
HAL Id: hal-01062505
https://hal.science/hal-01062505v1

Submitted on 9 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Dynamical Plan Revising for Ambient Systems
Ahmed Chawki Chaouche, Amal El Fallah-Seghrouchni, Jean-Michel Ilié,

Djamel Eddine Saidouni

To cite this version:
Ahmed Chawki Chaouche, Amal El Fallah-Seghrouchni, Jean-Michel Ilié, Djamel Eddine Saidouni. A
Dynamical Plan Revising for Ambient Systems. The 5th International Conference on Ambient Sys-
tems, Networks and Technologies, Jun 2014, Hasselt, Belgium. pp.37-44, �10.1016/j.procs.2014.05.395�.
�hal-01062505�

https://hal.science/hal-01062505v1
https://hal.archives-ouvertes.fr

 Procedia Computer Science 32 (2014) 37 – 44

Available online at www.sciencedirect.com

1877-0509 © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and Peer-review under responsibility of the Program Chairs.
doi: 10.1016/j.procs.2014.05.395

ScienceDirect

The 5th International Conference on Ambient Systems, Networks and Technologies

A Dynamical Plan Revising for Ambient Systems

A-C. Chaouchea,b,∗, A. El Fallah Seghrouchnia, J-M. Iliéa, D-E. Saı̈dounib

aLIP6 Laboratory, University Paris VI, France
bMISC Laboratory, University Constantine II, Algeria

Abstract

The proposed AgLOTOS formal specification language is dedicated to express BDI agent plans, according to the features and

requirements of Ambient Intelligence (AmI). It offers a rich modular approach to express and compose elementary plans in order

to execute them concurrently. We show how a plan is built automatically as a system of concurrent processes from the mental

attitudes of the agent. In contrast to existing approaches, the plan is viewed as the realization of a whole set of partially ordered

intentions. The AgLOTOS semantics accords with the possibility of updating some sub-plans on the fly, as the intention set of the

BDI agent is revised.

c© 2014 The Authors. Published by Elsevier B.V.

Selection and peer-review under responsibility of Elhadi M. Shakshuki.

Keywords: Ambient Intelligence, BDI Agent, Planning Language, Plan Revising, Plan Consistency.

1. Introduction

Ambient Intelligence (AmI) systems are highly dynamical systems where agents can enter or leave the system,

and each one can evolve according to its mental attitudes. For the design of such complex systems MAS approaches

offer interesting frameworks, since their agents are considered as intelligent, proactive and autonomous1,2,3,4. Many

modeling approaches are proposed, which partially focus on some of the MAS aspects5,6,7,8,9. In fact, the major prob-

lem consists in recognizing its environmental contexts, including its locality and the discovery of other agents. In10,

it is shown how autonomous BDI agents11 can evolve and move within an ambient environment, based on an agent

centric approach and a context-awarness. Basically, the model is enriched by AmI primitives like communication and

mobility, used over an open system.

This paper aims at proposing a rich and efficient planning process within each AmI agent, such that the specification

of a plan is directly and automatically built from a set of intentions considered by the BDI agent. An interesting

work in this domain was already proposed according to a standard MAS context7. Based on an algebraic recursive

specification language of actions, it is demonstrated how to formally produced a goal/plan hierarchy (HTN), from a

library of elementary plans, each one considered as a possible realization for some goal.

∗ Corresponding author. Tel.: +33-144-278-794 ; fax: +33-144-277-000.

E-mail address: ahmed.chaouche@lip6.fr

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and Peer-review under responsibility of the Program Chairs.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.395&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.395&domain=pdf

38 A.-C. Chaouche et al. / Procedia Computer Science 32 (2014) 37 – 44

Intention revising12,13,14 is considered as an important notion in BDI agent conceptual frameworks (see Bratman et

al. 1), actually, agents are dynamic entities which are changing intentions and then plan, throughout their evolutions.

The authors of15, demonstrate a solution which consists in an on-the-fly revising of plans to be executed, depending on

the modifications of the agents goals, for whatever reasons and in particular the fact that some plans of intentions can

be conflictual. The proposed solution comes from the fact that actions are processed atomically (without concurrency)

and plans are strongly scheduled according to a hierarchical alternation of goals and primitive actions. Moreover, the

proposed structure simplifies the complex mechanism of a BDI agent: goals are viewed as events and the language of

plans allows to directly handle believes and to trigger events.

In contrast, the HoA model presented in10 offers an explicit separation between the management of plans and the

BDI attitudes. The planning process is viewed as a service which directly relates from the set of intentions of the

agent, whatever the BDI process is. Our aim is investigating an adapted revising solution enhancing the concurrency

of actions, letting the planning process selecting and trying one or more plans from some intention concurrently, and

even dealing with several intentions in the same time. The syntax and semantics of the specification algebraic language

AgLOTOS first presented in10, is considered again and augmented in order to formally capture the revising of plans.

Since our starting point is a set of intentions, we assume that the BDI agent itself can solve conflictual situations that

could arise for some context, between intentions, by means of a scheduling process applied on the set of intentions.

The remaining of the paper is organized as follows: Section 2 presents the proposed HoA model able to answer

to AmI requirements in MAS. In Section 3, the AgLOTOS language is defined to compose and schedule the different

sub-plans attached to intentions. According to this principle, the agent is considered of having only one (global) plan.

Section 4 details the semantics of AgLOTOS which provides a rich mechanism to represent the plan evolutions of the

agent while taking into account the change of the context. In Section 5, we define an updating service based on AgLO-
TOS which allows changing the plan according to the revising of the intention set. Throughout the paper, a simple

AmI scenario is given as an illustration of our approach. The last section concludes and outlines our perspectives.

2. The Higher-Order Agent Model

We are interested in modeling the evolution of the agent globally. Figure 1 highlights the agents BDI structure

we consider in this paper. The reasoning mechanism, made by the so-called BDI Process module, is triggered by

the perceived events. It manages/updates the beliefs (B), desires (D), and intentions (I) structures. Then, it calls the

Planning Process module in order to produce consistent action plans automatically, helped by a library of plans. Our

agent-based model captures two main aspects of the agent: (1) the mental reasoning of the agent as a BDI state and

(2) the evolution of the selected plan as a Planning state.

Process

Perc. Actions

internal event

C
o
n
te

x
t

B D I

BDI
Planning

LibP

E
x
ec

u
ti

o
n

Process

Fig. 1. Agent BDI structure

q0 q1 q2 qi qi+1

B0

D0

I0

P0

Bi
Di
Ii

Pi

e1 e2 ei+1

Fig. 2. The agent behavioral changes

Each agent configuration is then composed of a BDI state and a Planning state, knowing that the operational

semantics of plans can yield all the possible evolutions implied by the selected plan. As illustrated in Figure 2, the

occurrences of events may cause some changes of configurations. These evolutions are formally represented by the

following Higher-order Agent model, named HoA for short. It is defined over an alphabet of events triggered by the

actions being executed and by perception events, namely Evt = EAct∪EPerc. Among the actions, message sendings are

available, and message receivings are viewed as specific environmental perceptions. Moreover, mobility is handled as

a specific action (move).

Definition 2.1. (Formalization of the HoA model)
Considering any agent of the AmI system, let BDI be the set of all the possible mental states that can be defined

over the BDI structure and let P be the set of all the possible corresponding plans. Let CN be the set of all the

39 A.-C. Chaouche et al. / Procedia Computer Science 32 (2014) 37 – 44

possible planning states evolving in some plan and LibP be a subset of P representing the library of plans. The HoA
model of the agent is a transition system Ω, represented by a tuple 〈Q, q0,→, FM , FP, FC〉, where:

• Q is the set of HoA configurations such that any configuration q is a tuple q = (bdi,C) where bdi and C
respectively represent the BDI and the planning states of the agent in q,
• q0 ⊆ Q is the initial HoA configuration (q0 = (bdi0,C0)),
• →⊆ Q × Evt × Q is the set of transitions between HoA configurations,
• FM : Q −→ BDI associates a BDI state with each HoA configuration,
• FP : BDI × LibP −→ P associates with each BDI state, an agent plan built from the library of plans,
• FC : Q −→ CN associates a planning state with each HoA configuration.

In this paper, a BDI state is composed of three sets of propositions, representing the Beliefs, Desires and Intentions

of the agent. The Plan is directly derived from the intentions and is written as an AgLOTOS expression. In fact, the

semantics of AgLOTOS yields all the possible planning states implied by the plan expression (see Section 3).

3. AgLOTOS-Based Planning Construction

Starting from any BDI state and LibP library, we show how to build the associated plan automatically. We assume

that the LibP library is indexed by the intention set such that each intention is associated to one or many plans, called

elementary plans. A plan is often an alternate of several plans, such that each one can satisfy the corresponding

intention. Moreover, the plan of an intention, namely intention plan, is a composition of elementary plans. Since in

our view, the intention set can express a scheduling of intentions, a second level of composition is required to express

the whole plan of an intention set, namely the Agent plan.

The compositions of sub-plans are specified by using our algebraic description language, namely AgLOTOS. AgLO-
TOS strictly extends the Basic LOTOS Language16 since elementary plans are expressed in terms of Basic LOTOS
expressions. Specific AmI primitives allow one to take into account the mobility and the asynchronous communi-

cation. Also, location and reception information are assumed to be handled at the BDI level. The next subsections

introduce the AgLOTOS syntax with the specification of plans.

3.1. Syntax of AgLOTOS Plans

The AgLOTOS Algebraic Language.
We now define the syntax of elementary plans which are written using the algebraic language AgLOTOS 10. This

language extends the LOTOS language16 in order to deal with the concurrency of actions in plans.

Let O be the (finite) set of observable actions which are viewed as instantiated predicates, ranged over a, b, ... and

let L be any subset of O. LetH ⊂ O be the subset of actions which represent the Ami primitives:

• In AgLOTOS, actions are refined to make the AmI primitives observable:(1) an agent can perceive the enter and

leave of other agents in the AmI system, (2) it can move between the AmI system localities and (3) an agent

can communicate with another agent in the system.

• An AgLOTOS expression refers to contextual information with respect to the (current) BDI state of the agent:

(1) Θ is a finite set of space localities, (2) Λ is a set of agents with which it is possible to communicate, andM
is the set of possible messages to be sent and received.

• The agent mobility is expressed by the primitive move(�) which is used to handle the move of the agent to some

locality � (� ∈ Θ). The syntax of the communication primitives is inspired from the semantics of the π-calculus

primitives, however considered within a totally dynamic communication support, hence without specification

of predefined channels: the expression x!(ν) specifies the emission to the agent x (x ∈ Λ) of some message ν
(ν ∈ M), whereas, the expression x?(ν) means that ν is received from some agent x.

Let Act = O ∪ {τ, δ}, be the set of actions, where τ � O is the internal action and δ � O is a particular observable

action which features the successful termination of a plan.

40 A.-C. Chaouche et al. / Procedia Computer Science 32 (2014) 37 – 44

The AgLOTOS language specifies pairs for each elementary plan consisting of a name to identify it and an AgLO-
TOS expression to feature its behavior. Consider that elementary plan’s names are ranged over P,Q, ... and that the

set of all possible behavior expressions is denoted E, ranged over E, F, The AgLOTOS expressions are written by

composing (observable) actions through LOTOS operators. The syntax of an AgLOTOS elementary plan P is defined

inductively as follows:

P ::= E Elementary plan
E ::= exit | stop

| a; E | E � E (a ∈ O)

| hide L in E
H ::= | move(�) (H ⊂ O, � ∈ Θ)

| x!(ν) | x?(ν) (x ∈ Λ, ν ∈ M)

� = { |||, |[L]|, ||, [],�, [> }
The elementary expression stop specifies a plan behavior without possible evolution and exit represents the suc-

cessful termination of some elementary plan. In the syntax, the set � represents the standard LOTOS operators: E [] E
specifies a non-deterministic choice, hide L in E a hiding of the actions of L that appear in E, E � E a sequential

composition and E [> E the interruption. The LOTOS parallel composition, denoted E |[L]| E, can model both syn-

chronous composition, E || E if L = O, and asynchronous composition, E ||| E if L = ∅. In fact, the AgLOTOS language

exhibits a rich expressivity such that the sequential executions of plans appears to be only a particular case.

Formal Specification of AgLOTOS Plans.
The building of an agent plan requires the specific AgLOTOS operators: (1) at the agent plan level, the parallel |||

and the sequential � composition operators are used to build the agent plan, in respect with the intentions of the

agent and the associated weights, (2) the alternate composition operator, denoted ♦, allows to specify an alternation

of elementary plans. In particular, an intention is satisfied iff at least one of the associated elementary plans is

successfully terminated.

Let ̂P be the set of names used to identify the possible intention plans: ̂P ∈ ̂P and let P be the set of names

qualifying the possible agent plans: P ∈ P.

̂P ::= P | ̂P♦̂P Intention plan
P ::= ̂P | P ||| P | P � P Agent plan

AgLOTOS Plan Building From Intentions.
With respect to the set of intentions I of the agent, the agent plan is formed in two steps: (1) by an extraction

mechanism of elementary plans from the library, (2) by using the composition functions called options and plan:

• libP : I → 2P, features the library of elementary plans.

• options : I → ̂P, yields for any i ∈ I, an intention plan of the form: ̂Pi = ♦P∈libP(i) P.

• plan : 2I → P, creates the final agent plan P from the set of intentions I. Depending on how I is ordered, the

intention plans yielded by the different mappings ̂Pi = options(i) (i ∈ I) are composed by using the AgLOTOS
composition operators ||| and�.

To be pragmatic considering any BDI state of the agent, we propose that the agent can label the different elements

of the set I of intentions by using a weight function W : I −→ N. This allows us to weight the corresponding intention

plans yielded by the mapping options. The ones having the same weight are composed by using the concurrent parallel

operator |||. In contrast, the intention plans corresponding to distinct weights are ordered by using the sequential

operator�. For instance, let I = {i1
0, i

2
1, i

1
2, i

0
3
} be the considered set of intentions, such that the superscript information

denotes a weight value, and let ̂P0, ̂P1, ̂P2, ̂P3 be their corresponding intention plans, the constructed agent plan could

be viewed (at a plan name level) as: plan(I) = ̂P1 � (̂P0|||̂P2) � ̂P3.

41 A.-C. Chaouche et al. / Procedia Computer Science 32 (2014) 37 – 44

Table 1. A state evolution for Alice and Bob

Alice’s scenario

B0 = {in(me, �1), in(copies, �2)}
qA

0 D0 = {meeting(Bob, �1), getting copies(�2)}
I0 = {meeting(Bob, �1)}
P0 = meet(Bob); exit
B1 = {in(me, �1), in(copies, �2), in(Bob, �2)}

qA
1 D1 = {meeting(Bob, �1), asking(Bob, get copies(�2))}

I1 = {meeting(Bob, �1), asking(Bob, get copies(�2))}
P1 = meet(Bob); exit ||| Bob!(get copies(�2)); exit

Bob’s scenario

B0 = {in(me, �2)}
qB

0 D0 = {waiting(ν),meeting(Alice, �1)}
I0 = {waiting(ν),meeting(Alice, �1)}
P0 = Alice?(ν); exit ||| move(�1); meet(Alice); exit
B1 = {in(me, �2), in(copies, �2)}

qB
1 D1 = {meeting(Alice, �1), getting copies(�2)}

I1 = {meeting(Alice, �1), getting copies(�2)}
P1 = get copies(�2); exit � move(�1); meet(Alice); exit

3.2. A Simple AmI Example

Let us briefly recall the scenario presented in10 where Alice and Bob are two agents of an AmI Universitary

system. Such a system is clearly open since agents can enter and leave. The fact that Bob is entering the system

can be perceived by Alice in case she is already in. Since Alice is context-aware, she can take advantage of this

information, together with other information like the fact she is able to communicate with Bob through the system.

Let Θ = {�1, �2} be two localities of the system where the agents behave. The proposed problem of Alice is that

she cannot make the two following tasks in the same period of time: (1) to meet with Bob in �1, and (2) to get

her exam copies from �2. Clearly, the Alice’s desires are conflictual since Alice cannot be in two distinct localities

simultaneously.

Table 1 represents a possible evolution of some HoA configurations for these agents, highlighting how to solve the

Alice’s problem. Alice and Bob are specified separately, and it is the proper tasks of Bob and Alice to coordinate,

at their BDI process levels. In order to express the agent configurations, BDI propositions and plan actions are

simply expressed by using instantiated predicates, like get copies(�2). Sub-plans are viewed as concurrent processes,

terminated by the specific exit process, a la LOTOS.

Within each agent, we assume that BDI process can order the set of intentions to be considered. For instance,

in the configuration qB
1 of Bob, the intention set I1 = {meeting(Alice, �1), getting copies(�2)} is ordered such that

weight(meeting(Alice, �1))<weight(getting copies(�2)). In the intention set I1, the plan expression of Bob is: P1 =

get copies(�2); exit�move(�1); meet(Alice); exit, which is built by using the options and plan mappings. Pay at-

tention that some actions can be processed concurrently, so is the case in the configuration qB
0 , for the sub-plans

get copies(�2); exit and move(�1); meet(Alice); exit.
The reader may notice that the initial plans of Bob and Alice accords with the formal building of plans presented

in Section 4. Moreover, the revising of their plans follows the techniques presented in Section 5.

4. Semantics of AgLOTOS Plans

The AgLOTOS operational semantics is basically derived from the one of Basic LOTOS, which is able to capture

the evolution of a concurrent processes. A configuration (E, P) represents a process identified by P, such that its

behavior expression is E, moreover, the notation P ::= E means that the behavior expression E is assigned to P.

In case P is an elementary plan, its expression is called an elementary expression. The reader may refer to10 for a

detailed semantics of elementary plans, viewed as Basic LOTOS processes.

Further, the behavior expression of the agent plan P is denoted [P]. Definition 4.1 generically specifies how [P] is

formed compositionally from the intention plan configuration of the agent, like (E,̂P) (see rule 2), themselves built

from an alternate of elementary plans configuration, like (Ek, Pk) (see rule 1).

Definition 4.1. Any plan configuration [P] has a generic representation defined by the following two rules:

(1)
P ::= ̂P ̂P ::= ♦k=1..n Pk Pk ::= Ek

[P] ::= (♦k=1..n Ek, ̂P)
(2)

P ::= P1 � P2 � ∈ {|||,�}
[P] ::= [P1] � [P2]

42 A.-C. Chaouche et al. / Procedia Computer Science 32 (2014) 37 – 44

Table 2 shows the operational semantic rules defining the possible planning state changes for the agent. The

rules apply from any HoA configuration q = (bdi,C), where the planning state C is directly specified as an agent plan

expression, like [P]. In each row in the table, there are three kinds of derivations: (1) the left column shows the nominal

case considering the execution of any action a (a ∈ O∪{τ}), (2) and (3) the other two columns focus on the termination

action of some intention plan, ̂P. In the middle one, the considered intention plan is successfully terminated whereas

in the right one, the failure termination case is treated. With respect to any intention plan ̂P, ̂P and ¬̂P respectively

represent the successful and failure termination cases of ̂P. Hence, if CN is the set of all the possible planning states

for the agent, then the transition relation between the planning states is a subset of CN × Act × (̂P ∪ ¬̂P) × CN .

The transitions (C1, a,̂P,C2) and (C1, a,¬̂P,C2) (̂P ∈ ̂P) provoke an internal event informing the BDI process of the

termination of the intention plan ̂P. For sake of clarity, the transition (C1, a, nil,C2) is simply denoted C1
a−−→ C2,

representing the execution of a non termination action a.

• The two first rows concern the derivations of the behavior expression of an intention plan ̂P, under the execution

of some action. The (Action) rules exhibit the simple case where E is an elementary expression of ̂P, whereas the

(Alternate) rules focus on the execution of an alternate of elementary expressions, like ♦k=1..nEk. The middle rule

captures the successful termination of ̂P, under the execution of the action δ, while the right one captures the failure,

in case the behavior expression of ̂P is equivalent to f ail. In this paper, f ail represents the fact that the execution of

some behavior expression E fails due to the dynamical environment of the agent. In the (Alternate) row, the behavior

expression E = ♦k=1..n Ek of an intention plan ̂P, is refined by using the mapping select which selects one of the

elementary expression among the ones of E, e.g. E j = select(̂P). The alternate operation is semantically defined by

introducing a new semantic operator �, in order to take this selection into account: E j � (♦Ek=1..n
k� j Ek). Observe that

E � F, yields E if E is a success and F if E fails.

• In the two last rows, the sequential and parallel LOTOS operators are re-considered to take into account the

compositions of intention plan configurations, in a sequential or parallel way.

Table 2. Semantic rules of agent plan configurations

(Action)
E

a−−→E′

(E,̂P)
a−−→(E′,̂P)

E
δ−−→stop

(E,̂P)
τ−−→̂
P

(stop,̂P)

E≡ f ail

(E,̂P)
τ−−−→
¬̂P

(stop,̂P)

(Alternate)
E j

a−−→E′j E j=select(̂P)

(♦k=1..n Ek,̂P)
a−−→ (E′j�(♦k=1..n

k� j Ek),̂P)

E
δ−−→stop

(E�F,̂P)
τ−−→̂
P

(stop,̂P)

E≡ f ail F
a−−→F′

(E�F,̂P)
a−−→ (F′,̂P)

(Sequence)
C1

a−−→C′
1

C1�C2

a−−→C′
1
�C2

C1

τ−−→̂
P
C′

1

C1�C2

τ−−→̂
P
C2

C1

τ−−−→
¬̂P
C′

1

C1�C2

τ−−−→
¬̂P
C2

(Parallel)
C1

a−−→C′
1

C1 |||C2

a−−→C′
1
|||C2 C2 |||C1

a−−→C2 |||C′1

C1

τ−−→̂
P
C′

1

C1 |||C2

τ−−→̂
P
C2 C2 |||C1

τ−−→̂
P
C2

C1

τ−−−→
¬̂P
C′

1

C1 |||C2

τ−−−→
¬̂P
C2 C2 |||C1

τ−−−→
¬̂P
C2

4.1. Application to the scenario

Consider Table 1 where P1 is the agent plan considered for Bob in the configuration qB
1 . The evolution of this plan

[P1] is expressed by: [P1] = ((Eg, ̂Pg) � (Em,̂Pm)), where (Em,̂Pm) and (Eg, ̂Pg) are two intention plan configurations

of Bob. The first one corresponds to the intention meeting(Alice, �1) and the second to getting copies(�2), such that

Em = move(�1); meet(Alice); exit and Eg = get copies(�2); exit.
An example of execution derived from the planning state C0 is the following, expressing that Bob fails to get the

copies but this does not prevent him to move and perform the meeting with Alice:

((Eg, ̂Pg) � (Em,̂Pm))
τ−−−−→
¬̂Pg

(Em,̂Pm)
move(�1)−−−−−−→ (E′m,̂Pm)

meet−−−→ (E′′m,̂Pm)
τ−−−→̂

Pm

(stop,̂Pm).

43 A.-C. Chaouche et al. / Procedia Computer Science 32 (2014) 37 – 44

5. Dynamical Plan Revising

In our model, the BDI process drives the planning process such that adding or removing intentions possibly provoke

the change of the agent plan. Of course, the BDI process cannot ask for such a change, if this could imply an incoherent

state for the agent. In fact, the BDI process must be informed by the planning process about the terminations of

intention plans in order to act with consistency. At this point, we assume that the only dependencies within the

intention set are due to the weighting of intentions required by the BDI process. A rough approach would consist

in waiting the termination of the whole plan, meaning that the planning process reaches the final planning state of

the current plan, before taking any intention change into account. In this paper, we propose an improved method

which consists in updating the agent plan as the revising of intentions are required by the BDI process. This update

consists in adding new intention plans and removing some of the remaining intention plans in progress. We take

profit from the compositional nature of AgLOTOS, that allows the planning process to manage the different intention

plans distinctly. Recall that any planning state structurally specifies the different remaining AgLOTOS expressions to

execute, corresponding to the intention plans to be achieved.

In some HoA configuration q = (bdi,C), I(bdi) represents the intention set in this configuration. Let us consider

some planning state C = [P], such that [P] = �i∈1..n (Ei, ̂Pi) represents the remaining intention plan configurations

to execute, where each ̂Pi corresponds to the plan of the intention i, Ei is its associated AgLOTOS expression and

� ∈ {|||,�}. The updating of the intention set and the associated agent plan relies on the following principles:

• according to the semantics, the termination of any intention plan produces an internal event which changes the

BDI state, in particular by removing the achieved intention from the intention set of the agent.

• it is easy to build some mappings which relates every intention i ∈ I to the corresponding pair (E,̂P) and vice

versa: (1) remain : P×I → E×̂Pmaps intention i ∈ I to the corresponding pair (E,̂P) of [P] ; (2) index : ̂P → I
maps each ̂P to the corresponding intention i ∈ I. It is worth noting that from weight(index(̂Pi)) such that i ∈ I,

one yields the weight of the intention i.

The add and remove update operations are formalized by the following two mappings add, remove. These map-

pings defined from 2E×̂P × I yields a new agent plan whose expression [P] is (re)built from the given set of intention

plan configurations and the intention to be added or removed. The Adding of a new intention k, assuming its intention

plan configuration is (Ek, ̂Pk), means:

• adding k in I and rebuild the weight mapping to take k into account, then

• building a new agent plan expression, from the set of remaining intention plan configurations ∪i∈I remain(P, i)
and their respective weights weight(i).

Formally, let C be the current planning state of the agent and k be the intention to be added, the planning

state C′ obtained after the adding operation is defined by: C′ = (add(∪i∈I remain(C, i), k)). The explicit remov-

ing of a (non-terminated) intention k from I, means that the corresponding (Ek, ̂Pk) = remain(P, k) must be re-

moved from P. As for the adding function, the resulting planning state C′ after removing the intention k is: C′ =
(remove(∪i∈I remain(C, i), k)).

5.1. Application to the scenario

Consider the example of Table 1 again, the changes of the presented initial HoA configurations for Alice and Bob

(taken separately) are due to the respective perceptions of Alice and Bob and the fact they are anticipative. Actually,

after having perceived that Bob is in �2 (e1 = perc(in(Bob, �2))), which is the locality of the exam copies, Alice

enriches her beliefs, desires and intentions, aiming at communicating with Bob and asking for his help to bring her

the copies. Consequently, she evolves to the new HoA configuration qA
1 , where the generated plan suggests that Alice

sends the message Bob!(get copies(�2)).

Notice that Bob is able to receive any message from Alice, which is denoted Alice?(ν) in qB
0 . The reception of the

message sent by Bob triggers an event at its BDI process level. Since here, Bob accepts to bring the copies with him to

44 A.-C. Chaouche et al. / Procedia Computer Science 32 (2014) 37 – 44

Alice, he expands his beliefs (in(copies, �2)) and also take into account a new intention getting copies(�2), in fact con-

sistent with the previous one. The HoA configuration of Bob is changed to qB
1 i.e. I1 = I0∪{getting copies(�2)}, and the

plan expression [P0] of Bob is updated by using the add mapping: [P1] = add(∪i∈I0
remain(P0, i), getting copies(�2)),

in order to satisfy all of his desires, getting first the copies then going to meet Alice.

6. Conclusion

The proposed AgLOTOS agent-based algebra appears to be a powerful and intuitive way to express an agent plan.

In contrast to existing approaches, plans are composed as concurrent processes and the sub-plans corresponding to

different intentions can be executed concurrently, in a unified way.

In this context, we show how to build an agent plan automatically from the set of intentions of the agent. To solve

conflict, it is possible to take into account a scheduling of the intentions. Lastly, updates are made possible from a

notion of intention plans used to build the agent plan. Up to our knowledge, the presented work seems the first one to

deal with the revising of plans on-the-fly, as the intentions of the agent are modified.

At the agent level, the planning state of the agent is also expressed as an AgLOTOS expression, representing the

state evolution of the agent plan. This is considered as part of the configuration of the agent. The resulting model

called the Higher-order agent model (HoA) formally represents a BDI-AmI open system where agents can reason,

communicate and move. Agent dynamicity and context-awareness are handled due to the fact that agents can change

their mental state adequately to the perceptions of new events.

Our next perspective is studying the evolution of the HoA model in order to analyze the updates of plans with

respect to some applications. We also deal with higher concerns like learning and rationality aspects in relation with

the successful and failure intention plan executions highlighted in this paper.

References

1. Bratman, M.E., Israel, D.J., Pollack, M.E.. Plans and resource-bounded practical reasoning. Computational Intelligence 1988;4:349–355.

2. Doyle, J.. Rationality and its roles in reasoning. Computational Intelligence 1992;8:376–40.

3. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.. Model checking agent programming languages. Automated Software Engg 2012;

19(1):5–63.

4. Shoham, Y.. Agent-oriented programming. Artif Intell 1993;60(1):51–92.

5. El Fallah Seghrouchni, A., Suna, A.. Claim: A computational language for autonomous, intelligent and mobile agents. In: Dastani, M.,

Dix, J., El Fallah Seghrouchni, A., editors. PROMAS; vol. 3067 of Lecture Notes in Computer Science. Springer; 2003, p. 90–110.

6. Bordini, R.H., Hübner, J.F., Vieira, R.. Jason and the golden fleece of agent-oriented programming. In: Bordini, R.H., Dastani, M., Dix,

J., El Fallah Seghrouchni, A., editors. Multi-agent programming : languages, platforms and applications.; no. 15 in Multiagent Systems,

Artificial Societies, and Simulated Organizations. New York: Springer; 2005, p. 3–37.

7. Sardina, S., de Silva, L., Padgham, L.. Hierarchical planning in bdi agent programming languages: a formal approach. In: Proceedings of
AAMAS ’06. New York, NY, USA: ACM; 2006, p. 1001–1008.

8. Kouah, S., Saı̈douni, D.E., Ilié, J.M.. Synchronized petri net: A formal specification model for multi agent systems. Journal of Software
2013;8(3):587–602.

9. Schild, K.. On the relationship between bdi logics and standard logics of concurrency. Autonomous Agents and Multi-Agent Systems 2000;

3(3):259–283.

10. Chaouche, A.C., El Fallah Seghrouchni, A., Ilié, J.M., Saı̈douni, D.E.. A higher-order agent model for ambient systems. Procedia Computer
Science 2013;21(0):156 – 163. The 4th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN-2013).

11. Rao, A.S., Georgeff, M.P.. An abstract architecture for rational agents. In: Nebel, B., Rich, C., Swartout, W.R., editors. KR. Morgan

Kaufmann. ISBN 1-55860-262-3; 1992, p. 439–449.

12. Icard III, T.F., Pacuit, E., Shoham, Y.. Joint revision of beliefs and intention. In: Principles of Knowledge Representation and Reasoning.

2010, p. 572–574.

13. Grant, J., Kraus, S., Perlis, D., Wooldridge, M.. Postulates for revising bdi structures. Synthese 2010;175(1):39–62.

14. Hoek, W., Jamroga, W., Wooldridge, M.. Towards a theory of intention revision. Synthese 2007;155(2):265–290.

15. Shapiro, S., Sardina, S., Thangarajah, J., Cavedon, L., Padgham, L.. Revising conflicting intention sets in bdi agents. In: Proceedings
of the 11th International Conference on Autonomous Agents and Multiagent Systems - Volume 2; AAMAS ’12. Richland, SC: International

Foundation for Autonomous Agents and Multiagent Systems. ISBN 0-9817381-2-5, 978-0-9817381-2-3; 2012, p. 1081–1088.

16. Brinksma, E., editor. ISO 8807, LOTOS - A Formal Description Technique Based on the Temporal Ordering of Observational Behaviour.

1988.

