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Abstract

A generalized reduced order model for resonant viscosity and mass density sensors is presented and experimentally verified. The
reduced expressions for the resonance frequency and quality factor, respectively, are mathematically valid for in-plane oscillating
plates, oscillating spheres and laterally oscillating cylinders. However, as shown for measurements obtained with a tuning fork
resonator with rectangular cross-section, the model can also be applied for resonating structures, for which closed form solutions
of the fluid structure interaction are not available. Benefits of the presented model are amongst others first, its simplicity, which
requires no more than three calibration measurements for parameter identification and second, its general applicability for resonant
mass density and viscosity sensors which furthermore facilitates the comparison of different resonant mass density and viscosity
sensors in terms of sensitivity and measurement noise propagation.
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1. Introduction

During the last two decades, there has been a remarkable
interest in resonant viscosity and mass density sensors. As
a matter of fact, this interest is still increasing which is sub-
stantiated by the large amount of publications associated with
this field. Some of the incentives for resonant viscosity and
mass density sensors are, amongst others, their reduced size
compared to conventional instruments (down to the micrometer
range), their relatively straightforward integrability in a process
line or potentially low manufacturing costs [1]. Furthermore,
from a rheological point of view, these devices allow measure-
ments in a frequency range higher than conventional rheome-
ters (about 100 Hz) up to the MHz range, which becomes es-
pecially interesting when investigating linear viscoelastic liq-
uids for which measurements in the mentioned frequency range
are scarcly available yet. Finally, for many resonant principles,
miniaturized devices can be fabricated, and thus these sensors
allow characterizing liquid samples for which only very few
amounts (lower than 1 nL) are available [2].

The variety of reported designs and fabrication technologies
is extremly diverse. Common principles include thickness shear
mode oscillating quartz crystals, [3], [4], quartz tuning forks [5]
and singly [6] or doubly clamped beams [7] in silicon technol-
ogy. Similar devices were also fabricated using wet-etched cop-
per coated polymer sheets [8] or longitudinally vibrating PZT
screen-printed cantilevers [9]. For frequencies between 100 Hz
and 100 kHz and similar to doubly clamped beams, wire based
sensors [10], [11] were reported. Other principles also oper-
ating in the aforementioned frequency range include U-shaped
cantilevers [12], [13], membrane based devices [14], [15] and
in-plane oscillating platelets [16], [17], [18].

Concerning excitation and readout, the previously reported

concepts cover most established principles used in MEMS tech-
nology. Recording the frequency responses of piezoelectric or
piezoresistive devices [19], [9], [6] is a very common tech-
nique. In [20] a capacitive readout principle was reported. Elec-
tromagnetic principles allow high driving forces and large de-
flections [21] as well as measuring the frequency response by
recording a motion induced voltage [14] at the same time. In
[22], [23], [24] thermally actuated devices are discussed which
allow an in-plane oscillation of the particular device. Optical
readout using e.g. a laser vibrometer [25] is a further very com-
mon technique, though hardly suitable for integration in a sen-
sor device used in the industrial field and only applicable for
transparent liquids. Due to their high accuracy in deflection
measurements, laser vibrometers are often used for the read-
out of miniaturized cantilever based setups e.g. in biosensing
applications [26] in a laboratory environment. In [7] an opti-
cal readout using a DVD-pickup was implemented and in [27]
a setup with a closed fluid cell using optical readout is pre-
sented. For all types of liquid sensors, closed setups are a ba-
sic requirement when aiming at accurate measurement results.
Open setups usually involve evaporation of the liquid, which in
turn is one of the sources for non-stable measuring conditions
as the liquid’s temperature varies due to evaporative cooling.
This variation of temperature during the measurement involves
mostly unknown changes of the resonator’s mechanical param-
eters but also changes of the liquid’s mass density and viscosity.

The principles which were discussed in the previous para-
graphs have in common, that the devices’ frequency responses,
including a characteristic resonant mode, are recorded from
which the sample liquid’s mass density ρ and viscosity η are de-
duced. In many cases, resonance frequency fr and quality factor
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Q are first evaluated, which are then related to the liquid’s vis-
cosity and mass density by an appropriate model, see Fig.1. De-
pending on the particular resonator design, closed form models
considering structural and fluid mechanics may become rela-
tively complex demanding high modelling effort and computa-
tional power. Furthermore, the parameters in these models have
to be identified with an appropriate parameter fit or the model
might have to be completed by calibration functions which re-
quire additional calibration measurements, see e.g. [12]. In
addition to this high modeling and calibration effort, there is a
lack of a generalized model for resonant mass density and vis-
cosity sensors which can be used as figure of merit and allowing
for comparison of different sensor principles.

In this paper, a generalized reduced order model is pre-
sented, relating resonance frequency fr and quality factor Q to
mass density ρ and viscosity η. The equations for the latter have
the form

fr ≈
1/(2 π)√

m0k + mρk ρ + m∗
ηρk
√
η ρ

and

Q ≈

√
m0k + mρk ρ + m∗

ηρk
√
η ρ

c0k + cηk η + c∗
ηρk
√
η ρ

which will be derived in the following. (m0k, mρk, m∗
ηρk, c0k,

cηk, c∗
ηρk are coefficients which can be determined with a pa-

rameter fit.) These generic equations can be derived for res-
onators where an infinitely thin, in-plane oscillating plate, an
oscillating sphere or a laterally oscillating cylinder interact with
the fluid. However, as it will be shown for measurements ob-
tained with sensors e.g. with rectangular cross-section, this
reduced order model can also be applied for geometries other
than the aforementioned, for which analytical expression are
not available or hardly accessible.

Assuming linearity for the mechanical oscillation, and thus
small deflection amplitudes of the resonator [28], the investi-
gated resonant mode is represented by a mechanical, lumped
element oscillator, assuming validity of eigenmode decompo-
sition. In the presented model, the fluid structure interactions
are described in a reduced generalized expression, considering
the well known equations for an in-plane oscillating plate, an
oscillating sphere and a laterally oscillating cylinder. In this
generalized model, any material or geometrical related param-
eters as well as any other factors are not explicitly considered
but contained in single factors. Thereby, only the dependencies
to mass density and viscosity remain in the derived expressions
for the resonance frequency and the quality or damping factor.
This basically allows the applicability of the model for any con-
vexly shaped resonator, regardless of the implemented designs,
materials or fabrication technologies as well as actuation and
readout mechanisms.

Besides the simplicity of the model and its general appli-
cability, a further big advantage is that only measurements in
three calibration liquids are necessary to identify the model’s
coefficients. From every measurement f r and Q are evalu-
ated which then allows evaluating the six coefficients in the

Frequency 
response

Figure 1: Mechanical, lumped elements oscillator, immersed into a liquid. m0:
lumped mass, c0: damping coefficient, k0: spring constant, u(t): displacement,
Fex(t): excitation force, FF(t): fluid force, fr: resonance frequency, Q: Quality
factor, η: fluid’s dynamic viscosity, ρ: fluid’s mass density

equations above. For resonant sensors whose identified model
slightly deviates from the measurements, the model still can be
used to approximately describe the sensor’s characteristics and
allows comparison with other principles which were identified
with this generalized, reduced order model.

2. Lumped element approach

We consider a linear, mechanical oscillator, see Fig. 1, with
lumped mass m0, damping coefficient c0 and spring constant
k0, being immersed in a liquid. The time dependent equation of
motion with time variable t for the displacement u upon forced
actuation with an excitation force Fex and accounting for the
influence of the liquid on the oscillation with a fluid related
force FF is

m0
d2u(t)

dt2 + c0
du(t)

dt
+ k0 u(t) = Fex(t) − FF(t). (1)

A harmonic excitation force with angular frequency ω and time
dependence ejω t where j =

√
−1 is furthermore assumed. Thus,

the equation of motion using the steady state velocity of the
oscillation in the frequency domain v(ω) = jω u(ω) reads(

c0 + j
(
ωm0 −

k0

ω

))
v(ω) = Fex(ω) − FF(ω). (2)

The force FF induced by the fluid can be represented by
a complex valued function of ω in the frequency domain. As
the interaction will have a linear character for small vibration
amplitudes it will be proportional to the velocity such that we
can write

FF(ω) = ZF(ω) v(ω) (3)

where we used the symbol ZF for the proportionality factor as
it resembles an acoustic impedance. ZF(ω) can be split in a real
and imaginary part, ZF,< and ZF,=, respectively. Intuitively, the
interaction with the fluid will lead to an added mass (due to fluid
mass moved in unison with the vibration) and to a damping due
to viscous losses and radiated acoustic waves. The latter effect
will lead to a real part of ZF(ω) while the mass entrainment
corresponds to the imaginary part. This motivates to write the
real part as

ZF,< = cf (4)
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and the imaginary part as

ZF,= = ωmf , (5)

where cf represents the additional damping and mf represents
the added mass. If additional lumped mass were actually added
to the lumped mass m0 of the mechanical oscillator, mf would
represent this added mass. However, as it represents the fluid
interaction of a distributed resonator, the terms mf and cf will,
in general, be frequency dependent. Thus the fluid forces in the
frequency domain can be written as

FF(ω) =
(
cf(ω) + jωmf(ω)

)
v(ω). (6)

Just as the parameters of the lumped mass model (m0, c0,
k0), the frequency dependence of mf(ω) and cf(ω) can be mod-
erate, though, such that, if ω is close to the resonance frequen-
cies, the values can be approximated by their values at the res-
onance frequency.

Introducing the above relation Eq. 6 in Eq. 2 we obtain the
following spectral transfer function

v
Fex

=
1

c0 + cf(ω) + j
(
ω (m0 + mf(ω)) −

k0

ω

) . (7)

This frequency response can be compared to the standardized
response of a second order system

H2(ω) =
A

1 + j Q
(
ω

ω0
−
ω0

ω

) (8)

where ω0 represents the resonance frequency and Q the quality
factor. Neglecting the frequency dependence of ZF near reso-
nance, the resonance frequency and the Q-factor of our model
system can be readily identified. The resonance frequency is
defined as the frequency where the above transfer function Eq.7
becomes real-valued which yields an implicit equation for ω0:

ω0 (m0 + mf(ω)) =
k0

ω0
. (9)

This equation could, e.g. be solved iteratively using the approx-
imation mf(ω) ≈ mf(ω00) as a starting value for mf(ω) where
ω00 =

√
k0/m0 is the resonance eigenfrequency for the un-

loaded resonator. For weak frequency dependence of mf(ω) or
small resonance frequency shifts, this first approximation may
already be considered as sufficiently accurate (see also the dis-
cussion below for specific cases). With this simple approxima-
tion we find

ω0 ≈ ω01 =

√
k0

m0 + mf(ω00)
(10)

which represents the decrease of resonance frequency associ-
ated with the added mass as expected. ω01 is the approximated
value for ω0 after the first iteration. Similarly, for Q we find

Q ≈ Q1 =
1
ω0
·

k0

c0 + cf(ω00)
. (11)

The exact values for ω0 and Q are

ω0 =

√
k0

m0 + mf(ω0)
and Q =

1
ω0
·

k0

c0 + cf(ω0)
(12)

yielding an implicit equation for ω0.

3. Fluid forces

3.1. In-plane oscillating plate

The shear stress T p resulting from the in-plane oscillation
of an infinitely extended plate in a viscous liquid with dynamic
viscosity η and mass density ρ at the liquid-solid interface in
the frequency domain reads [3], [29]

T p = −(1 + j)
√
ηρω

2
v. (13)

The fluid forces acting on the plate with effective surface Ap
are FF = −T p Ap. We call Ap effective surface, as this coef-
ficient which might be determined by a data fit, considers not
only the surface of wetted parts of a plane plate, but it might
also consider geometrical imperfections such as slight surface
roughnesses and plates with a finite thickness. Comparison of
coefficients of the latter and Eq. 6 yields for the additional effec-
tive fluid mass and damping parameter in case of the in-plane
oscillating plate

mf,p(ω) =

√
η ρ

2ω
Ap and cf,p(ω) =

√
η ρω

2
Ap(14)

Introducing coefficients mηρ,p = cηρ,p = Ap/
√

2 used in the
expressions for the added mass and damping parameters in case
of the plate, Eq. 14 gives

mf,p(ω) = mηρ,p

√
η ρ

ω
and cf,p(ω) = cηρ,p

√
ωη ρ(15)

3.2. Oscillating sphere

The fluid forces acting on a sphere with radius rs, oscillating
with velocity v(t) is [30]

FF, s = 6 π η rs

(
1 +

rs

δ

)
v(t) (16)

+3 π r2
s

√
2 η ρ
ω

(
1 +

2 rs

9 δ

)
∂v(t)
∂t

where

δ =

√
2 η
ω ρ

(17)

is the so-called penetration depth.
Substituting Eq. 17 in Eq. 16, transformation to the fre-

quency domain and comparison of coefficients with Eq. 6 yields
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mf, s(ω) = 3 π r2
s

√2 η ρ
ω

+
2 rs

9
ρ

 and (18)

cf, s(ω) = 6 π rs

(
η + rs

√
ωη ρ

2

)
.

Considering all coefficients and rs in factors mx,s and cx,s used in
the expressions for the fluid loading related additive mass and
damping parameter in case of the sphere, Eq. 18 can be brought
into the form

mf, s(ω) = mρ,s ρ + mηρ,s

√
η ρ

ω
and (19)

cf, s(ω) = cη,s η + cηρ,s
√
ωη ρ.

3.3. Oscillating cylinder
The fluid force per unit length F′F,c on an oscillating cylinder

with radius rc, also given in [31], [32], [33], reads:

F′F,c(ω) = −π ρω2 r2
c Γcyl u(ω) (20)

with

Γcyl = 1 +
4 K1

( √
j Re

)
√

j Re K0

( √
j Re

) (21)

where

Re =
ρω r2

c

η
(22)

is the Reynold’s number, K0 and K1 are modified Bessel func-
tions of second kind and Γcyl is the so-called hydrodynamic
function.

To allow evaluating the real and imaginary part of Eq. 20,
necessary for calculating added mass mf,c and damping param-
eter cf,c for the oscillating cylinder, a second order series expan-
sion of Γcyl at j Re→ ∞ is performed, yielding

Γcyl ≈ Γcyl,T = 1 +
4
√

2 Re
− j

(
4
√

2 Re
+

2
Re

)
(23)

where the subscript T denotes the Taylor series developed ex-
pression. The relative deviations of real and imaginary parts
δΓcyl,< and δΓcyl,= of the approximated hydrodynamic function
Eq. 23 and the exact solution Eq. 21 is depicted in Fig. 2. This
comparison shows that for Reynolds numbers larger than 10,
the deviation of the Taylor series approximated solution is less
than 1 %.

Substituting the approximated solution of the hydrodynamic
function in Eq. 20 and comparison of coefficients with Eq. 6
yields

mf,c(ω) ≈ π r2
c

(
ρ +

4
√

2 rc

√
η ρ

ω

)
lc and (24)

cf,c(ω) ≈

(
2 π η +

4 π
√

2
rc
√
ωη ρ

)
lc

10−3 10−1 101 10 3 105
−100

−10-2

−10-4

−10-6

−10-8

Re
10−3 10−1 101 103 10510 -6

10 -4

10 -2

100

Re

Real Part Imaginary Part

Figure 2: Relative deviations of the real and imaginary parts of the approxi-
mated hydrodynamic function Eq. 23 from the exact solution Eq. 21.

for the added mass and damping parameters in case of the oscil-
lating cylinder, where lc is the effective length of the cylinder.
By reducing all coefficients and rc in factors mx,c and cx,c,

mf, c(ω) = mρ,c ρ + mηρ,c

√
η ρ

ω
and (25)

cf, c(ω) = cη,c η + cηρ,c
√
ωη ρ

is obtained for the oscillating cylinder which is the same form
as Eq. 19 for the oscillating sphere.

3.4. Generalized equations for added mass and damping

Comparison of the Eqs. 15, 19 and 25 shows that the fre-
quency dependent expressions for the fluid related added mass
and damping can be given in a generalized form as follows

mf(ω) = mρ ρ + mηρ

√
η ρ

ω
and (26)

cf(ω) = cη η + cηρ
√
ωη ρ

where the factors for mx and cx are given in Tab. 1 for the
case of an in-plane oscillating plate, an oscillating sphere and a
laterally oscillating cylinder.

Plate Sphere Cylinder

mρ 0
2 π
3

r3
s π r2

c lc

mηρ

Ap
√

2

√
2 3 π r2

s

√
2 2 π rc lc

cη 0 6 π rs 2 π lc

cηρ
Ap
√

2

√
2 3 π r2

s

√
2 2 π rc lc

Table 1: Coefficients

4. Generalized equations for resonance frequency and damp-
ing factor for a liquid loaded oscillator

4.1. Resonance frequency

Considering the three solutions for the fluid-loading related
mass parameter, a generalized expression for the angular reso-
nance frequency

ω0 =
1√

m0k + mρk ρ + mηρk

√
η ρ
ω0

(27)
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is obtained by substituting the mass parameter from Eq. 26 in
Eq. 12 and dividing the such obtained equation by k0. mxk are
coefficients which can be determined by a parameter fit for mea-
surement results for fr = ω0/(2 π) obtained with at least three
different liquids with known mass densities and viscosities. In
case of one-dimensional plane shear waves, the factor mρk is
zero.

4.2. Quality factor

Similar to the generalized equation for the resonance fre-
quency, the quality factor is calculated by substituting the damp-
ing coefficient from Eq. 26 in Eq. 12. It follows

Q =
1
ω0
·

1
c0k + cηk η + cηρk

√
ω0 η ρ

, (28)

where cxk are coefficients and cηk is zero in case of one-dimen-
sional shear waves.

5. Simplified equation for the resonance frequency and damp-
ing factor

5.1. Resonance frequency

The implicit nature of Eq. 27 might be troublesome in some
cases, e.g. when an estimation for ω0 for given η and ρ has to
be calculated. For this purpose, the equation is simplified by
neglecting the frequency dependence of the added mass mf(ω)
in Eq. 26. Thus, it follows for the angular resonance frequency

ω0 =
1√

m0k + mρk ρ + m∗
ηρk
√
η ρ

. (29)

5.2. Quality factor

Similar to the simplification of ω0, the expression for Q can
be simplified by neglecting the frequency dependence of the
damping parameter cf(ω) in Eq. 26. Using Eq. 29 for ω0 in Eq.
28, it follows

Q =

√
m0k + mρk ρ + m∗

ηρk
√
η ρ

c0k + cηk η + c∗
ηρk
√
η ρ

. (30)

As already mentioned above, the simplification of the equa-
tions for ω0 and Q by neglecting the frequency dependence of
the parameters mf(ω) and cf(ω) is valid for small investigated
bandwidths and high quality factors. In a first theoretical inves-
tigation which will be published elsewhere it was found, that
for an investigated bandwidth of [ω0 −ω0/Q . . . ω0 +ω0/Q] the
relative changes of mf(ω) and cf(ω) are less than 1 % for quality
factors higher than 5 in case of mf and 50 in case of cf , respec-
tively. A comparison of the generalized model and simplified
model for fitted parameters is given in Sec.6 and in Appendix
B.

The procedure how to fit the model parameters in Eqs. 27 –
30 using a linear least squares fit, is explained in Appendix A.

6. Model Verification

For investigating its validity, the model has been applied
to experimental results obtained with steel tuning forks and to
data of recently published sensors. The deviations of measured
and modeled results for each sensor are depicted in Fig. B.6 in
Appendix B.

The intention of the experiments performed for this work
was to experimentally examine the effect of mass density and
viscosity to resonance frequency and quality factor separately.
This was achieved by investigating the resonance characteris-
tics of tuning forks in liquid mixture series with varying viscosi-
ties but constant mass densities and vice versa. This procedure
is explained in detail in the following subsection.

6.1. Experimental investigation using steel tuning forks

The validity and applicability of the equations for resonance
frequency and quality factor discussed in Secs. 4 and 5 is demon-
strated by an experimental investigation using conventional steel
tuning forks with circular and rectangular cross sections but
with the same nominal resonance frequency (440 Hz) in air.
The usage of tuning forks was motivated by their simple and

Top view

Front view Dimensions in mm

Circular Rectangular

Stand

Tuning
Fork

Electromagnet

Vin Vout |V
ou

t|

f

Qfr    

Pick-Up

Measuring principle
Recorded

frequency responses

Evaluated
resonance frequency
and quality factor

Figure 3: Measuring principle and geometries of the circular and rectangular
cross-sectioned tuning fork. The frequency response of a fully immersed, fer-
romagnetic tuning fork is recorded by electromagnetic excitation and readout.
From these frequency responses, resonance frequencies and quality factor are
evaluated.
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(a) Resonance frequency
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Figure 4: Modeled and measured values for resonance frequency and quality factor. The shaded surfaces for fr and Q were obtained by evaluating Eqs. 29 and 30
for fr and Q for identified parameters for the circular tuning fork. The intersection lines on the shaded surfaces with the planes entitled density and viscosity series
indicate the values which would be obtained for fr and Q for constant ρ and η, respectively. In this case, the viscosity series consist of five aceteone-isopropanol
solutions with mass densities of roughly 0.78 mg/cm3 and covering a viscosity range of 0.2 mPa s to 2 mPa s. The density series consist of five solutions with a
viscosity of 1 mPa s and mass densities of 0.78 mg/cm3 to 1 mg/cm3. The measured points are indicated by the black dots on the shaded surfacs. A more detailed
illustration of measured values for fr and D obtained with the viscosity and mass density series is given in Fig. 5. Note that here, 1/Q (instead of Q) is plotted for
better visibility of the surface plot.

well defined geometry as well as their stability of resonance fre-
quency and low cross-sensitivity to temperature. Due to these
conditions, the results obtained with the tuning forks are ex-
pected to yield good accordance with the model. The circular
tuning fork was chosen to meet the requirements for the oscil-
lating cylinder, Sec. 3.3 whereas the rectangular tuning fork
was selected to demonstrate the applicability of the model for
oscillating structures other than plates, cylinders and spheres.
The model has furthermore been tested for other sensor types
(not only from our own work) described in Sec. 6.2.

The measuring principle as well as the dimensions of the
used steel tuning forks are shown in Fig. 3. Each tuning fork
was put in a glass tube (not depicted) which was sealed at both
sides of the tube after filling it with the sample liquid. For ex-
citation, an electromagnet was placed (outside of the tube) at
the end of one of the ferromagnetic tuning fork’s prongs. For
measuring the oscillation of the tuning fork, an electrodynamic
pick-up consisting of a coil carrying a permanent magnet in
its center was placed at the other prong’s end. By sweeping
the excitation current’s frequency, the tuning forks’ frequency
responses containing the tuning forks’ fundamental mode were
recorded upon immersion in various sample liquids at controlled
temperatures of 25 ± 0.1 ◦C. From these frequency responses,
resonance frequencies and quality factors were evaluated with
a fitting procedure presented in [34].

The dependence of the resonance frequency as well as the
quality factor on both, the liquid’s viscosity and mass density
was already shown in the equations for the models discussed
in Secs. 4 and 5 (generalized and simplified model). To easier
distinguish the tuning forks’ responses to mass density and vis-
cosity and to allow plotting fr(η), Q(η), fr(ρ) and Q(ρ) in a two

dimensional plot, two series of liquids have been prepared. The
mass density series with a nominal viscosity of 1 mPa s and the
viscosity series with a nominal mass density of 0.78 mg/cm3.
An illustration of fr(η, ρ) and 1/Q(η, ρ) in the investigated range
of viscosities and mass densities is shown Fig. 4.

The response to viscosity was investigated by evaluating
both tuning forks’ quality factors and resonance frequencies in
five acetone-isopropanol solutions covering a viscosity range
from 0.2 mPa s to 2 mPa s for mass densities of roughly
0.78 mg/cm3 at 25 ◦C. After mixing, the viscosity and mass
density of these solutions were measured with an Anton Paar

2
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5

x 
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−
3

3.6

3.8

4

x 
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−
3

0.8 0.9 1.0

405

410

415

0.5 1 1.5 2

409
409.5

410
417

417.5
418

Rectangular tuning forkCircular tuning fork

Viscosity series Density series

Figure 5: Measured, averaged damping and resonance frequency for a circular
and a rectangular tuning fork versus viscosity and mass density.
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SVM 3000 viscometer.
For investigating the response to mass density, five solu-

tions using acetone, isopropanol, ethanol, DI-water and glyc-
erol were prepared. The liquids were mixed to obtain almost
constant viscosities of 1 mPa s but mass densities between
0.78 mg/cm3 and 1 mg/cm3 at 25 ◦C. The values for viscos-
ity and mass density of these solutions were again determined
with the SVM 3000 viscometer.

The values for the inverse of the quality factor 1/Q and the
resonance frequency fr, averaged over 100 repeated measure-
ments for every liquid from the viscosity and mass density se-
ries are depicted in Fig. 5 for the circular and rectangular tuning
fork, respectively. This illustration of fr(η), 1/Q(η), fr(ρ) and
Q(ρ) correspond to the measurements in the viscosity series and
mass density series planes in Fig. 4.

6.2. Application to results from literature

To investigate the applicability of the model not only for
tuning forks but furthermore to the work of other groups, the
model was tested for other sensors where sufficient data for fr,
Q, η and ρ, was provided in tabulated form. There, the liquids’
viscosities and mass densities were not split up in viscosity and
mass density series as for the investigation of the tuning forks
in this work. In [2] a single-crystal silicon cantilever operated
at 5 kHz approximately, with a length of 397µm, a width of
29µm, and a thickness of 2µm was investigated in gaseous and
liquid environments. An in-plane vibrating silicon platelet [16]
supported by four silicon beams, featuring an overall size of
1.3 mm in lenght, 100µm in width and 20µm in height was
examined in 9 different liquids at operational frequencies of
roughly 10 kHz. In [35] a millimeter-sized quartz tuning fork
resonating at 30 kHz as well as a 1 mm long, 250µm wide AlN
platelet actuated in an extensional mode at roughly 4 MHz was
presented.

From our own work, we further investigated the applicabil-
ity of the model to a U-shaped wire sensor and a spiral spring
sensor. The U-shaped wire sensor [36], consisting of a tungsten
wire with a diameter of 400 µm which is bent to the shape of
a ‘U’, features an overall size of 12 mm in length and 6 mm
in width and is operated at 930 Hz in liquids. The frequency
responses were recorded in eleven DI-water-glycerol mixtures.
The spiral spring sensor, see [37], with a length of 35 mm was
tested in 17 liquids at operational frequencies of 630 Hz in liq-
uids.

6.3. Comparison of modeled and experimental results

The relative deviations δ fr and δQ of the modeled values
for fr and Q with respect to the measured values f M

r and QM

are used to show the deviation of the modeled result from the
measured value. In case of the circular and rectangular tuning
fork, as well as for the U-shaped wire and the spiral spring sen-
sor, which are all from our own work, the mean values for 100
repeated measurements for f M

r and QM have been used. For the
other sensors, the reported values have been taken. The relative
root mean square (rms) deviations δ fr, rms and δQrms are used
as a figure of merit to judge the applicability of the particular

model for resonance frequency and quality factor. The relative
deviations and the relative rms deviations were evaluated as fol-
lows:

δX =
X − XM

XM and δXrms =

√√√
1
N

N∑
i=1

Xi − XM
i

XM
i

2

,(31)

where X stands either for fr or Q and N is the number of in-
vestigated liquids. The such evaluated results are depicted in
Appendix B in Fig. B.6 for eight different sensors.

In total, 77 values for the relative deviations for fr and Q
for both models were evaluated, for the eight investigated sen-
sors. By this investigation, ranges of η = 0.21 . . . 215.7 mPa s,
ρ = 0.68 . . . 1.6 g/cm3, fr ≈ 400 . . . 3.85 · 106 Hz and Q =

1.02 . . . 498.99 in liquids, have been covered.
The comparison of the relative rms deviations of the mod-

els for the resonance frequency Eq. 27 (generalized model) and
Eq. 29 (simplified model) shows, that the generalized model in
general yields slightly better results than the simplified model.
The total rms deviation (for the 77 values) for the resonance fre-
quency is 1.01·10−3 for the generalized model and 1.66·10−3 for
the simplified model. In some cases, (circular tuning fork, rect-
angular tuning fork, U-shaped wire) the simplified model yields
negligibly better results. The best fitting results and the highest
deviations were obtained in case of the rectangular tuning fork
(8.94 · 10−6 and 8.91 · 10−6) and the U-shaped wire (2.05 · 10−3)
as well as the silicon cantilever (4.65 · 10−3), respectively.

Concerning the relative deviations of the values of modeled
and measured results for the quality factor, the simplified model
Eq. 30 yields in general better results than the generalized
model Eq. 28. The total relative rms deviations for the quality
factors are 32.44·10−3 for the generalized model and 31.45·10−3

for the simplified model, respectively. The lowest relative de-
viations are obtained with the silicon platelet (2.50 · 10−3 and
4.08 · 10−3) whereas the AlN platelet yields the highest relative
deviations in case of both models (79.20 ·10−3 and 78.93 ·10−3).

7. Conclusion

Based on the representation of a mass density and viscos-
ity sensor’s characteristic resonant mode by a lumped element
oscillator and considering the fluid forces of oscillating plates,
spheres and cylinders on the mechanical resonator, generalized
reduced order equations for resonance frequency and damping
factor were obtained. As the generalized model yielded im-
plicit equations, which might be troublesome in some cases, a
simplified model has been formulated, neglecting the frequency
dependence of the fluid forces acting on the resonator. For the
resonance frequency the difference between both approaches
is negligible, whereas in case of the quality factor, the sim-
plified model in general yielded better results. This finding,
which needs further investigation, might have different reasons.
Measurement errors, resulting e.g., from varying temperatures,
not perfectly cleaned sensors, unstable measurement setups and
outliers as well as errors resulting from the evaluation of fr and
Q from the frequency response are just a few examples for po-
tential reasons.
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A first investigation of the applicability of the model us-
ing the experimental results of conventional steel tuning forks
with circular and rectangular cross-sections and six further re-
cently published sensors showed first, that the model can be
also applied for resonant sensors not exactly meeting the ge-
ometrical requirements (plate, sphere, cylinder) considered in
the presented model. Second, the experimental results showed
good accordance with the fitted model. The achieved values for
the relative rms deviations over 77 investigated measurements
are better than 1.7 · 10−3 for δ fr,rms and 3.3 · 10−2 for δQrms.

Thus, the presented equations appear suitable for a general
description of a resonant mass density and viscosity sensor’s
performance even if slight deviations of experimental results
might be observed. This furthermore allows comparison of sen-
sors of different types, geometries, fabrication technologies as
well as actuation and readout principles.

Acknowledgment

We are indebted to the Austrian COMET program (Austrian
Centre of Competence in Mechatronics, ACCM) for the finan-
cial support. We also want to thank Bernhard Mayrhofer and
Johann Katzenmayer for their help and excellent assistance.

Appendix A. Parameter fit

Assuming that resonance frequencies fr,i and quality factors
Qi from at least three measurements in liquids with viscosities
ηi and ρi are available, all parameters in Eqs. 27 – 30 can be
determined by a linear least squares fit as follows. All four
equations can be brought into the form

b = A · x (A.1)

where x is a vector with the unknown parameters for which the
least squares solution reads [38]:

x =
(
AT · A

)−1
· AT · b (A.2)

Appendix A.1. Generalized model
The vectors of unknowns [m0k,mρk,mηρk]T and [c0k, cηk, cηρk]T

of the generalized model can be determined independently with
known values for ω0,i = 2 π fr,i, Qi, ηi and ρi. The equations for
ω0 and Q are rearranged to allow formulating matrix equations
of the form of Eq. A.1 as follows:

• Equation 27 is rearranged to

1
ω2

0

= m0k + mρk ρ + mηρk

√
η ρ

ω0
(A.3)

and thus, the least squares solutions for the the parame-
ters in x = [m0k,mρk,mηρk]T can be found using Eq. A.2
with

b =

 1
ω2

0,i

 , A =

[
1, ρi,

√
ηi ρi

ω0,i

]
(A.4)

• Equation 28 brought into the form

1
Q

= ω0 ·
(
c0k + cηk η + cηρk

√
ω0 η ρ

)
(A.5)

shows that the least squares solutions for the parameters
of the vector of unknowns x = [c0k, cηk, cηρk]T can be
found using

b =

[
1
Qi

]
, A =

[
ω0,i, ω0,iηi, ω0,i

√
ω0,i ηi ρi

]
(A.6)

and Eq. A.2

Appendix A.2. Simplified model

Similar to the procedure above, the parameters of the sim-
plified model can be determined by a linear least squares fit,
whereas in this case, for calculating [c0k, cηk, c∗ηρk]T , the pa-
rameters for the resonance frequency [m0k,mρk,m∗ηρk]T have to
be known, i.e., determined first.

• The parameters of Eq. 29 are fitted using Eq. A.2, where
x = [m0k,mρk,m∗ηρk]T and

b =

 1
ω2

0,i

 , A =
[
1, ρi,

√
ηi ρi

]
. (A.7)

• To determine the least squares values of x = [c0k, cηk, c∗ηρk]T

b =

[
1
Qi

]
, A =

[
ω0f,i, ω0f,i ηi, ω0f,i

√
ηi ρi

]
(A.8)

with

ω0f,i =
1√

m0k + mρk ρi + m∗
ηρk
√
ηi ρi

. (A.9)

are used and substituted in Eq. A.2.

Appendix B. Model evaluation using experimental results

Figure B.6 shows the relative deviations δ fr and δQ of mod-
eled from measured values for resonance frequency and quality
factor for eight different sensors versus η and ρ. The references
are given in each plot. The marker � indicates the values for the
generalized model whereas the marker ◦ designates the values
for the simplified model. Furthermore, the relative rms devia-
tions δ fr,rms and δQrms are given for each sensor for the gener-
alized and the simplified model.
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Figure B.6: Relative deviations of modeled from measured results. � designates the generalized model whereas ◦ represents the simplified model. In some cases,
only one of both markers is visible, as both models yield similar results.
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