_REF] Blumenschein | Easily Adaptable Model of Test Benches for Internal Combustion Engines[END_REF] an adaptive model of the test bench for heavy duty internal combustion engines was presented in order to ease observer design and to compensate for the lack of torque measurement.

Once the engine has been changed, a new test-bed control system is required. The speed can be controlled by the load (dynamometer or brake) and the torque by the engine, the load is highly coupled with the engine through the shaft and any change in the load behavior is observed as a perturbation on the engine side and vice versa. Thus, a MIMO CSD approach seems to be necessary. In the present study, a model of the test-bed was developed based on physical equations and maps. This representative model was used for the development and validation of our proposed methodology. As the load is an electrical machine, its model is approximated to a linear model. The ABB drive is modeled by a simple map combined with a first order filter with timedelay. Nonlinear modeling of the internal combustion engine is unavoidable because of inner nonlinear control loops and various nonlinear mechanical systems (crankshaft, cylinder etc). In this paper, the engine is simply modeled using the same linear model of the load, and an operating point dependent first order filter with a time-constant varying from 0.15s to 1s and a time-delay varying from 0s to 0.2s.

System identification

The frequency-domain CSD approach used in this work requires high fidelity linear dynamic models that approximate the underlying dynamics of the engine. Thus, a frequency domain system identification methodology is used to obtain a linear time-invariant model that approximates the dynamics of the test-bed. A multisine signal is used for input excitation. The use of this broadband signal allows faster frequency domain identification. Based on the multisine frequency response, its spectrum is within the defined band which gives a good approximation of the system dynamics (see [START_REF] Lamara | Decentralized robust control-system for a non-square system, the air-path of a turbocharger Diesel engine[END_REF]. The multisine signal is a linear combination of sinusoids which is given by: where:

N: is the signal harmonics number : is the frequency of harmonic k : is the amplitude of harmonic k : is the initial phase of harmonic k

The amplitude is chosen in such way that the system gives a linear response. In this study the torque variation must be no more than 5% of the maximum torque at the corresponding speed in order to avoid breaking the shaft. The frequency is chosen such that the time-invariant nominal model approximates the most important linear dynamics of the real system. For a good controller design, the frequency must be greater than the desired cut-off frequency or resonant frequency, of the open loop . The excitation signal is chosen with a sampling frequency of 1 kHz and a frequency range from 0.1 Hz to 20 Hz. An automatic cycle is developed, using MORPHEE, to execute the identification process around twenty well-chosen (and arbitrary) operating points. The test-bed studied is a MIMO system with two inputs and two outputs (2x2).

The identification of each element of the transfer matrix consists in exciting only one input, while the second input keeps its mean value. Each element of the frequencyresponse transfer matrix is calculated using the Fast Fourier Transformation (FFT) of the ratio of the cross-correlation between output and input divided by the autocorrelation of input as in [START_REF] Lamara | Decentralized robust control-system for a non-square system, the air-path of a turbocharger Diesel engine[END_REF]. Each input-output transfer is then described: The frequency domain identification provides a nonparametric model. For each element of the transfer matrix, the parameters of a fourth-order transfer function with timedelay were used to obtain a nominal parametric model:

Each element of the nominal transfer matrix is selected using a minimum phase criterion (dark plot on fig. 2). In the next step, the nominal plant and the whole set of calculated frequency-responses are used to design a robust multivariable controller, which maintains performances around a wide set of operating points.

CONTROL METHODOLOGY

The objective of the CRONE control system design is to robustify the closed loop dynamic performance through either a robust damping factor or a robust resonant peak control [START_REF] Oustaloup | CRONE control of resonant plants : application to a flexible transmission[END_REF] based on the unity-feedback configuration (fig. 3). where is the non-zero transfer function and .

Each element of the diagonal open-loop matrix is based on the third generation CRONE single-input singleoutput (SISO) methodology. The principle of this methodology is to optimize the parameters of the nominal SISO open-loop transfer function that includes bandlimited complex fractional order integration over a frequency range . The complex fractional order, a+ib, enables a straight line of any direction to be created in the Nichols chart which is called the generalized template (fig. 4).

In the CRONE SISO methodology, the nominal open-loop transfer function is defined as a multiplication of three transfer functions given by: where is an integer order proportional integrator Order has to be set to manage the accuracy provided by the control system. -is a set of band-limited generalized templates with:

for and
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(-180°,0dB) where is the nominal value of the resonant peak. Its minimization is accomplished while respecting closed loop frequency-domain constraints for all plants and for .
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For nxn MIMO systems, the aim of this methodology is to find a diagonal open-loop transfer matrix with n fractional order transfer elements. This transfer matrix is parameterized so as to satisfy the following objectives:

-perfect decoupling for the nominal plant -required nominal stability margins of the closed loops -accuracy specification at low frequency -specifications on the n control efforts at high frequencies.

The resonant peaks taken into account in a cost function based on ( 11) are those of the diagonal elements of the perturbed complementary sensitivity transfer function matrix T. The controller elements are obtained from relations ( 5) and ( 7):

As β jj (s) are fractional order transfer functions, the rational transfer functions K Rij (s) are obtained by identifying the ideal frequency responses K ij (j) by low-order transfer functions:

      s A s B s K ij  R (13)
where B(s) and A(s) are polynomials of specified integer degrees n B and n A . All the frequency-domain systemidentification techniques can be used (for instance [START_REF] Oustaloup | The CRONE toolbox for Matlab[END_REF][START_REF] Oustaloup | Frequency synthesis of filter using the functions Viète's roots[END_REF]. Whatever the complexity of the control problem, it is easy to find satisfactory values of n B and n A without a decrease in performances.

Since

is a full matrix transfer function, from (5) the controller will be a full MIMO controller (fig. 5). All the elements of the transfer matrix will be taken into account for open-loop optimization. The decoupling and stabilizing controller K exists if and only if the following hypotheses are verified: exists, (

where and indicate the positive real part zero and pole sets.

Even if the closed-loop perturbed transfer matrices T(s) and S(s) are not diagonal, each diagonal element T ii (s) and S ii (s) can be interpreted as a closed-loop transfer function resulting 
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where G is the nominal or perturbed plant, and while respecting the frequency-domain inequalities below for and : 
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EXPERIMENTAL RESULTS

The association of the engine with the dynamometer makes the system highly coupled. It is possible to design two controllers to control the speed and the torque separately. In the proposed methodology, the CRONE full-MIMO controller controls the speed and the torque simultaneously.

In order to evaluate the controller performances, a testperformance cycle was developed in MORPHEE (fig. 8 and9). The user indicates the maximum and the idle speeds, and then set-points are generated automatically by MORPHEE.

Two controllers were tested on the real system, and the controller performances were compared using the testperformance cycle developed. The first controller consists of two PIDs tuned by trial and error using the experimental system. As is customary in industry, the torque control loop is open and the speed PID controller is tuned. Once the speed PID has been tuned, the torque loop is then closed and the torque PID controller is tuned.

The second controller is a CRONE MIMO controller. In the MIMO approach all the elements of the nominal transfer matrix are used for the open-loop optimization. Fig. 6 shows the open-loop optimization. A bandwidth of 8 rad/s was chosen to guarantee fast tracking of the speed set-point. As the perturbed frequency responses are noisy, the resonant peak can be considered to be about 2 dB (the frequency response inside the low stability area is considered as noise) which makes the controller robust around the identified operating points. For the test-performance cycle, the speed step-response from 440 rpm to 800rpm and then from 800 rpm to 1160 rpm is shown in fig. 8. From the comparison between the PID and the CRONE controllers, speed set-points tracking, it can be seen that the CRONE overshoot is less than the PID overshoot, but that the settling times are very close, despite the fact that the PID rise time is less than the CRONE rise time. Concerning the control efforts, the CRONE full MIMO effort is less than that of the PID controller. After the speed step, the CRONE full MIMO tries to reach the setpoint by acting simultaneously on the current and the throttle, whereas the PID uses only the current effort to reach the speed setpoint. Fig. 9 shows the torque step-response from 28 Nm to 3.5 Nm, from 3.5 Nm to 28 Nm and from 28 Nm to 56 Nm. It reveals that for this operating point, the torque responses are extremely close. For both outputs, the CRONE MIMO controller ensures the best rejection of coupling phenomena.

The torque response shown in fig. 10 presents a robustness problem observed for a torque step from 56 Nm to 28 Nm, but now for a speed of 440 rpm. The instability of the PID responses can be attributed to the fact that the operating point chosen for the PID tuning was very different from the one tested here. For the CRONE full MIMO controller, robustness is guaranteed around all the operating points.

CONCLUSION

A full methodology is presented in this paper for multivariable system-identification and robust controller design. The identification problem is discussed for the proposed nonlinear engine-dynamometer system. After data processing, a nominal plant is defined in order to approximate the most important dynamics of the highly coupled time-varying system, all the calculated frequency responses being taken into account as the plant perturbation model. The CRONE MIMO methodology demonstrates how the robust controller is designed using the defined perturbed plant. The CRONE full MIMO controller designed ensures good set-points tracking and good robustness. The results show the relevance of the proposed methodology. This methodology will be used to design a controller for a high dynamic engine-dynamometer system with a Diesel engine. 
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 3 Fig. 3: Unity-feedback configuration for CRONE approach and are disturbances on input and output. is measurement noise.is the error and is the control effort. Fractional differentiation is used to define the nominal and diagonal open-loop transfer function of square systems (nxn):
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 2 Fig. 2: Bode diagram of the real system around twenty operating points and the defined nominal plant (dark)
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 5 Fig. 5: Full MIMO control for the 2x2 test bed square system
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 10 Fig. 10: Robustness problem during a torque step