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Abstract

A numerical and experimental investigation of the acoustic streaming flow in the near

field of a circular plane ultrasonic transducer in water is performed. The experimental do-

main is a parallelepipedic cavity delimited by absorbing walls to avoid acoustic reflection,

with a top free surface. The flow velocities are measured by PIV, leading to well resolved

velocity profiles. The theoretical model is based on a linear acoustic propagation model,

which correctly reproduces the acoustic field mapped experimentally using a hydrophone,

and an acoustic force term introduced in the Navier Stokes equations under the plane

wave assumption. Despite the complexity of the acoustic field in the near field, in par-

ticular in the vicinity of the acoustic source, a good agreement between the experimental

measurements and the numerical results for the velocity field is obtained, validating our

numerical approach and justifying the planar wave assumption in conditions where it is

a priori far from obvious. The flow structure is found to be correlated with the acoustic

field shape. Indeed, the longitudinal profiles of the velocity present a wavering linked to

the variations in acoustic intensity along the beam axis and transverse profiles exhibit a

complex shape strongly influenced by the transverse variations of the acoustic intensity

in the beam. Finally, the velocity in the jet is found to increase as the square root of

the acoustic force times the distance from the origin of the jet over a major part of the

cavity, after a strong short initial increase, where the velocity scales with the square of the

distance from the upstream wall.
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I. INTRODUCTION

The ability of acoustic fields to drive steady flows in fluids has been known

for decades1 and is usually referred to as acoustic streaming. This phenomenon

is, willingly or not, present in a number of applications ranging from ultrasound-

based velocimetry2,3 to medical applications4,5, from heat and mass transfer6–10 to

sonochemistry11. It can be seen as a coupling between acoustic propagation and

fluid motion. This coupling is often accounted for by an additional force term in

the Navier-Stokes equations for a viscous incompressible flow. For an acoustic plane

wave propagating along the x direction, this force12,13 can be expressed, at every

location X, as

~fac(X) =
2α

c
Iac(X)~x , (1)

where Iac is the acoustic intensity, α is the acoustic pressure wave attenuation co-

efficient (α = 0.1 m−1 for water at 20◦C and an acoustic frequency f = 2 MHz)

and c is the sound celerity (c = 1480 m s−1 for water at 20◦C). The acoustic field,

however, is known to often involve diffraction effects, as shown in our recent exper-

imental investigation in the acoustic far-field13. The flow structure was found to be

strongly correlated to the shape of the acoustic beam, so that a conclusion was that

accounting for diffraction is a key ingredient in the modeling of acoustic streaming.

However, as the near field exhibits complicated patterns for the space variations of

Iac, the question about the validity of the plane wave assumption used to obtain

equation (1) can be raised.

A few years ago, Kamakura et al.14 performed an experimental and theoretical

study of acoustic streaming in the near field of a plane transducer. Their theoreti-

cal approach relies on a physically intricate non-linear propagation model including

diffraction, attenuation and nonlinear effects to compute the acoustic streaming

force field. They solve the Khokhlov-Zabolotskaya-Kuznetsov (later on referred to

as KZK) equation15,16 with appropriate boundary conditions for the acoustic pres-

sure. From the obtained acoustic pressure field, they deduce the force term to be

included in the Navier-Stokes equations, which they solve using a stream-function

vorticity method. A limit of this approach is that solving the KZK equation for the

propagation problem is very time-consuming since this transient nonlinear equation
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must be solved on every point of the mesh used for the Navier-Stokes solver, though

the significance of the acoustic nonlinearity influence on the generated velocity field

remains questionable. In the same paper, Kamakura et al.14 investigate the acous-

tic streaming velocity field using the Laser Doppler Anemometry (LDA) technique,

which allows a local measurement of the velocity. They obtain detailed transverse

velocity profiles, but have a poor spatial resolution in their longitudinal velocity

profiles, with only six data-points for the 27 cm long fluid domain. The comparison

between the numerical and experimental transverse velocity profiles supports the

reliability of their numerical model. However, the numerically obtained longitudinal

velocity profiles exhibit an undulating shape which cannot be confirmed experimen-

tally due to the lack of spatial resolution. Our contention is that such a shape can

probably be correlated to the complex longitudinal profile of the acoustic beam in

the near field. Such correlation between velocity and acoustic intensity is only dis-

cussed in Kamakura et al.14 for transverse profiles taken close to the Fresnel length.

They underscore the fact that the velocity profile shape only transiently looks similar

to the acoustic intensity profile shape, i.e. featuring one central peak and two sec-

ondary local maxima; on the contrary, the steady state velocity profile features only

one, smooth, maximum on the centerline. For the other velocity profiles taken closer

to the source, unfortunately, no explicit velocity to acoustic intensity comparison is

given.

In the present paper the geometry is close to that of Kamakura et al.14, although

the diameter and the frequency of the source are different. The former study14

indeed considered a higher frequency f , but a smaller source diameter ds, so that

the near-field size, i.e. the Fresnel length Lf = d2
s/(4λ) (where λ is the acoustic

wavelength), is similar in both studies. An objective of our study is to experimen-

tally validate the force model given by equation (1) in the near field region where

the legitimacy of the plane wave assumption is questionable. For that, we rely on

space resolved velocity profiles obtained by the Particle Image Velocimetry (PIV)

technique. Another objective is to show that a numerical model based on linear

acoustic propagation is able to accurately simulate this type of flow in the inves-

tigated parameters range. We also want to confirm that steady state transverse

velocity profiles can show strong similarities with intensity profiles, for instance con-
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cerning the number of local maxima. A final objective is to provide scaling laws for

the velocity on the acoustic beam axis.

II. EXPERIMENTAL SET UP

The experiments are performed within an aquarium filled with water. The sound

source is a 2 MHz ultrasonic circular plane transducer from ImasonicTM, with a

diameter of 29 mm. As depicted in figure 1, the domain of investigation is a rectan-

gular cavity of inner dimensions 265×180×160 mm3 (length×width×height) with

a top free surface. It is delimited by two 10 mm thick Apflex F28 absorbing walls,

hatched on the figure, from PrecisionAcousticTM. The end wall is placed at xL =

275 mm from the transducer, i.e. at the end of the acoustic near field, in order to

prevent standing waves to form in the investigated domain. The other wall, referred

to as the intermediate tile and placed close to the transducer, has been drilled with a

63 mm hole. The diameter of the hole has been chosen as about twice the transducer

diameter in order to avoid modifying the acoustic pressure field. The hole was cov-

ered with a thermoretractable plastic film to let the sound enter in the investigation

area but, at the same time, provide a rigid wall condition for the generated flow.

The distance between the transducer surface and the plastic film is x0 = 10 mm.

This set-up has already been described in our previous experimental paper13; it is

also presented in more details in Moudjed’s PhD thesis17.

A needle hydrophone from PrecisionAcousticsTM, held on a 3D motorized sys-

tem, is used to map the acoustic field. A LavisionTM Particle Image Velocimetry

(PIV) system is used to measure velocity fields. Image acquisition is made with

a 12 bit PCO SensicamTM CCD camera with a resolution of 1280 × 1024 pixels.

In our measurements, we use a double frame mode with a frequency of 4 Hz; 6000

double frames are acquired as soon as the transducer is switched on, so that ac-

quisition lasts about 25 min. The time between the frames of each image pair is

chosen to be 120, 90 and 50 ms for transducer electric powers of respectively 2, 4

and 8 W, in order to optimize the apparent displacement of the seeding particles.

The de-ionised water used was seeded with 5 µm Polyamid Seeding Particles (PSP)

of density 1030 kg m−3 from DantecTM. The water temperature was measured to
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FIG. 1: Experimental set-up, view from the side. The origin of the Cartesian frame is

set at the middle of the transducer plane surface: x-axis coincides with the propagation

direction, y and z axis are respectively horizontal and vertical.

be 23oC. Care should be taken to adjust the position and the thickness of the laser

sheet since velocity gradients are strong. A 3D motorized displacement ensures the

precise positioning and a homemade optical system is used to generate a laser sheet

of less than 1 mm in thickness.

PIV measurements were made in two 20 cm long and 16 cm wide areas of the

xy horizontal middle plane with an overlap region, to ensure a sufficient spatial

resolution while observing the whole region of interest. The first zone extends from

x = 10 mm, i.e. from the intermediate sound absorbing wall, to x = 205 mm and

the second zone extends from x = 80 to x = 275 mm, i.e. to the downstream sound

absorbing wall.

III. NUMERICAL MODEL

To simulate the flow, we consider a rectangular cavity with dimensions 265×180×
160 mm3 (length×width×depth) filled with water. The top free surface is assumed

to be plane with a free slip condition for the flow and all the other boundaries are

considered as rigid with a no-slip condition. Laminar, 3D, incompressible computa-

tions are performed with the commercial software StarCCM+TM, which solves the

Navier-Stokes equations with an additional acoustic force term:

ρ
d~u

dt
= −−−→

gradp + ~fac + µ∆~u , (2)
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where ~u is the flow velocity (m s−1), p is the hydrodynamic pressure (Pa), ~fac is the

volumetric acoustic force (N m−3) defined by equation (1), ρ is the fluid density (ρ

= 1000 kg m−3) and µ is the dynamic viscosity (µ = 10−3 Pa s). This equation was

derived with a time scale separation method, which is detailed in a former paper13.

Cubic cells are used to mesh the fluid domain. A cylindrical zone, where the mesh

is refined, is created around the location of the acoustic beam. A mesh convergence

study lead us to choose cells with a 0.5 mm side in the central cylindrical zone and

with a 2 mm side in the rest of the fluid domain17; the total number of cells is

then 3.82 million. The acoustic force is computed with MatlabTM at each cell center

using equation (1). The calculation of the acoustic intensity field, which appears

in equation (1), is based on the Huygens-Fresnel assumption. The plane circular

acoustic source is discretized with 200 × 200 elements. Each element has a surface

∆S = σ∆σ∆θ, where σ and θ are the polar coordinates (in the yz plane) of the

element center, and is considered as a secondary source emitting a spherical wave.

The resulting acoustic pressure field is calculated at any location (x, y, z) in the fluid

domain by adding each secondary source contribution (Rayleigh’s integral). It is a

complex quantity from which the phase of the wave and, assuming a plane wave

assumption, the acoustic intensity can be deduced. This acoustic intensity is thus

expressed as

Iac =
Iac max

4λ2

∣

∣

∣

∣

∣

N
∑

n=1

M
∑

m=1

e−i 2π

λ

√
x2+y2+z2+σ2

n−2σny cos(θm)−2σnz sin(θm)

√

x2 + y2 + z2 + σ2
n − 2σny cos(θm) − 2σnz sin(θm)

σn∆σ∆θ

∣

∣

∣

∣

∣

2

,

(3)

where Iac max is the maximal acoustic intensity, which is reached at the different

peaks on the beam axis, the last peak being located at the Fresnel length18 (see

also figure 4b). The source diameter, ds, is implicitly present in equation (3) since

it defines the maximum value of σn. The acoustic intensity field given by equation

(3) can be adjusted to the Iac measurements by means of a least mean squares

method, with two adjustable parameters, Iac max and ds. Though we consider the

hydrophone measurements to be reliable in a relative sense to obtain the acoustic

pressure spatial variations in an experimental run, they are, however, very imprecise

concerning acoustic pressure values in an absolute sense; the confidence interval

given by PrecisionAcousticsTM, the supplier of this gauge, is indeed ±13% on the
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acoustic pressure, i.e. ±26% on the acoustic intensity. Another issue is that the

determination of Iac max from the applied electric power P is also not possible as

neither the electric losses nor the efficiency of the transducer can be accurately

measured. As a consequence, we consider that reliable values of Iac max cannot

be directly deduced from these measurements. We then rather chose to make an

adjustment between the longitudinal velocity profiles obtained in the experiments

and simulations by tuning the acoustic force level used in the simulations. This

allows to get rid of the uncertainties on the hydrophone measurements, the efficiency

and losses of the acoustic source, but also of those on the acoustic attenuation

coefficient, already discussed in our former paper13. The acoustic force level is

characterized by the maximum value of the force, fac max, reached for example on

the beam axis at the Fresnel length. Rough adjustments lead to the values fac max

= 0.725, 1.5 and 2.9 N m−3 to be used in our simulations to compare with the

experiments at P = 2, 4 and 8 W, respectively. Note the good proportionality

between the chosen fac max values and the applied electric powers.

Note also that an adjustment based on the normalized fields of Iac led to ds = 28.5

mm, a value which is very close to the transducer nominal diameter (namely 29 mm),

indicating that the structures of the measured acoustic field and the theoretical Iac

field are very close; it is confirmed when comparing normalized transverse acoustic

intensity profiles (see the PhD thesis of Moudjed17 for more details). With this value

of ds, the Fresnel length is Lf = d2
s/(4λ) = 274 mm.

The coupled Navier-Stokes solver uses a second order upwind implicit finite vol-

ume scheme. A steady solver is used for fac max = 0.725 and 1.5 N m−3; for fac max =

2.9 N m−3, a second order implicit time scheme is used. In this last case, the results

presented hereunder correspond to the steady regime reached with this unsteady

solver.

A question could be raised about the degree of validity of the plane wave assump-

tion used to derive the expression (1) of the acoustic force. To get some indications

on that point, numerically calculated wavefronts of the acoustic wave are given in

figure 2. They are plotted at x = 100 mm (Fig. 2a) and x = 150 mm (Fig. 2b) in

the near field, and at x = 274 mm (Fig. 2c) and x = 549 mm (Fig. 2d) in the far

field. These wavefronts correspond to the phase isovalues of the acoustic pressure
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(a) (b) (c) (d)

FIG. 2: Plots of the phase isocontours of the acoustic wave, in the near field at (a) x = 100

mm and (b) x = 150 mm, and in the far field at (c) x = 274 mm (Lf ) and (d) x = 549

mm (2Lf ).

wave represented at the locations 0.36Lf , 0.55Lf , Lf and 2Lf , respectively. As the

wavelength is very short (λ = 0.74 mm), the phase isocontours are represented in

very thin areas (2 mm along x and 70 mm, namely more than two diameters, along

y). In that way, the phase isovalues are depicted on almost three wavelengths and

on a transverse length greater than the source diameter (notice that a wavelength

corresponds to two color variations on the plot). We see that, both in the near

field and in the far field, the isovalues are not rigorously straight. In the central

part (-20 mm ≤ y ≤ +20 mm), however, the deviation along x for a given isovalue

(measured, for example, between y = 20 mm and the center) is very short (a few

tenths of millimeters) compared to the source diameter, so that the wave front can

9



be considered as plane in this domain. Outside this domain (y > +20 mm or y <

-20 mm), the isovalues have a stronger curvature, particularly in the near field, but

the acoustic force intensities are much smaller in these zones. These observations

thus support the validity of the plane wave assumption, used to derive equations (1)

and (3), in the area of interest for our present purposes, that is the region of the

acoustic beam where the acoustic force is strong and where the hydrodynamic jet

principally develops.

IV. COMPARISON OF EXPERIMENTAL AND NUMERICAL RESULTS

The experimental velocity fields measured for P = 4 W and the corresponding

numerical velocity fields obtained for fac max = 1.5 N m−3 are plotted in the xy

horizontal plane in figures 3a and 3b, respectively. A good agreement on the global

flow structure can first be noted between the experimental measurements and the

numerical calculations. As expected, the flow is characterized by a central jet with

a very slow backflow on the sides of the fluid domain. A comparison with the

velocity fields corresponding to the two other acoustic power values shows that the

flow structure does not depend on the acoustic power in the investigated range17.

A close look at the transverse velocity profiles in this vector plot allows to see that

they exhibit one or several local maxima, depending on the considered abscissa, as

expected from Kamakura et al.14.

Figure 4a shows the variations of the longitudinal velocity along the acoustic beam

axis at P = 2, 4 and 8 W. As already mentioned, each profile has been measured

in two separate PIV runs; between these two runs, the camera and the illuminating

laser sheet had to be moved along the aquarium with the risk of modifying the

alignment of the laser sheet with the acoustic beam axis. In spite of this, there is a

good connection between the two parts of these profiles, as can be seen in figure 4a.

The profiles obtained numerically are also plotted with red dashed lines and a good

agreement with the experimental profiles is observed. The axial velocity increases

throughout the major part of the cavity and eventually drops suddenly to zero, as

a consequence of the no slip condition at the end-wall. The initial curvature of the

profiles, at small abscissa, is unexpectedly positive on a distance of a few millimeters
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FIG. 3: Velocity vector maps in the xy horizontal plane including the acoustic beam axis.

(a) Experimental measurements with the PIV technique for P = 4 W, (b) Numerical

computations for fac max = 1.5 Nm−3. The velocity fields for the two other considered

values of P can be found in Moudjed’s PhD thesis17.

(see the inset in figure 4a). A wavering of the velocity profiles is also observed in a

large part of the increasing portion. Note finally that electric powers of 2, 4 and 8

W yield maximum velocities of 1, 1.5 and 2.1 cm s−1, respectively.

The numerical velocity profiles are then normalized and plotted with the nor-

malized acoustic intensity profile in figure 4b. This acoustic intensity profile along

the acoustic beam axis is an exact analytic solution of Rayleigh’s integral18. Note

also that, in figure 4b, the abscissa is scaled with the Fresnel length. The local

over-velocities and local under-velocities clearly correspond to the position of the
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acoustic intensity extrema. From the location of the last minimum of Iac to the

Fresnel length, the acoustic intensity increases; the axial velocity does as well, ex-

cept close to the end-wall. Note here again that the velocity profile shapes are very

similar for the three considered values of electric power.
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FIG. 4: (a) Longitudinal profiles of the experimental axial velocity along the acoustic

beam axis for P = 2 W (blue solid lines), 4 W (pink solid lines) and 8 W (green solid

lines); the profiles obtained by the corresponding numerical calculations are also plotted

as red dashed lines for fac max = 0.725, 1.5 and 2.9 Nm−3. These three numerical profiles

are normalized and plotted in (b) with blue solid lines, pink dashed lines and green dotted

lines, respectively; the normalized acoustic intensity along the beam axis is also plotted as

a black line (analytical expression18).

Figure 5 provides the normalized transverse velocity profiles obtained experimen-

tally at x = 50, 100, 150 and 200 mm from the transducer surface for the three

considered powers. The normalized experimental acoustic intensity profiles at the

same locations are also plotted as dashed lines, together with the normalized numer-

ical velocity profiles obtained for fac max = 1.5 N m−3 plotted as solid lines. It can

first be observed that, regardless of the acoustic power, the experimental velocity

profile shapes are very similar, except in the low velocity backflow region. Such

shapes are also reproduced by the normalized numerical velocity profiles. Moreover,

a correlation can here again be noted between the shape of the acoustic intensity

profiles and the shape of the velocity profiles. For instance, at x = 100 mm, the

local peak in velocity corresponds to the acoustic intensity central peak. At x = 150

mm, the two local velocity maxima correspond to the two acoustic intensity peaks.
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Closer to the Fresnel length, as for x = 200 mm, acoustic and velocity profiles

become smoother and closer in shape to those expected in the acoustic far field13,

whereas at a small distance from the transducer, as for x = 50 mm, the velocity pro-

file does not follow the rapid spatial variations in acoustic intensity. Thus, though

the correlation in shape between velocity profiles and acoustic intensity profiles is

not perfect, we observe steady-state velocity profiles featuring several local maxima

corresponding to local acoustic intensity maxima. To the best of our knowledge,

such a feature has only been observed once before, by Kamakura et al.14, but in a

different situation, namely in the vicinity of the Fresnel length for transient (i.e. in

the early stages of the jet, before steady state is reached) velocity profiles.

Note that we only focus here on the jet part of the flow. The backflow is indeed

very slow: as a consequence of mass conservation, for a velocity of 2 cm s−1 in the

central area of 3 cm in diameter, a fluid particle in the backflow region will take more

than eight minutes to cross the cavity length. A precise quantitative characterization

of the flow in such a low velocity region would need a specific experimental treatment,

which is out of scope of the present paper.

V. SCALING ANALYSIS

Our objective in this section is to identify the leading mechanisms governing the

main features of the fluid flow within the cavity. To this end, order of magnitude

relations between the fluid velocity at a given axial location and other relevant quan-

tities will be proposed. To start with, let us recall that in the zones of development

of the acoustic streaming jet, a balance between inertia effects and the acoustic force

can be expected13. This balance, in the case of a free acoustic streaming jet, can be

written, on the beam axis, as

ρu
∂u

∂x
∼ fac (4)

(u being a characteristic (e.g. the maximum) velocity at location x), which leads to

the following scaling law:

u ∼
√

fac max

ρ
x′ , (5)

where x′ = x − x0 represents the distance to the upstream wall (Fig. 1). Note that

a similar scaling has already been observed experimentally for the velocity in the
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acoustic far field zone13.

In figure 6, the velocities u calculated on the beam axis for the three values of

fac max are plotted as a function of the expression under the radical sign in equation

−1.5 −1 −0.5 0 0.5 1 1.5
y / d

s

x
4
 = 0.73L

f

(= 200mm)

x
2
 = 0.36L

f

(=100mm)

x
1
 = 0.18L

f

(= 50mm)

x
3
 = 0.55L

f

(= 150mm)

FIG. 5: Horizontal transverse profiles of the normalized experimental acoustic intensity

(black dashed lines), the normalized experimental velocity at P = 2 W (blue open squares),

4 W (pink open circles) and 8 W (green stars), and the normalized numerical velocity

calculated with fac max = 1.5 Nm−3 (black solid lines). These profiles are plotted at a

distance x = 50, 100, 150 and 200 mm from the transducer. The black dotted-dashed

vertical lines indicate the acoustic source diameter. Note that these plots are focused on

the jet region, so that the location of the lateral walls (|y|/ds ≈ 3.2) is not represented.
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FIG. 6: Longitudinal velocities along the acoustic beam axis plotted as a function of the

expression appearing under the radical sign in equation (5). Four cases are presented

corresponding to our simulations performed for fac max = 0.725, 1.5 and 2.9 Nm−3 and

the simulation of Kamakura et al.14. Two characteristic variations of the velocity are

obtained: an initial quadratic increase, as depicted by the heavy black dashed line and

heavy black dotted-dashed line obtained from equation (9) for fac max = 0.725 Nm−3

and for Kamakura et al.14, respectively, and a square root increase, as depicted by the

heavy black solid line obtained from equation (5). On the different numerical profiles, the

black solid diamonds indicate the points located at the distance ds/2 from the upstream

wall, which give the transition between the two characteristic variations. The f
1/2
ac max

dependence in these different zones is also shown.

(5). The simulation results obtained by Kamakura et al.14 in the near field are also

plotted. Let us recall that Kamakura’s experiment featured a source with a different

diameter and a different frequency (ds=18 mm, f = 5 MHz), so that the plot of their

data with ours is in itself a good test of the proposed scaling law; in particular the

attenuation coefficient in their experiment is expected to be 5.7 times larger. For

each numerical velocity profile plotted in figure 6, a good agreement with the scaling

law given by equation (5) (heavy black solid line) can be observed in an intermediate
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range of the abscissa values. In practice the square root behaviour is valid over the

major part of the cavity. Of course the scaling is not valid near the end wall due

to the zero velocity condition at the wall, which prevents the further increase of

the velocity. More interesting, the square root scaling is also not observed near the

upstream wall in a region where the velocity profiles have an intriguing initial positive

curvature (see the inset in figure 4a). In this region, typically 5 to 10 millimeters

long in our experiments, the velocity is found to evolve approximately as x′2 (Fig.

6). To assess this observation, mass conservation was applied in a thin cylindrical

control volume close to the upstream wall, as depicted in figure 7. This mass budget

involves an axi-symmetric radial inflow and an axial outflow. The characteristic

radial velocity at ds/2 (the radial limit of the transducer) can be written as

vr ∼ Sx′ , (6)

featuring a linear increase of the velocity in the boundary layer along the upstream

wall. As depicted in figure 7b, the axial velocity profiles close to the upstream wall

can be considered as constant on a typical radial distance close to the acoustic source

radius and almost zero outside this cylindrical domain, so that the axial flow rate

is simply πd2
su/4. Concerning the radial flow rate, it is obtained by integrating (6)

on the cylindrical surface of radius ds/2 and height x′. Applying mass conservation,

the axial velocity can thus be expressed as

u ∼ 4
S x′ 2

ds

, (7)

where S is still unknown. A further assumption, supported by the numerical simu-

lations, is to suppose that the jet recirculates at the scale of the transducer radius

(see figure 7a). In other words, at x′ = ds/2, u given by equation (7) should match

its far field expression (5). Note that at this distance (represented by the black solid

diamonds on the curves in figure 6), both our set of experiments and the experiment

of Kamakura et al.14 are well in a transition zone between the two observed scaling

laws. We thus get

S ∼
√

fac max

2 ρ ds
. (8)

Introducing this value of S in (7), we thus finally obtain

u ∼ 4

√

fac max

2ρ
ds

−3/2 x′ 2 . (9)
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This expression of u is plotted in figure 6, as a heavy black dashed line for our

situation at fac max = 0.725 N m−3 and as a black dotted-dashed line for the situation

of Kamakura et al.14 (ds=18 mm, fac max = 8.2 N m−3). A good adjustment is found

in both cases. Note also that a comparison between the values of u obtained in this

zone at constant x′ for different fac max (see the thin black dotted-dashed lines in

figure 6) indicates that u varies as f
1/2
ac max, as it was proposed in (9).

All these observations suggest that the typical scales for these experiments are

the lengthscale ds/2 and the value of u corresponding to the previous matching at

ds/2, i.e. u =
√

fac max ds/2 ρ (obtained for example from (5)). We then define

new dimensionless variables, X ′ = x′/(ds/2) and U = u/
√

fac max ds/2ρ . Note

that U can be seen as a Froude number since it expresses the balance between

inertia effects and a volumetric force (see equations (4) and (5)). As shown in

figure 8, with this new scaling the different results corresponding to our simulations

performed for fac max = 0.725, 1.5 and 2.9 N m−3 and the simulation of Kamakura

et al.14 collapse to a single curve (with a slightly different wavering for the two

studied configurations), except close to the downstream walls located at the distances

X ′ = (xL−x0)/(ds/2) = 18.6 and 30 for our simulations and Kamakura’s simulation,

respectively. The two characteristic variations of the velocity are now given by

U = X ′ 2 (heavy black dashed line) and U = X ′ 1/2 (heavy black solid line) which

intersect at X ′ = 1.

VI. CONCLUSION

The objective of the present work was a numerical and experimental investigation

of the acoustic streaming flow in the near field of a plane ultrasonic transducer in

water. This study is, in particular, the first to give spatially resolved experimental

velocity profiles along the acoustic beam axis. A good agreement between the ex-

perimental measurements and the numerical results for the velocity field is obtained.

Despite the complex structure of the acoustic near field that exhibits spatial varia-

tions at very small scales, the plane wave approach leading to expression (1) for the

acoustic force can thus be taken as valid in this near-field zone, a result which is

conforted by the observed shape of the wavefronts in the region of high acoustic in-
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FIG. 7: (a) Sketch showing a two-dimensional axi-symmetric view of the region close

to the upstream wall. Mass conservation is performed in a control volume between the

inflow (radial velocity considered as linear in the boundary layer along the upstream wall)

and the outflow (constant axial component for 0 ≤ r ≤ ds/2). Sketched streamlines are

represented with black lines. (b) Radial profiles of the axial velocity obtained numerically

for fac max = 0.725 Nm−3 and given at different distances x′ from the upstream wall.

tensity corresponding to the jet area. The use of a linear acoustic propagation model

is also found to be suitable to compute the acoustic field and deduce the acoustic

streaming force in the investigated range of parameters. Such acoustic propagation

model is thus far simpler and lighter than the KZK model used by Kamakura et

al.14. With a smaller computational time, it leads to results of the same quality

concerning the correspondence between simulated flows and experiments.

The strong correlation between the acoustic field shape and the flow structure is

confirmed: the wavering observed on the longitudinal profiles of the velocity is linked

to the variations in acoustic intensity on the beam axis, and the complex shape of

the transverse velocity profiles is directly linked to acoustic intensity transverse vari-

ations. In particular, for the first time, we observe steady-state transverse velocity

profiles featuring several local extrema in correlation with those of the acoustic in-

tensity profiles. Finally, different scaling laws are observed for the variation of the

velocity along the jet axis. A strong initial acceleration is observed close to the up-

stream wall; the velocity scales there as x′2, as a consequence of mass conservation

near the wall, with a flow recirculating on a length scale characteristic of the acoustic
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FIG. 8: Dimensionless longitudinal velocity U = u/(fac maxds/2ρ)1/2 along the acoustic

beam axis plotted as a function of the dimensionless distance to the upstream wall X ′ =

x′/(ds/2) for the different experiments. A collapse of the curves is observed and the two

characteristic variations of the velocity are shown: U = X ′ 2 (heavy black dashed line) for

X ′ < 1 and U = X ′ 1/2 (heavy black solid line) for X ′ > 1.

source. Farther downstream, the velocity scales as x′1/2, as a consequence of the 1D

balance between inertia and the acoustic forcing; this scaling is observed to be valid

over the rest of the cavity, except at the approach of the downstream wall. In both

cases, the velocity scales as the square-root of the applied maximum acoustic force.

Finally, with an appropriate scaling of the distance from the upstream wall x′ and

of the longitudinal velocity, the variation of the velocity along the jet axis for the

different experiments in the near-field zone can be represented with a single curve.
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