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ABSTRACT 

 

Unlike professional pilots who are limited by the FAA's age rule, no age limit is defined 

in general aviation. Our overall goal was to examine how age-related cognitive decline 

impacts piloting performance and weather-related decision-making. This study relied on three 

components: cognitive assessment (in particular executive functioning), pilot characteristics 

(age and flight experience) and flight performance. The results suggest that in comparison to 

chronological age, cognitive assessment is a better criterion to predict the flight performance, 

in particular because of the inter-individual variability of aging impact on cognitive abilities 

and the beneficial effect of flight experience.  

 

INTRODUCTION 

 

The population of general aviation (GA) pilots is getting older in the USA (D. J. Hardy & 

Parasuraman, 1997) and in European countries like France where 41% of private pilots are 

more than 50 years old (BEA
1
, 2008). Unlike professional pilots who are limited by the 

FAA's “age 65” rule, no such restriction exists for GA pilots. It is worth examining how age-

related cognitive decline may impact piloting performance in GA. 

 

                                                           
1
 French Accident Investigation Bureau. 
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Casualties in GA 

Contrary to commercial aviation (CA) pilots, GA pilots have not necessarily experienced 

a professional training, fly mostly on their own, without any co-pilot and with very few 

assistance systems. They have less support from the air traffic control and are more affected 

by weather conditions. Not surprisingly, in GA, the accident rate is considerably higher than 

in CA (Li & Baker, 2007). Li and coworkers (2001) analyzed NTSB
2
 data files and showed 

that pilot errors were a probable crash cause in 38% of the airline crashes and of 85% in the 

GA. A main cause of accidents in GA is related to the loss of situation awareness of the 

aircraft position: since the light aircrafts’ altitude is often relatively low, the loss of the 

aircraft’s position awareness can provoke hazardous heading deviation (Gibson, Orasanu, 

Villeda, & Nygren, 1997). Indeed it is interesting to denote that the greatest part of the GA 

fatalities occurs on route, away from the airports, but 46% of the crashes occur at airports (Li 

& Baker, 1999) and are related to poor decision making by pilots who do not sufficiently take 

into account external cues (landing distance available, crosswind speed, traffic…). 

 

Age and/or cognitive performance: casualty factors in GA? 

Determining which factors are predictive of such errors is a great challenge to improve 

safety in GA. Several studies have revealed significant aging issues on accident rates in GA 

(Harkey, 1996; Kay, 2001; Taylor, Kennedy, Noda, & Yesavage, 2007), though these results 

are criticized (Li, Baker, Lamb, Grabowski, & Rebok, 2002; Rebok, Qiang, Baker, & Li, 

2009). Hardy and colleagues (2007) examined the effect of age on pilot cognition in a 28-62 

                                                           
2
 National Transportation Safety Board: independent U.S. federal government agency responsible for civil 

transportation accident investigation. 
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years old sample and showed that cognitive performance began to decline very early, from 40 

years old. Although this early decline could be partly related to a variety of medical issues, 

and in spite of the absence of a definitive consensus, the fall of cognitive performance is 

strongly suspected to be partly responsible for the increased accident rate with age. This raises 

the importance of monitoring the pilot cognitive functioning as long as the decline of these 

abilities represents a much higher risk of accident than a sudden physical incapacitation 

(Schroeder, Harris, & Broach, 2000). 

Substantial literature focuses on the evaluation of the cognitive state to predict flight 

performance (Taylor, O'Hara, Mumenthaler, & Yesavage, 2000) or aeronautical decision-

making (Wiggins & O'Hare, 1995), but its conclusions remain contradictory. Several reasons 

may explain the difficulty to draw a definitive conclusion on the effects of aging on flight 

performance in GA pilots. There is a great inter-individual variability in the deleterious 

effects of aging on cognition (Buckner, 2004); studies do not necessarily focus on the 

cognitive functions that are the most impacted by aging; few researches attempt to link, in the 

same sample, cognitive performance to flight abilities; a large part of the studies is interested 

on safety aspects like communications (Morrow, Menard, et al., 2003); few researches are 

exclusively related to the GA population; finally, another source of complexity arises from the 

suspected compensative role of flight experience on aging effects (Morrow, Menard, Stine-

Morrow, Teller, & Bryant, 2001).  

Different measurements of cognitive efficiency have been identified as crucial to the 

piloting ability, for instance: time-sharing (Tsang & Shaner, 1998), speed of processing 

(Taylor, et al., 1994), attention (Knapp & Johnson, 1996) or problem solving (Wiggins & 

O'Hare, 1995). One of the most promising approaches consists in administering a tests battery 
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to pilots, such as Cogscreen-AE (Horst & Kay, 1991), and to correlate their score with their 

performance during flight simulator sessions or in real flight conditions (Yakimovitch, 

Strongin, Go'orushenko, Schroeder, & Kay, 1994). Taylor and colleagues (2000) were able to 

predict 45% of the variance of the flight simulator performance with four Cogscreen-AE 

predictors (speed/working memory, visual associative memory, motor coordination and 

tracking) in a cohort of 100 aviators (aged 50-69 years). However, the identification of the 

most relevant cognitive functions to predict flight performance remains a key issue.  

 

Executive functions: early markers of age-related cognitive decline? 

Contrary to studies that involved Cogscreen-AE, a large battery in terms of explored 

cognitive functions, we propose to focus specifically on executive functions (EFs). Indeed, 

these cognitive functions are among the earliest ones to be impacted by aging (Raz, 2000) and 

represent excellent clues of aging effects on cognitive performance.  

Functional neuroimaging brings evidence that the brain is subject to anatomical and 

physiological modifications in normal aging (Cabeza, Anderson, Locantore, & McIntosh, 

2002b). The prefrontal cortex appears to be the earliest affected region (Tisserand & Jolles, 

2003) and may prominently account for age-related cognitive changes (West & Baylis, 1998). 

Because the prefrontal cortex plays a dominant role in the implementation of EFs, it is not 

surprising that aging provokes a selective alteration of reasoning (De Neys & Van Gelder, 

2009) or inhibition, updating and set-shifting (Fisk & Sharp, 2004). However, the executive 

changes vary considerably across people. The complex interactions between the cerebral 

structures underlying EFs (Buckner, 2004), sociocultural background and genetic factors 

(Nagel, et al., 2008) may explain the heterogeneity of this decline. 
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The study of EFs has appeared recently in aeronautics, for instance, Hardy (2007) found 

very significant age-related differences in pilots’ executive functioning (e.g. inhibition, set-

shifting) and Taylor (2005) established a relationship between interference control and the 

ability to follow air traffic instructions. These cognitive functions underlie goal-directed 

behavior and adaptation to novel and complex situations (Royall, et al., 2002). They allow the 

inhibition of automatic responses in favor of controlled and regulated behavior, in particular 

when automatic responses are no longer adequate to the new environmental contingences. 

They also encompass decision-making (Sanfey, Hastie, Colvin, & Grafman, 2003) or 

reasoning abilities (Decker, Hill, & Dean, 2007). According to Miyake (Miyake, et al., 2000), 

three major low-level EFs are moderately correlated, but clearly separable: set-shifting 

between tasks or mental sets (“shifting”), inhibition of dominant or prepotent responses 

(“inhibition”), and updating and monitoring of working memory (WM) representations 

(“updating”). According to our hypotheses, EFs are crucial for piloting. Indeed, contrary to 

most jobs that are characterized by maintenance functions and very little integration of new 

information, which can hide effects of cognitive decline (Park, 1994), piloting activity takes 

place in a dynamical, uncertain and rapidly changing environment where new information 

must be integrated and updated continuously. EFs appear critical for handling the flight, 

monitoring engine parameters, planning navigation, maintaining an up-to-date situation 

awareness - SA - (Endsley, 1999), correctly adapting to traffic and environmental changes and 

performing accurate decision making by inhibiting wrong behavioral responses. In a light 

aircraft, the basic analogical and separated instrumentation requires mental effort and 

reasoning capabilities to maintain SA. Eventually, since EFs modulate mental flexibility, 
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inhibition of inappropriate responses or the capacity to maintain up-to-date SA, they are 

critical to relevant aeronautical decision-making. 

 

Aims and Hypotheses 

In this experiment, we proposed to specifically evaluate three low-level EFs (shifting, 

inhibition and updating) and to link, in the same sample, their efficiency to flight navigation 

performance and decision making. Although it is little explored, decision making is a very 

important issue regarding pre-cited flight safety statistics and especially during the critical 

landing phase. This phase requires following an arrival procedure through several waypoints 

and implies formalized sequences of actions (e.g. to adjust engine parameters, to extend the 

flaps…). It also requires decision-making processes based upon rational elements like the 

maximum crosswind speed for a given aircraft. In spite of the presence of such formalized 

rules and procedures, numerous pilots make erroneous decision.  

We have also taken into account a well established general ability: reasoning. Reasoning 

reflects fluid intelligence and supports processes relevant for many kinds of abilities (verbal, 

spatial, mathematical, problem solving etc.) and adaptation to novelty. It is a concept strongly 

related to executive functioning (Decker, et al., 2007; Roca, et al., 2009). We also assessed 

the speed of processing because it represents a reliable measure of general cognitive decline 

and it modulates the overall cognitive efficiency (Salthouse, 1992). Finally, we have also 

taken into account age to assess its participation to the flight performance variation and we 

have controlled total flight experience in the analysis. Indeed, experience is well known to 

improve flight performance and to protect against aging effects (Harkey, 1996; G Li, Baker, 

Qiang, Grabowski, & McCarthy, 2005; Morrow, et al., 2009; Taylor, et al., 2007). Our 
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hypothesis was that the chronological age is not a sufficient criterion to predict piloting 

performance and decision-making relevance and that cognitive performance is a much more 

relevant criterion. 

 

METHODS 

 

Participants 

The participants were 32 private licensed pilots rated for visual flight conditions. The 

pilots that had no longer flown during the past two years were excluded because of the 

potential impact on flight simulator performances. All participants had past experience with a 

computer-based flight simulator. Inclusion criteria were male, right handed, as evaluated by 

the Edinburgh handedness inventory (Oldfield, 1971), native French speakers, under- or post-

graduate. A professionally trained clinical psychologist neuropsychologically examined all 

participants. Non-inclusion criteria were expertise in logics, airline pilots and sensorial 

deficits, neurological, psychiatric or emotional disorders and/or being under the influence of 

any substance capable of affecting the central nervous system. Due to their influence on 

decision-making processes, emotional disorders identification was based on impulsivity and 

anxiety assessment with the Barratt Impulsiveness Scale (BIS-10, Bayle et al., 2000) and the 

Spielberger state anxiety inventory (STAI Y-A, Bruchon-Schweitzer & Paulhan, 1993). All 

participants received complete information on the study’s goal and experimental conditions 

and gave their informed consent. 
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Flight scenario 

The flight scenario has been setup in collaboration with flight instructors to reach a 

satisfying level of difficulty and realism. To familiarize the participants with the PC-based 

flight simulator and to minimize learning effects in order to obtain reliable flight simulator 

performances, each volunteer underwent a training session. Before the navigation, they 

received the instructions, a flight plan and various technical information related to the aircraft 

(e.g. aircraft's crosswind limit). Basically, the scenario was to take off, reach a waypoint with 

the help of the aircraft radio navigation system and finally, land on a specified airport. The 

pilots were instructed that they were in charge of all the decisions and that they could only 

receive an informative weather report before landing. In order to increase the subject’s 

workload, on route, the pilots had to perform a mental arithmetic calculation of the ground 

speed (thanks to the embedded chronometer). Moreover, a failure of the compass was 

scheduled. After this failure, the pilots had to navigate thanks to the magnetic compass, which 

presents the particularity to be difficult to use as it is anti-directional. The flight scenario 

lasted for approximately 45 min.  

Flight performance 

The assessment of flight performance was founded on flight path deviations (FPD), 

expressed in terms of the amount of angular deviation in the horizontal axis from the ideal 

flight path. This measure is widely used as an indicator of the primary flight performance 

(Hyland, 1993; Leirer, Yesavage, & Morrow, 1989; Yakimovitch, et al., 1994). The deviation 

was measured from take-off to the waypoint before the landing decision, in order to assess the 

same flight segment for all the pilots. Indeed, after the waypoint, some pilots quitted the flight 

before others (because of the no-landing decision). 
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Crosswind landing decision 

After the waypoint and before reaching the runway threshold, the pilots must state 

whether the meteorological conditions, as provided by the automatic information system of 

the arrival airport, were compatible with a landing or necessitated a go-around and a 

diversion. For this purpose, the pilots had to assess the crosswind component using a 

commonly utilized formula
3.

 This formula is part of the basic knowledge of pilots and a rather 

important wind (i.e. 10-15 knots) systematically leads the pilot to consider it. The calculation 

result exceeded of 6 knots the aircraft's maximum crosswind limit specified in the 

documentation provided to the pilots at the time of flight preparation. The measured 

dependent variable was binary: correct when the pilot decided to divert before the runway 

threshold, incorrect when the pilots continued the landing beyond the runway threshold. 

 

Neuropsychological test battery 

Target hitting test  

It provides a basic psychomotor reaction time (Loubinoux, et al., 2005). The instruction 

was to click as fast as possible on each target. The performance was measured by a velocity 

index inspired by the Fitts’ law (1954). The index is the average ratio of the base 10 logarithm 

of the distance in pixels between two targets, divided by the time in seconds to go from the 

first target to the second. The index is considered as a measure of the speed of processing. 

                                                           
3
 Crosswind (in knots) = effective wind (in knots) * sin (angle between runway and wind direction). Moreover, 

pilots have mnemonic methods to simplify this calculation. 
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The 2-back test  

It aims at assessing WM, in particular maintenance and updating abilities (Chen, Mitra, & 

Schlaghecken, 2008). Participants viewed a continuous stream of stimuli and had to determine 

whether the current stimulus matched on a specific dimension (shape, for our test) the 

stimulus 2-back in the stimuli sequence. The percentage of correct responses was collected. It 

is considered as a measure of working-memory updating ability. 

The reasoning test 

It has been used in a previous study to assess executive functioning (Causse, Sénard, 

Démonet, & Pastor, 2010). The goal of the task is to solve syllogisms by choosing, among 

three suggested solutions, the one that is a logical conclusion. Syllogisms are based on a 

logical argument in which one proposition (the conclusion) is inferred from a rule and from 

another proposition (the premise). We used four existing forms of syllogisms: modus ponendo 

ponens, modus tollendo tollens, setting the consequent to true and denying the antecedent. 

Each participant had to solve 24 randomly displayed syllogisms. The measurement was the 

percentage of correct responses. 

The Wisconsin Card Sorting test – WCST – (Berg, 1948)  

It gives information on the subject’s abstract reasoning, discrimination learning and 

shifting abilities (Eling, Derckx, & Maes, 2008). The test version here is a computer 

implementation that is very similar to the clinical version of the WCST (Heaton, 1981). 

Participants had to sort cards according to three different unknown categories (color, shape, 

number); an audio feedback indicated whether the response was correct or not (yes/no). When 

the participant categorized successfully ten cards, the target category was automatically 

changed. The task ended when six categories were achieved (color, shape, number, color, 
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shape, number) or when the deck of 128 cards was used. The total numbers of errors was 

derived from the individual cards’ records. This number is considered as a measure of set-

shifting ability. 

The Spatial Stroop test 

 It assesses the conflict between the meaning of a location word (e.g. “left”) and the 

location where the word is displayed. The ability to restrain a response according to the 

localization of the word gives information on inhibition efficiency. This conflict appears to be 

provoked by the simultaneous activation of both motor cortices (Desoto, Fabiani, Geary, & 

Gratton, 2001). Our test encompasses four control conditions. “Stroop neutral meaning” 

(SNM): a motor answer is given with the appropriate hand according to the word meaning 

displayed centrally on the screen; “Stroop neutral position” (SNP): the response is given 

according to the location of a string of XXXXX, displayed at the left or the right of the 

screen; “Stroop meaning incompatible/compatible” (SMI/SMC): the response is given 

according to the meaning of the word, compatible or incompatible with its location at the 

screen. In order to get the pure effects of inhibition, the interference score was calculated to 

control reading and localization effects by:  SMI - (SNP*SNM) / (SNP+SNM). 

 

RESULTS 

 

Statistical analysis 

The relationship between age and neuropsychological variables and the ability of the 

neuropsychological variables to predict piloting performance was tested using regression 

analyses. The Bonferroni-Holm (Holm, 1979) correction was applied to control the 
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familywise error rate. The landing decision being a Boolean variable, we performed one-way 

ANOVAs using decision as a categorical variable to examine whether the cognitive efficiency 

differed according to the pilot’s decision relevance. 

 

Pilot characteristics 

The mean age of our sample was 47.28 years (SD = 15.87). The mean level of education 

was very high (15.4 years, SD = 2.25) and did not significantly correlate with age (p = .462, r 

= -.14). In all pilots, impulsivity and anxiety trait level were within a normal range 

(respectively, mean = 40.81, SD = 9.29; mean = 36.42, SD = 7.60). The mean total experience 

was of 1545 hours of flight (Range = 57-13000). As expected the Bravais-Pearson correlation 

revealed that there was no significant correlation between age and total flight experience (p = 

.117, r = .28). This is an important outcome as it helps to disentangle between aging and 

experience impacts on piloting performance. 

 

Aging effects on cognitive variables 

Table 1 shows aging effects on all assessed cognitive variables. With the exception of 

reasoning performances, Bravais-Pearson correlation demonstrated that all the 

neuropsychological abilities declined with age. Reasoning performances solely showed a 

trend to diminish. The rather steep slope of the decrease of velocity with age (see Figure 1) 

existed also in the other cognitive abilities that showed a marked decline around 55 years of 

age. For instance, regarding the update in WM, ten participants out of eleven of more than 55 

years of age had a correct response rate below 70%, which was never the case for any 
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younger participants. Similarly, set-shifting strongly declined after 55, where five pilots had a 

higher interference index than any other pilots. 

 

Figure 1 about here 

Table 1 about here 

 

Explanatory variables of piloting performance 

The mean FPD amplitude was 29.36 (SD = 11.92). We first examine the predictability of 

age and neuropsychological performances on the piloting ability. We conduct flight 

experience-partialled correlation to control for flight experience effects, see Table 2. 

 

Table 2 about here 

 

It is interesting to note that flight experience-partialled correlation between reasoning and 

FPD was the most significant (see Figure 2), suggesting that this general ability was among 

the most critical to reach a good piloting performance. In addition, speed of processing and 

updates in WM were also significantly predictive of FPD. The higher the reasoning, the speed 

of processing and updates in WM abilities were, the smaller the FPD was. In contradiction 

with our expectations, analysis showed that age was correlated with piloting performance. We 

therefore conducted 5 others partial correlations between age and piloting performance and 

we controlled flight experience plus cognitive effect. None of these 5 correlations remained 
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significant. This outcome showed that age effect on piloting performance was mediated by the 

cognitive performance decline. 

 

Figure 2 about here 

 

Cognitive variables related to the crosswind landing decision 

Results showed that 50% of the pilots erroneously kept on landing in spite of adverse 

wind conditions. ANOVA revealed that pilots who were more akin to make the good decision 

to go-around demonstrated better updating in WM and set-shifting score (respectively, 

F(1,30) = 9.76, p = .003, �
²
p = .25; F(1,30) =5.33, p = .027, �

²
p = .15), see Figure 3 and 

Figure 4. These results suggest that these two abilities were particularly critical for decision-

making process. 

Figure 3 about here 

Figure 4 about here 

 

DISCUSSION 

 

A first objective of this study was to assess the effects of normal aging on cognitive 

functioning. Our sample of pilots was submitted to a neuropsychological battery that taped 

three crucial low-level EFs (Miyake, et al., 2000). EFs analysis on GA pilots is rather 

uncommon and is of interest as this specific population usually presents a high level of 

education, which is supposed to be protective from aging effects. However, in spite of this 
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high level of education, analysis revealed that pilots demonstrated a significant decrease in 

every considered EF. Consistently with literature (Gregoire & Van Der Linden, 1997; Taylor, 

et al., 2007; Verhaeghen, 1993; Yesavage, Dolhert, & Taylor, 1994), updating in WM was 

sensitive to age effects. The decline was particularly obvious from 55, where ten out of eleven 

pilots had a lower performance than all the younger ones. In the same way, set-shifting and 

inhibition were also significantly impacted by age. Various studies have highlighted that older 

adults demonstrate lower mental flexibility (Ashendorf & McCaffrey, 2008; Fristoe, 

Salthouse, & Woodard, 1997) and a greater sensitivity to interference compared to younger 

adults (Bruyer, Van der Linden, Rectem, & Galvez, 1995; West & Baylis, 1998). Taken 

together, these results confirmed that the three taped executive functions are vulnerable to 

aging effects (Fisk & Sharp, 2004). 

 

We also assessed two well-established general abilities that modulate many kinds of 

cognitive functions: reasoning and speed of processing. Reasoning did not appear to be 

consistently impacted by aging, the decline of correct responses in the syllogism resolution 

task was only near significance threshold. De Neys (2009) showed that reasoning 

performances begin to drastically decline only after 65. It makes sense that the linear 

regression was not significant given the large age range of our sample (22-78). Finally, the 

observed reduced speed of processing was also a classical effect of normal aging (Birren & 

Botwinick, 1955; Houx, Jolles, & Vreeling, 1993; Salthouse, 1996). According to Salthouse 

(1991), the speed at which the neural connections are performed determines the number of 

nervous centers that cooperate at the same time, and therefore, modulates intellectual 

performance. Thus, speed of processing is considered as a factor of cognitive deterioration, 
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and not as a symptom of such degradation. This overall cognitive decline, despite a high mean 

level of education (15.4 years) may appear counterintuitive. However, Tucker-Drob (2009) 

showed that a high level of education has no consistent neuroprotective effect. According to 

him, education increases cognitive skills in advanced age, but does not influences the rate of 

cognitive decline. In other words, higher cognitive performances in advanced age associated 

with a high level of education are allowed by preexistent superior cognitive abilities. The rate 

of cognitive decline remains the same as for less educated people. In this perspective, it was 

coherent that, in spite of inter-individual variability, linear regressions could reveal age 

related cognitive decline in the tested pilots. 

Our results suggest that EFs are crucial for piloting. Indeed, the pilot’s activity takes 

place in a dynamical and changing context where new information must be integrated and 

updated continuously. Update in WM appeared to be essential in this context, most likely to 

maintain up-to-date SA as suggested by a previous work that showed that losing SA provokes 

hazardous heading deviation (Gibson, et al., 1997). Besides, a study by Taylor and coworkers 

(2000) found that WM and speed of processing are predictive of the piloting performance. We 

are in line with these results as the index of speed of processing, which is a reliable measure 

of general intellectual performance (Salthouse, 1992), was also related to piloting 

performance in our study. In addition, our results suggest that reasoning ability appeared to be 

one of the most predictive functions of piloting ability. This latter outcome confirmed 

previous results of Causse and coworkers (in press) and Wiggins & O’Hare (Wiggins & 

O'Hare, 1995) that showed strong links between reasoning and piloting performance. This is 

particularly interesting as this function was not clearly correlated with age in our study. In this 

perspective, the assessment of reasoning performance appears to be critical for safety and not 
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only in older pilots. Reasoning processes are very close to EFs and reflect fluid intelligence, a 

central cognitive ability linked to various types of mental activity (calculation, problem 

solving etc.) and is essential to adaptation to novel problems. Complex and novel problems 

cannot be solved directly by referring to a store of long-term knowledge but require analytic 

or fluid reasoning. The complexity of our flight scenario with unexpected events such as 

compass failure may have contributed to a strong involvement of reasoning abilities. The 

pilots had to perform numerous operations during the navigation to estimate their position and 

they must use radio navigation systems to reach waypoints. In addition, the scheduled 

compass failure required pilots to use the anti-directional magnetic compass as backup. The 

use of this instrument is counterintuitive and may have caused additional difficulties.  

According to our hypotheses and other authors (Li, et al., 2002; Rebok, et al., 2009), 

analysis that controlled for cognitive effects showed that chronological age per se was not a 

relevant variable to predict piloting performance. Schroeder (2000) has pointed out the 

necessity to use neuropsychological tests rather than relying on age. We must admit that a 

more extreme sample size including a great proportion of pilots aged of more than 60 would 

have increased the strength of our conclusions. Unfortunately we had difficulties to recruit 

several pilots of this category as they were reluctant to take part to the experiment. We plan to 

perform a future study focused on such a population (60+) in collaboration with airfield 

medical staff to facilitate recruitment. Nevertheless, our results tend to confirm the limitation 

of using the chronological age as a single criterion to decide whether a given pilot is able to 

fly or not.  

We also addressed weather-related decision-making. In agreement with several authors 

(Causse, et al., in press; Dehais, Tessier, & Chaudron, 2003; Goh & Wiegmann, 2002; 
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Muthard & Wickens, 2003; Orasanu, et al., 2001), our results confirmed the difficulty of 

pilots to revise their flight plan, especially during the final approach where a great number of 

them keep on landing in adverse meteorological conditions (Rhoda & Pawlak, 1999). Indeed, 

this was the case for 50% of our volunteers. ANOVAs showed that updating and set shifting 

may have been particularly related to accurate decision-making. These abilities were probably 

particularly essential to integrating the degradation of meteorology during the course of flight 

scenario and to recollect the aircraft's maximum crosswind limit at the time of the approach. 

In our experiment, this inability to call to mind critical information, to maintain an up-to-date 

SA and to inhibit the no more appropriate flight plan seems to lead pilots to erroneously 

persist on landing. In this sense, Muthard (2003) has shown the great difficulties encountered 

by some pilots to integrate critical contextual changes such as deteriorating weather, and a 

survey of Ebbatson (2007) has demonstrated that 30% of the pilots are unable to recall the 

crosswind limit of their aircraft. Given that the 2-Back task also assesses the maintenance in 

WM, another additional explanation is that the participants did not keep in mind the whole 

radio-communicated message, in particular the critical wind speed data. This is consistent 

with the prior findings of Morrow (2003) and Taylor (2005) which showed that poor WM 

performances degraded the ability to follow ATC radio communication. These outcomes 

provide new insight for a particular category of accidents called Plan Continuation Errors - 

PCE - when pilots fail to perceive the changing context of the airspace and subsequently to 

inhibit the flight plan and consider alternative ones. This phenomenon has been demonstrated 

both in CA (Rhoda & Pawlak, 1999; Orasanu, et al., 1998) and GA (BEA, 2000). The BEA 

revealed that these pilots’ trend to land (called the get-home-itis syndrome in the study) has 

been responsible for more than 41.5% of casualties in light aircrafts (BEA, 2000). 
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The identification of the brain mechanisms related to pilot errors requires much progress. 

However, the results of this study confirm that neuropsychological evaluation is a reliable 

means for predicting piloting and decision-making performances. This is an important issue as 

long as the cognitive decline is subtle and may impact flight safety. These types of 

experiments pave the way to the development of dedicated software including 

neuropsychological tests that could be administered for pilot certification and during their 

medical examination. This could help preventing dangerous behaviors, in particular by 

detecting subtle, though crucial, cognitive impairments. In addition, cognitive decline can 

reflect the onset of a certain neuropathology or be transient, and reflect the adverse effects of 

substance consumption (medication, alcohol…), chronic stress, mental fatigue, depression etc. 

In such cases, its early detection could help pilots, by advising them and directing them to a 

medical staff. 
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Figure 1. Speed of processing index regressed on age (n = 32). 
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Figure 2. FPD regressed on reasoning performances (n = 32). 
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Figure 3. Update in WM performances according to the landing decision (n = 32). 
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Figure 4. Set shifting performances according to the landing decision (n = 32). 
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Table 1. Neuropsychological performances regressed on age (n = 32) (* p � .05; ** p � 

.01;*** p � .001). 

 

Variables r R² Corrected p-value 

Update in WM -.65 .42 <.001*** 

Set-shifting +.40 .16 .042* 

Inhibition +.57 .32 .002** 

Reasoning -.31 .09 .0829 

Speed of processing -.72 .52 <.001*** 
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Table 2. Flight experience-partialled correlation between age and neuropsychological 

performances with piloting performance (n = 32) (* p � .05; ** p � .01). 

 

Variables r R² Corrected p-value 

Age 50 .25 .020* 

Update in WM -.41 .17 .022* 

Set-shifting -.23 .5 .452 

Inhibition +.19 .3 .322 

Reasoning -.54 .30 .006** 

Speed of processing -.45 .20 .050* 
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