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ABSTRACT

In various disciplines, information about the same phe-

nomenon can be acquired from different types of detectors, at

different conditions, different observations times, in multiple

experiments or subjects, etc. We use the term “modality” to

denote each such type of acquisition framework. Due to the

rich characteristics of natural phenomena, as well as of the en-

vironments in which they occur, it is rare that a single modal-

ity can provide complete knowledge of the phenomenon of

interest. The increasing availability of several modalities at

once introduces new degrees of freedom, which raise ques-

tions beyond those related to exploiting each modality sepa-

rately. It is the aim of this paper to evoke and promote various

challenges in multimodal data fusion at the conceptual level,

without focusing on any specific model, method or applica-

tion.

Index Terms— Data fusion, multimodality

1. INTRODUCTION

Information about a phenomenon or a system of interest can

be acquired using different types of instruments, measure-

ment techniques, experimental setups, etc. Due to the rich

characteristics of natural processes and environments, it is

rare that a single acquisition method can provide complete

understanding thereof. The increasing availability of multiple

datasets that contain information, obtained using different ac-

quisition methods, about the same system, introduces new de-

grees of freedom that raise questions beyond those related to

exploiting each dataset separately. Despite the evident poten-

tial benefit, and massive work that has already been done in

the field (see, for example, [1–7] and references therein), the

knowledge of how to actually exploit the additional diversity

that multiple datasets offer is currently at its very preliminary

stages [1, 2].

Data fusion is a challenging task for several reasons. First,

the data are generated by very complex systems (biological,

environmental and psychological, among others), driven by
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numerous underlying processes that depend on a large num-

ber of variables to which we have no access. Second, due to

the augmented diversity, the number, type and scope of new

research questions that can be posed is potentially very large.

Third, fitting together heterogeneous datasets such that the re-

spective advantages of each dataset are maximally exploited,

and drawbacks suppressed, is not an evident task. We elab-

orate on the second and third issues in Sec. 2 and Sec. 3, re-

spectively. Most of these questions have been devised only in

the very recent years, and, as we show in the sequel, only a

fraction of their potential has already been exploited. Hence,

we refer to them as “challenges”.

A rather wide perspective on challenges in data fusion is

presented in [1], which presents linked-mode decomposition

models within the framework of chemometrics and psycho-

metrics, and [2], which focuses on “automated decision mak-

ing” with special attention to multisensor information fusion.

In practice, however, challenges in data fusion are most often

brought up within a framework dedicated to a specific appli-

cation, model and dataset (examples will be given below).

In this paper, we bring together a comprehensive (but def-

initely not exhaustive) list of challenges in data fusion. We

consider this list to be of interest to communities beyond sig-

nal processing. Following from [1, 2], and further empha-

sized by our discussion below, it is clear that at the appro-

priate level of abstraction, the same challenge in data fusion

can be relevant to completely different and diverse applica-

tions, goals and data types. Consequently, a solution to a chal-

lenge that is based on a sufficiently model-free approach may

turn out useful in very different domains. Therefore, there

is an obvious interest in opening up the discussion of data

fusion challenges to include and involve disparate commu-

nities, so that each community could inform the other. Our

goal is to stimulate and evoke the relevance and importance

of a perspective based on challenges to advanced data fusion.

More specifically, we would like to promote data-driven ap-

proaches, that is, approaches with minimal and weak priors

and constraints, such as sparsity, nonnegativity, and indepen-

dence, among others, that can be applied to more than one

specific application or dataset. Hence, we present these chal-

lenges in quite a general framework that is not specific to an

application, goal or data type. We also give examples and

motivations from different domains.



In order to contain our discussion, we focus on datasets

in which a phenomenon or a system is observed using mul-

tiple instruments. In this case, each acquisition framework is

denoted as modality and the setup is known as multimodal.

As already noted, “data fusion” is quite a diffuse concept,

which takes different interpretations with applications and

goals. Therefore, within the context of this paper, and in ac-

cordance with the types of problems on which we focus, our

emphasis is on the following tighter interpretation [8]:

Data fusion is an approach to the analysis of multimodal data,

in which different datasets can interact and inform each other.

The latter terms will be given a more concrete meaning in

Sec. 3.3.

Accordingly, we suggest the following operative definition

for the special type of diversity that is associated with mul-

timodality and data fusion:

Diversity (due to data fusion) is the property that allows to

enhance the uses, benefits and insights (discussed in Sec. 2)

in a way that cannot be achieved with a single modality.

2. WHY DO WE NEED MULTIMODALITY?

For living creatures, multimodality is a very natural concept.

Living creatures use external and internal sensors, some-

times denoted as “senses”, in order to detect and discriminate

among signals coming from the environment, communicate,

cross-validate, disambiguate, and add robustness to numer-

ous life-and-death choices and responses that must be taken

rapidly and in a dynamic and constantly changing internal

and external environment. As a result, certain multimodal ap-

plications are based on imitating natural multimodality: the

most prevalent is audio-video [9, 10]. Below, we list some of

the prominent uses, benefits and insights that can be obtained

from properly exploiting multimodal data, especially as op-

posed to single-set and uni-modal data.

2.1. Exploratory

Despite the well-accepted paradigm that certain natural pro-

cesses and phenomena can express themselves under com-

pletely different physical guises (this is the raison d’être of

multimodal data fusion), often very little is known about

the underlying relationships between the modalities. Such is

the case, for example, in neurological activity observed via

electroencephalography (EEG) and functional magnetic res-

onance imaging (fMRI) [11], and atrial fibrillation measured

via surface and intra-cardiac electrodes [12]. In other cases,

one would like to propose new modalities and combinations

thereof [13]. Therefore, the most obvious and essential en-

deavour to be undertaken in any multimodal data analysis task

is exploratory: to learn about relationship between modalities,

their complementarity, common and modality-specific infor-

mation content, among others. Applications are diverse: un-

derstanding brain functionality [6, 8], health monitoring [13],

developing non-invasive medical diagnosis techniques [12],

exploring the relationship between tasks for human-machine

interaction (HMI) [10], and so forth. As an active initia-

tive, we point out the yearly data fusion contest of the IEEE

geoscience and remote sensing society (GRSS), which aims

at investigating the potential use of various remote-sensing

modalities: participants are encouraged to consider various

open problems on multisensor data fusion, and to use the pro-

vided data sets to demonstrate novel and effective approaches

to solve these problems [14].

2.2. Uniqueness, Identifiability and Disambiguation

Multimodality provides redundancy that can be exploited to

resolve otherwise ill-posed problems. We illustrate this pow-

erful property and its potential impact through examples.

It is well known that statistically independent sources with

real-valued Gaussian independent and identically distributed

(i.i.d.) samples cannot be blindly separated from a single ar-

bitrary linear instantaneous invertible mixture [15]. If sev-

eral such mixtures are considered simultaneously, however,

and certain statistical dependencies are allowed across mix-

tures (without changing the assumptions within each sepa-

rate blind source separation (BSS) problem), then it has been

proved that a unique and identifiable solution, within each

mixture, up to the unavoidable scaling ambiguity, exists [16].

This model, when not restricted to Gaussian i.i.d. samples, is

known as independent vector analysis (IVA) [17]. It has been

shown that the IVA framework provides a fixed permutation

to all the corresponding component estimates and thus signif-

icantly alleviates the permutation ambiguity problem inherent

to classical BSS [16, 17]. In this example, multiple datasets

are allowed to interact (in the sense of Sec. 3.3). This in-

teraction provides yet another type of diversity [16], which

results in identifiability of an otherwise unidentifiable model,

and permutation disambiguation that so far did not have any

closed-form solution. Another example is the EEG inverse

problem, which is underdetermined: infinitely many spatial

current patterns can give rise to identical measurements. An

identifiable and unique solution can be obtained using spatial

constraints from fMRI [6].

3. CHALLENGES

Thanks to recent advances, the availability of multimodal

data is now a fact of life. The acquisition of multimodal data,

nevertheless, is only a first step. In this section, we discuss

some of the issues that should be addressed in the actual pro-

cessing of multimodal data. These challenges may be parti-

tioned into the following groups: data, level of data fusion,

model, and theoretical validation.



3.1. Data

The first group of challenges are those imposed by the data.

They can be partitioned into challenges at the acquisition and

observation level and those due to various uncertainties in the

data. Complicating factors of the first type must be accounted

for, and working with features (Sec. 3.2), instead of raw data,

is a possible remedy.

Non-commensurability: Different instruments are sensitive

to different physical phenomena and consequently, report on

different aspects of the problem. As a result, the data is

represented by heterogeneous physical units. This situation,

known as non-commensurability, is probably the principal

and first obstacle to tackle. Examples include EEG, which

measures the propagation of electrical fields generated by di-

rect neurological activity, vs. fMRI, which measures induced

changes in magnetization between oxygen-rich and oxygen-

poor blood [6], and spectral content (hyperspectral imaging)

vs. information about spatial (3D) geometry (LiDAR) [14].

Different resolutions: Datasets may share the same coordi-

nates but at very disparate resolutions. One example is fus-

ing EEG, which has excellent temporal but low spatial reso-

lution, with fMRI, which has a fine spatial resolution but a

very large integration time [6]. This is also the case in “pan-

sharpening” [18] [4, Chapter 9]: merging a high-spatial low-

spectral (monochromatic) resolution panchromatic and lower-

spatial higher-spectral (four bands) resolution multispectral

images, in order to generate a new synthetic image having

both the higher spectral and spatial resolution of the two.

Number of dimensions (ways): Different acquisition meth-

ods may yield datasets with different structures. For example,

matrices vs. higher-order tensors. This topic is further elab-

orated, with emphasis on applications in metabolomics and

psychometrics, in [1, 19].

We now turn to discussing uncertainties in the data. Any

real-world set of observations is prone to various uncertain-

ties. The fact that the presence of heterogeneous datasets cre-

ates new types of uncertainties implies that these new uncer-

tainties cannot (or should not) be treated by uni-modal, single-

dataset tools. We argue that in such cases, it is the comple-

mentary quality of multimodal data that should be exploited

to resolve these challenges.

Noise: Thermal noise, calibration imprecision (alternatively:

finite precision), or any other quality degradation in the

measurements is unavoidable and present in all datasets.

For simplicity, we denote all these nuisance phenomena as

“noise”. Naturally, each measurement procedure produces

not only heterogeneous types of desired data, but also dif-

ferent amounts and types of errors [1]. The question of how

to jointly weigh or balance the different errors is discussed in

a number of scenarios, see, e.g., [2, 20].

Missing data: Another uncertainty in the observations may

be due to “missing data”. This term may stand for various

cases. First, certain samples can be unreliable, discarded or

simply missing due to faulty detectors. Second, sometimes

a modality can report only on part of the system (w.r.t. the

other modalities), as with EEG and magnetoencephalography

(MEG) [6] or nuclear magnetic resonance (NMR) and liq-

uid chromatographymass spectrometry (LC-MS) [19]. Third,

data may be regarded as structurally missing if samples at

different modalities are not taken at comparable sampling

points [1] and we would like to construct a more complete

picture from the entire sample set. An approach to the miss-

ing data problem within coupled matrix and tensor factoriza-

tion (CMTF) is discussed in [19].

Conflicting, contradicting or inconsistent data: Obviously,

this problem can occur only in the presence of multiple

datasets. If data is fused at the decision level (as is the case,

for example, in fusion of different classification maps in re-

mote sensing), then a decision or voting [1] rule may be ap-

plied. When only two datasets are confronted, more elabo-

rate approaches may be requried. Other approaches, related

to multisensor data fusion, are discussed in [2]. An obvious

challenge is to devise a suitable compromise. A more funda-

mental challenge, however, is identifying the inconsistencies.

3.2. Level of Data Fusion

At first thought, it may seem that fusing multiple datasets at

the raw-data level should always yield the best inference. In

practice, however, due to the complex and largely unknown

nature of the underlying phenomena, various complicating

factors, and the specific research question, it may be prefer-

able to fuse the datasets at a higher abstraction level and after

certain simplification and reduction steps. Some of the exist-

ing approaches are presented below. In general, in the pres-

ence of multiple datasets, there exist different possible levels

of jointly processing their information:

Data integration implies parallel processing pipelines for

each modality, followed by a decision-making step. This pro-

cedure may be preferred when modality-specific information

is greater than that shared by the modalities, as in the search

for true single-trial EEG-fMRI coupling [11], or when modal-

ities are completely non-commensurable, as with hyperspec-

tral imaging and LiDAR [14]. The latter example is often

related to classification tasks. Contraindications to data inte-

gration are discussed in [8].

Processing modalities sequentially, where one (or more)

modality(ies) are used to constrain another. This approach

can be found in certain audio-visual applications [9, 10], as

well as in the fMRI-constrained solution for the otherwise-

underdetermined, ill-posed EEG inverse problem [6].

True fusion, which lets modalities fully interact and inform

each other as defined in Sec. 1.

Within “true fusion” there are varying degrees:

Fusion using high-level fatures: Significantly reduce the di-

mensionality by associating each modality with a small num-

ber of variables. In this case, inference is typically of clas-



sification type. This practice can be found in certain mutli-

sensor [2], HMI [10] and remote-sensing [14] applications.

Fusion using multivariate features: This approach may ac-

commodate for heterogeneities across modalities, as well as

significantly reduce the number of samples involved, while

leaving the data sufficiently multivariate within each modality

(which now is in feature form) such that data in each modal-

ity can fully interact [8, 21]. In neuroimaging, common fea-

tures are task-related spatial maps from fMRI, gray matter im-

ages from structural magnetic resonance imaging (sMRI), and

event-related potentials (ERP) from EEG, extracted for each

subject [8]. In audio-visual applications, features often corre-

spond to speech spectral coefficients and visual cues such as

lip countours or speaker’s presence in the scene [9].

Using the data as is, or with minimal reduction: In fact, work-

ing with features implies a two-step approach: at the first step,

features are calculated using a certain criterion; at the second

step, features are fused using a different, second criterion. An

approach that merges the two, and thus can better exploit the

whole raw data, is proposed in [22]. An application in which

raw data must be used is pan-sharpening. Here, it is natural

to work on raw data because modalities are commensurable.

Related to the open issue of choosing the most appropri-

ate level of data fusion is that of order selection. As in non-

multimodal analysis, a dimension reduction step may be re-

quired in order to avoid over-fitting the data. In a data fusion

framework, this step must take into consideration the pos-

sibly different representations of the latent variables across

datasets. As an example, a solution that maximally retains

the joint information while also ensuring that the decomposed

sources are independent from each other, in the context of a

joint ICA-based approach, is proposed in [23].

3.3. Model

Data fusion, as described in Sec. 1, is all about enabling

modalities to fully interact and inform each other. Hence, a

key point is choosing an analytical model that faithfully rep-

resents the link between modalities and yields a meaningful

combination thereof, without imposing phantom connections

or suppressing existing ones. Very little is known about the

underlying relationships between different modalities. Hence,

it is important to be data driven as much as possible. In prac-

tice, this means making the least assumptions and using the

simplest models, both within and across modalities. “Sim-

ple” means, for example, linear relationships between under-

lying latent variables and/or use of model-independent pri-

ors such as sparsity, nonnegativity, statistical independence,

low-rank and smoothness. As far as the link among modal-

ities is concerned, existing models can be very roughly par-

titioned into two classes. In one class of models, modalities

deterministically share a certain element. A common mode in

CMTF [19, 20], the mixing matrix in joint ICA or the signal

subspace in group ICA; the last two, as well as other relevant

examples, are discussed in [21, 24]. A second class holds a

separate set of variables for each dataset. In this case, the link

is due to a statistical correspondence among the latent vari-

ables. These can be generally partitioned into models where

the link is via maximizing covariations of corresponding fac-

tors, as in multi-way partial least squares (PLS) or multimodal

canonical correlation analysis (CCA) (these models are ex-

plained in [24] and references therein), and models where the

latent sources are statistically dependent across modalities,

as multiset CCA (M-CCA) [21] and IVA [16, 17]. Models

that allow more flexibility per modality generally yield better

inferences, especially regarding modality-specific vs. com-

mon latent sources; others may be better at identifying co-

variations [1, 19, 21, 24]. These are, however, very general

observations, which should be tested along with other model

choices. The variety of existing solutions, together with the

fact that new solutions are constantly being devised for the

data [14, 21, 24] with no single solution yet proving to be op-

timal for any real-world data fusion problem, suggests that

the choice of model is a challenge far from being exhausted.

3.4. Theoretical Validation

Despite accumulating empirical evidence of the benefits of

data fusion discussed in Sec. 2, there is still very little the-

oretical validation and quantitative measure of its gain [19].

In addition, as argued in Sec. 3.3, choosing an appropriate

model is a widely open question, and approximate and highly

simplified models are often preferred. Therefore, a validation

step is indispensable. In particular, we are interested in (1) An

absolute measure of success: how good is our method or al-

gorithm? (2) Comparing alternative models in order to decide

what the most appropriate level of data fusion, model order,

analytical model within and across modalities and choice of

prior are. (3) Lower bounds on the best achievable error: how

far are we from the best possible result (for a given dataset

and task)? (4) Theoretical results on the reliability and prac-

tical usefulness of the method: Can we prove that the model

is identifiable? Is the solution unique? Is the output physi-

cally meaningful? Are the results sufficiently interpretable?

As an example for a comprehensive performance analysis

that answers many of the above questions, we refer to [16]

(and references therein) which deals with IVA, and uses also

information-theoretic tools.

Although the above questions are not specific to multi-

modal data fusion, they take special interpretations in the

presence of multiple datasets. For example, (1) What is the

mathematical formulation of “success”, “optimality” [1] and

“error” when heterogeneous modalities and uncertainties are

involved? What is the most appropriate target function and

criterion of success? (2) How can the figure of merit inform

us how to exploit the advantages of each modality without

suffering from its deficiencies w.r.t. the other modalities? (3)

How to evaluate performance of exploratory tasks? Due to the



heterogeneous characteristics of the data, and particularly in

exploratory tasks, the interpretability of the output should be

given special care. A class on their own are questions regard-

ing the choice of modalities: Should all available modalities

be used, and/or given equal importance [8]? How much (in-

formation, diversity, redundancy) does each modality bring in

to the total equations? How to quantify this “extra contribu-

tion”? Information theory seems like a natural direction, as

discussed in [6]. Attention should be paid, for example, when

modalities are too close to each other: in this case, they may

not really convey new information; in addition, they may be

exposed to similar noise, and thus bias results [2].

4. CONCLUSION

We enter a “Big Data” era, in which the abundance of di-

verse sources of information makes it practically impossible

to ignore the presence of multiple datasets that are possibly

related. It is very likely that an ensemble of related datasets is

“more than the sum of its parts”, in the sense that it contains

precious information that is lost if these relations are ignored.

The information of interest that is hidden in these datasets is

usually not easily accessible, however. We argue that the road

to this added value must go through first understanding and

identifying the particularities of multimodal data, as opposed

to other types of aggregated datasets. A second message is

that the encountered challenges are ubiquitous, whence the

incentive that both challenges and solutions be discussed at a

level that brings together all involved communities.
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