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whereas in the second step, the value of the state estimate is updated using the newly available sampled measure. The exponential convergence of the observation error is then ensured under some sufficient conditions on the sampling period through the stability analysis of impulsive systems. [START_REF] Deza | High gain estimation for nonlinear systems[END_REF] use this approach to write a discrete-continuous version of the wellknown high-gain observer [START_REF] Gauthier | A simple obsever for nonlinear systems: application to bioreactors[END_REF]. [START_REF] Nadri | Design of a continuous-discrete observer for state affine systems[END_REF] have designed observers for a MIMO class of state affine systems where the dynamical matrix depends on the inputs when those inputs are regularly persistent. This work was extended to adaptive observers by [START_REF] Ahmed-Ali | Continuous-discrete adaptive observers for state affine systems[END_REF]. [START_REF] Astorga | Nonlinear continuous-discrete observers: applications to emulsion polymerization reactors[END_REF] used a similar method for a larger class of systems and applied it to the observation of an emulsion copolymerization process. The observation of a class of systems with output injection has been treated by [START_REF] Nadri | Observer design for continuous-discrete time state affine systems up to output injection[END_REF] and recently, [START_REF] Hammouri | Constant gain observer for continuous-discrete time uniformly observable systems Proceeding of the 45th IEEE on & Control[END_REF] developed a high-gain continuous-discrete observer by using constant observation gains. [START_REF] Andrieu | Observer design fot Lipschitz systems with discrete-time measurements[END_REF] extend the work from [START_REF] Zemouche | Observers for a class of Lipschitz systems with extension to H ∞ performance analysis[END_REF] to the discrete-time measurements case. Recently, a hybrid sampled-data observer dedicated of a class of nonlinear systems has been presented by [START_REF] Karafyllis | From continuous-time design to sampled-data design of nonlinear observers[END_REF]. This scheme is based on an inter-sample time predictor that estimates the output between two sampling instants: the estimates remain continuous and only the predictor is re-initialized at each sampling instant. This algorithm has been extended to some networked control systems by Ahmed-Ali and Lamnabhi-Lagarrigue (2012) by using a Lyapunov Krasovskii approach. The design of observers for linear detectable systems with sampled and delayed measurements was also treated by Hespanha et al. (2007b) by using a descriptor system approach and a Lyapunov Krasovskii functional. The authors have proposed a hybrid observer for a class of linear systems and derive sufficient conditions based on linear matrix inequalities to guarantee exponential convergence of the observation error. This idea has also been used by [START_REF] Raff | Observer with sample-and-hold updating for Lipschitz nonlinear systems with nonuniformly sampled measurements[END_REF] and [START_REF] Van Assche | High gain observer design for nonlinear systems with time varying delayed measurements[END_REF] for some classes of nonlinear systems with nonuniformly sampled measurements.

In this chapter, we present two classes of observers. The first one is an extension to delayed measurements of the continuous-discrete observer developed by [START_REF] Nadri | Design of a continuous-discrete observer for state affine systems[END_REF]. The second one is based on the introduction of an estimator of the delayed output between two updating instants. It can be viewed as an extension of the work by [START_REF] Ahmed-Ali | Cascade high predictors for a class of nonlinear systems[END_REF] to the sampled-data case by using the idea that consists the predicting of the output between two sampling instants developed by [START_REF] Karafyllis | From continuous-time design to sampled-data design of nonlinear observers[END_REF].

The chapter is structured as follows: first, two observer designs are presented, then the application of those designs to the case of an induction motor without speed sensor is explained, and eventually, some simulations results are given to illustrate this application.

Nomenclature

The following notation will be used throughout this chapter. R denotes the field of real numbers, R + the set of strictly positive real numbers and R + 0 = R + ∪{0}. I p is the identity matrix of dimension p × p and 0 p represents the zero matrix of dimensions p × p. The transpose of a matrix M will be noted M ′ . The Euclidean norm of a vector a will be noted a and the L 2 norm of a matrix A will be noted A . The time dependency of the signals will be omitted for signals taken at time t, that is, the system state x(t) will be written x and its derivative will be written ẋ.

Observer Design

Nonlinear System Model

In this chapter, two observer designs are presented to be applied to the case of an AC motor with sampled measurements. Those designs can be applied to a larger class of nonlinear models and are first presented within the framework of this class of systems. Then, their application to the case of an AC motor is explained.

The value of the output of the system is known only at the sampling instants noted t k where (t k ) k∈N is an increasing sequence with lim k→+∞ t k =+∞. It is assumed that an upper bound T e is known for the size of the sampling intervals

T e ≥ t k+1 -t k , ∀k ∈ N.
(6.1) A general nonlinear system with sampled output can be written

ẋ = f (x, u), y(t k ) = h(x(t k )). (6.2)
The observer design presented in the sequel applies to the following class of uniformly observable nonlinear systems:

ẋ = Ax + φ(x, u), y(t k ) = Cx(t k ), (6.3) 
with the following hypothesis:

H1: The state vector x ∈ R n is composed of q subvectors, x 1 ,...,x q , that is,

x = x ′ 1 •••x ′ q ′ (6.4)
with ∀i = 1,..., q, x i ∈ R p , with, obviously, n = pq.

H2: A ∈ R n×n is a block diagonal matrix A = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 I p 0 ••• 0 . . . . . . I p . . . . . . . . . . . . . . . 0 . . . . . . I p 0 ••• ••• ••• 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (6.5) H3: φ is a n × 1 matrix of mappings, block-triangular in x, that is, φ(x, u) = ⎛ ⎜ ⎜ ⎝ φ 1 (x 1 , u) φ 2 (x 1 , x 2 , u) ... φ q (x 1 ,...,x q , u) ⎞ ⎟ ⎟ ⎠ .
(6.6)

H4:

The functions φ i are globally Lipschitz with respect to x, uniformly in u, that is,

∃β>0 such that ∀(x a , x b ) ∈ R n × R n and ∀u ∈ R p φ i (x a,1 ,...,x a,i , u) -φ i (x b,1 ,...,x b,i , u) ≤ β x i a -x i b , (6.7)
where x i a and x i b are the vectors (x a,1 ,...,x a,i ) ′ and (x b,1 ,...,x b,i ) ′ , respectively.

H5: C ∈ R p×n with C = I p 0 p ••• 0 p .

Observer Design with a Time-Delay Approach

The first observer design we present handles the sample mechanism as a variable time-delay. This observer is an extension to the multiple output case of the observer proposed by [START_REF] Van Assche | High gain observer design for nonlinear systems with time varying delayed measurements[END_REF], based on the high-gain approach from [START_REF] Gauthier | A simple obsever for nonlinear systems: application to bioreactors[END_REF], to handle a class of nonlinear systems with variable measurements delays, without imposing a bound on the variation rate of the delay.

The sampling mechanism is transformed into a time-variable delay by defining the following delay function:

τ (t) = t -t k , ∀t ∈ [t k , t k+1 ), (6.8) 
with τ = 1 in the intervals [t k , t k+1 ), such that at any time t ∈ [t k , t k+1 ), system (6.3) is equivalent to

ẋ = Ax + φ(x, u), y(t k ) = Cx(t -τ (t)).
(6.9)

The following theorem applies to any variable time delay system of the form (6.9). In the sequel, it will be applied to the particular case where the delay is of the form (6.8) to model the sampling mechanism.

Theorem 6.3.1 Consider the observer

ẋ = A x + φ( x, u) -θ -1 S -1 C T C x(t -τ ) -y(t -τ ) , (6.10)
where θ is a positive constant satisfying θ>1, S is a symmetric positive definite matrix solution of the equation (6.11) and is the following block-diagonal matrix:

SA+ A T S -C T C =-S,
= Diag I p , 1 θ I p , 1 θ 2 I p ,..., 1 θ q-1 I p .
(6.12)

For sufficiently large positive value of θ , there exists a positive constant T such that, for any τ (t) < T and any initial condition x(0) = x 0 and x(0) = x0 , lim t→+∞

xx = 0. (6.13)

Proof: Let the observation error be noted

x = x -x. (6.14)
Using equations ( 6.3) and ( 6.10), one can write the dynamic equation of this error

ẋ = A x + φ( x, u) -φ(x, u) -θ -1 S -1 C ′ C x(t -τ (t)). (6.15)
Using the change of coordinates x = x (6.16) and the Newton-Leibniz formula

x(t -τ (t)) = x - t t-τ (t) ẋ(σ )dσ,
together with the property C = C -1 = C, one can rewrite equation (6.15) in the following form:

ẋ = θ A -S -1 C ′ C x + φ( x, u) -φ(x, u) + θ S -1 C ′ C t t-τ (t)
ẋ(σ )dσ. (6.17)

In order to derive an upper bound on the delay ensuring the asymptotic convergence of the observation error, we use a Lyapunov-Krasovskii functional proposed by [START_REF] Fridman | On input-to-state stability of systems with time-delay: a matrix inequalities approach[END_REF].

W = x′ S x + t t-T t σ ẋ(ξ ) 2 dξ dσ. (6.18)
After some straightforward computations, the functional (6.18) can be rewritten as

W = x′ S x + t t-T (σ -t -T ) ẋ(σ ) 2 dσ.
Its derivative satisfies the following inequality: (6.19) with

Ẇ ≤ θ x′ A ′ S + SA-2C ′ C x + 2 x′ S (φ( x, u) -φ(x, u)) +2θ x′ C ′ CI + T ẋ 2 - t t-T ẋ(σ ) 2 dσ,
I = t t-τ (t)
ẋ(σ )dσ. (6.20)

We will now bound the different terms of the right-hand side of this equation to express a sufficient condition on T ensuring that this derivative is negative.

Using equation ( 6.11) in the first term of (5.19) leads to This implies the existence of a constant

Ẇ ≤ θ V -θ x′ C ′ C x + 2 x′ S (φ( x, u) -φ(x, u)) + 2θ x′ C ′ CI + T ẋ 2 - t t-T ẋ(σ ) 2 dσ, ( 6 
k 1 = 2 λ max (S) λ min (S) √ qβ, (6.23) such that 2 x′ S (φ( x, u) -φ(x, u)) ≤ k 1 V, (6.24)
where λ max (S) and λ min (S) are the largest and smallest eigenvalues of S, respectively. Thus, equation (6.21) becomes

Ẇ ≤-θ V + k 1 V -θ x′ C ′ C x + 2θ x′ C ′ CI + T ẋ 2 - t t-T ẋ(σ ) 2 dσ. (6.25) Now, remark that 2θ x′ C ′ CI -θ x′ C ′ C x = θ I ′ C ′ CI -θ (C x -I ) ′ (C x -I ) ≤ θ IC ′ CI, therefore, Ẇ ≤-θ V + k 1 V + θ I ′ C ′ CI + T ẋ(t) 2 - t t-τ (t)
ẋ(σ ) 2 dσ. (6.26)

From equation (6.17) comes

ẋ ≤ θα x + (φ( x, u) -φ(x, u)) + θλ max S -1 I , where α = A -S -1 C ′ C . Using equation (6.22) once again leads to ẋ ≤ θ α + √ qβ x + θλ max (S -1 ) I ,
and consequently, through the Young inequality, to

ẋ 2 ≤ θ 2 k 2 V -I 2 ,
where

k 2 = 2sup α + √ qβ λ min (S) 2 ,λ 2 max (S -1 ), 1 . (6.27)
With the Jensen's inequality

I 2 ≤ T t t-τ (t)
ẋ(σ ) 2 dσ, (6.28) we get

ẋ 2 ≤ θ 2 k 2 V + T t t-τ (t) ẋ(σ ) 2 dσ .
Using this into equation (6.26) gives

Ẇ ≤-(θ -k 1 -T θ 2 k 2 )V -(1 -θ T -T 2 θ 2 k 2 ) t t-τ (t) ẋ(σ ) 2 dσ. (6.29)
Let us set T = 1 2k 2 θ , so that equation (6.29) becomes

Ẇ ≤- θ 2 -k 1 V -1 - 3 8k 2 t t-τ (t)
ẋ(σ ) 2 dσ. (6.30)

Since k 2 ≥ 1, we always have 1 -3 8k 2 ≥ 0. Hence, with this value of T ,i f θ 2 -k 1 > 0, then Ẇ is negative and equation (6.30) becomes

Ẇ ≤- θ 2 -k 1 V < 0. (6.31)
Integrating this equation and applying Barbalat's lemma proves that if the two following conditions are met:

θ>sup{1, 2k 1 }, (6.32a) (6.33) which proves the theorem.

τ (t) ∈ 0, 1 2k 2 θ , (6.32b) then lim t→+∞ x = 0,
Theorem 6.3.1 proves that if the variable delay τ (t) is bounded with a sufficiently small bound in system (6.3), equation (6.10) gives an asymptotically convergent observer. Furthermore, equation (6.32) gives computable conditions on the delay bound T and the observer gain θ such that the convergence of the observation error is ensured. Obviously, this result can be directly applied to the sampled measurements case, as in the following result. Corollary 6.3.2 Consider a system with sampled measurements

ẋ = Ax + φ(x, u), y(t k ) = Cx(t k ), (6.34)
for which the hypotheses H1-H5 apply. In this case, the observer can be written

ẋ = A x + φ( x, u) -θ -1 S -1 C T C x(t k ) -y(t k ) for t ∈ [t k , t k+1 ). (6.35)
Assuming that the following conditions are fulfilled:

θ>sup{1, 2k 1 }, (6.36a)

T e < 1 2k 2 θ , (6.36b)
where k 1 and k 2 are defined by equations (6.23) and ( 6.27), respectively, then (6.35) is a global asymptotic observer for system (6.34).

Proof: This corollary is a straightforward application of Theorem 6.3.1: taking τ (t) = tt k , with k such that t k ≤ t < t k+1 , system (6.34) can be rewritten as system (6.3).

Note that in this case, τ = 1 and the demonstration of theorem 6.3.1 still holds thanks to the Lyapunov-Krasovskii functional used. Remark 6.3.3 In the case where the measurements are acquired through a numerical network inducing a further transmission delay δ, it is easy to adapt this scheme with the variable delay τ = tt k by taking k such that t ∈ [t k + δ, t k+1 + δ), that is, the total delay minimum value equals δ and it is reset to this minimum value at each instant t k + δ, k ∈ R. The observer converges asymptotically if ∀k, t k+1 -t k + δ<T e and conditions (6.36) are respected.

Observer Design with an Output Predictor

In the observer presented above, the error between the system output y and the observer output C x is used at each sampled instant. Although this observer converges when the sampling intervals are sufficiently small, its performance degrades rapidly as the sampling intervals increase. To allow larger sampling interval, we follow [START_REF] Karafyllis | From continuous-time design to sampled-data design of nonlinear observers[END_REF] and add an inter-sample output prediction equation to the observer.

In this case, the output delay δ, which comes in addition to the sampling of the measurements, has to be explicitly taken into account. Hence, the system we handle now is similar to (6.34) but it is assumed that the measure y(t k ) is not available to the observer before instant t k + δ, where δ represents the transmission delay. Corollary 6.3.4 Consider system (6.34) with hypotheses H1-H5. For sufficiently large values of θ , there exist two positive reals T δ and T e such that if δ ≤ T δ and, ∀k ∈ N, t k+1 -

t k < T e then ⎧ ⎪ ⎨ ⎪ ⎩ ẋ = A x + φ( x, u) -θ -1 S -1 C ′ (C x(t -δ) -w), ẇ = CAx(t -δ) + Cφ( x(t -δ), u(t -δ)), for t ∈ [t k + δ, t k+1 + δ), w(t k + δ) = y(t k ), (6.37)
is a global exponential observer.

The variable w represents the prediction of the output of the system when the current measured output is not available: at each delayed sampling instant t k + δ, w takes the value of the measured output y(t k ) and between two sampling instants, the evolution of w is computed continuously using the estimated state x. The observation equation itself is the classical continuous-time high-gain observer equation, using the predictor output w instead of the unavailable system output y.

Sketch of the proof:

To prove this corollary, two error terms are needed, the usual state estimation error and the error due to the delay δ between the predictor and the system output x = xx, (6.38)

w = w -y(t -δ). (6.39)
The equations of the evolution of those errors are deduced from equations (6.34) and (6.37),

ẋ = A x + φ( x, u) -φ(x, u) -θ -1 S -1 C T (C x -w) , (6.40) ˙ w = CAx(t -δ) + Cφ( x(t -δ), u(t -δ)) -Cφ(x(t -δ), u(t -δ)) (6.41) ∀t ∈ [t k + δ, t k+1 + δ), w(t k + δ) = 0. (6.42)
To prove the convergence of the error x towards 0, the following Lyapunov candidate is used, based on the work from Hespanha et al. (2007b): (6.43) where x = x, as in (6.16), γ is a positive design parameter and ψ(t) is a piecewise differentiable function such that

U = x′ S x + t t-τ t ζ ẋ(σ ) dσ dζ + γψ(t) w 2 ,
⎧ ⎪ ⎨ ⎪ ⎩ ψ(t) > 0, ∀t > 0, ψ(t k ) = ψ max ∈ R + , ∀k ∈ N, ψ(t) < 0, ∀k ∈ N, ∀t ∈ [t k , t k+1 ). (6.44) Since, w(t k ) = 0 for all k ∈ N, U (t k ) ≤ lim t→t - k U (t). (6.45)
The functional U is differentiable on the intervals [t k , t k+1 ). Equation (6.43) is differentiated and, for each term of its differentiation, a suitable bound depending on either x 2 , t t-δ ẋ(σ ) 2 dσ ,o r w 2 can be found, such that one can find three constants k 1 , k 2 , and (6.46) for some real ǫ>0. Equations (6.45) and (6.46) imply that U decreases inside each sampling interval and does not increase at the sampling instants thus proving the corollary.

k 3 with, ∀k ∈ N, ∀t ∈ [t k , t k+1 ), U ≤-k 1 x 2 -k 2 t t-δ ẋ(σ ) 2 dσ -k 3 w 2 ≤-ǫU,

Application to the AC Motor

Model of the AC Motor

This section presents the application of the above observer designs to a model of induction motor in the (α, β) reference frame. The machine is controlled through the stator voltage v sα and v sβ and the stator current i sα and i sβ are the measured and sampled outputs, and we note

v = v sα v sβ and i = i sα i sβ .
It is also assumed that the load torque T L may vary with time, hence an unknown and bounded input signal is added: u L , which represents the variation of the load torque.

The state of the system is a dimension 6 vector that will be subdivided into 3 subvectors of dimension 2 for the design of the observer (6.47) where the subvector = φ rα φ rβ is the instantaneous rotor flux vector and the components of the third subvector x 3 are the rotor speed ω m and the load torque T L :

x = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ i sα i sβ φ rα φ rβ ω m T L ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎝ i, x 3 ⎞ ⎠ ,
x 3 = ω m T L .
The output vector y is measured at each sampling instant:

y(t k ) = i(t k ) = Cx(t k ), with k such that t k ≤ t < t k+1 and C = I 2 0 2 0 2 .
The model of the induction machine is then

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ di dt =-γ i + kF(ω m ) + 1 σ L s v, ˙ = L m τ r i -F(ω m ) , ωm = pL m JL r φ rα i sβ -φ rβ i sα - 1 J T L , ṪL = u L , y = i(t k ), with k such that t k ≤ t < t k+1 , (6.48) 
with

γ = R s σ L s + R r L m 2 σ L s L r 2 , k = L m σ L r L s , σ = 1 - L m 2 L r L s ,τ r = L r R r , F(ω m ) = 1 τ r I 2 -pω m J 2 , J 2 = 01 -10 .
The definition of the parameters in this model are given in Table 6.1. Rotor time constant

This model will also be noted in a shorter form,

ẋ = f (x,v) + h(u L ), y = Cx(t k ). (6.49)
To be able to design a high-gain observer as in Corollary 6.3.2, we follow the method proposed by [START_REF] Dib | High gain observer for sensorless induction motor[END_REF] for the continuous-time case. The following change of variable is used:

z = ⎛ ⎝ z 1 z 2 z 3 ⎞ ⎠ = g(x), (6.50) 
where z 1 , z 2 , and z 3 belong to R 2 , with

z 1 = g 1 (x) = i, (6.51) z 2 = g 2 (x) = kF(ω m ) , (6.52 
)

z 3 = g 3 (x) = pω m J 2 - kL m τ r i + kF(ω m ) + kp kL m JL r J 2 i + T L J J 2 . (6.53)
We assume that the Jacobian of g(x)

∂g ∂ x = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ I 2 0 2 0 2 0 2 ∂g 2 ∂ ∂g 2 ∂ x 3 ∂g 3 ∂i ∂g 3 ∂ ∂g 3 ∂ x 3 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (6.54)
is regular almost everywhere, which is true provided that = 0 and arctan β α -arctan ( pτ r ω m ) is not constant almost everywhere [START_REF] Dib | High gain observer for sensorless induction motor[END_REF]. This implies that the AC Motor model used is weakly observable in the sense of [START_REF] Hermann | Nonlinear controllability and observability[END_REF].

Using z as state variable, the machine model (6.48) becomes

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ ż1 = z 2 + ψ 1 (z 1 ,v), ż2 = z 3 + ψ 2 (z 1 , z 2 ), ż3 = ψ 3 (x, u L ), y = z 1 (t k ), with k such that t k ≤ t < t k+1 , (6.55) 
where

ψ 1 (z 1 , u) =-γ z 1 + 1 σ L s v, ψ 2 (z 1 , z 2 ) = 1 τ r L m τ r z 1 -z 2 , ψ 3 (x, u L ) = ∂g 3 ∂i di dt + ∂g 3 ∂ ˙ + ∂g 3 ∂ω m ωm + ∂g 3 ∂ T L u L .
This system can be rewritten

ż = Az + ψ(z, u), y = Cz(t k ), (6.56) 
with

A = ⎛ ⎜ ⎝ 0 2 I 2 0 2 , 0 2 0 2 I 2 0 2 0 2 0 2 ⎞ ⎟ ⎠,ψ (z, u) = ⎛ ⎜ ⎝ ψ 1 (z 1 ,v) ψ 2 (z 1 , z 2 ) ψ 3 (x, u L ) ⎞ ⎟ ⎠.
The AC machine model in z is of the form (6.3), hence we can present two observer designs whose convergences are ensured by Corollaries 6.3.3 and 6.3.3, respectively.

Observer for AC Machine with Sampled and Held Measurements

The first observer, as written in Corollary 6.3.3, is a direct adaptation to the sampled measures case of the one proposed by [START_REF] Dib | High gain observer for sensorless induction motor[END_REF]:

ẋ = f ( x,v) + θ -1 ∂g ∂ x -1 S -1 C T [C x(t k ) -y(t k )] ,
∀t ∈ [t k , t k+1 ) (6.57)

Applying the change of variables (6.50) to the state estimation, we define ẑ = g( x). (6.58)

From equations (6.48) and (6.56), we have (6.59) and, obviously, by replacing x with x,

∂g ∂ x f (x,v) = Az + ψ(z, u),
∂g ∂ x f ( x,v) = Aẑ + ψ(ẑ, u). (6.60)
Multiplying equation (6.57) by the Jacobian of g, using equation (6.60), and remarking that

C x = C ẑ, leads to ż = Aẑ + ψ(ẑ, u) + θ -1 C T [C ẑ(t k ) -y(t k )] . (6.61)
This is indeed the form of the observer from Corollary 6.3.2. Hence, lim t→∞ ẑz = 0 (6.62) provided that the gain θ and the sampling period T e are set such that conditions (6.36) are fulfilled.

Observer for the AC Machine with Predictor

The second observer design adds an output-predictor

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ ẋ = f ( x, u) -θ -1 ∂g ∂ x -1 S -1 C T [C x(t -δ) -w] , ẇ = Cf x(t -δ),v(t -δ) , t ∈ [t k + δ, t k+1 + δ), w(t k + δ) = y(t k ).
(6.63)

In the same way as in Section 6.4.2, we apply the change of variable (6.58) to this observer to rewrite it in the form used in Corollary 6.3.3. The first equation from (6.63) is treated in the same way as the observer equation (6.57) in Section 6.4.2 (except that w replaces y). For the second equation from (6.63), one can remark, from (6.54), that

C ∂g ∂ x f ( x, u) = Cf( x, u).
(6.64) 

ẇ = C ∂g ∂ x f ( x, u) = CAẑ(t -δ) + Cψ (ẑ(t -δ), u(t -δ)) . (6.65)
Hence, observer (6.63) can be rewritten in the form used in Corollary 6.3.3

⎧ ⎪ ⎨ ⎪ ⎩ ż = Aẑ + ψ(ẑ, u) -θ -1 S -1 C T [C ẑ(t -δ) -w] , ẇ = CAẑ(t -δ) + Cψ (ẑ(t -δ), u(t -δ)) , t ∈ [t k + δ, t k+1 + δ), w(t k + δ) = y(t k ), (6.66) 
and converges for small enough values of the maximal sample interval T e and the delay δ.

Simulation

Both observers introduced in Sections 6.4.2 and 6.4.3 have been applied to the same simulation model of an AC machine of the form (6.48) with sampled output. The parameters values used in the simulation are presented in Table 6.2. The physical values have been measured on a real AC Motor bench at the GREYC Laboratory by [START_REF] Dorléans | Plate-forme machine asynchrone et carte DSP DS1103[END_REF].

The results of the simulation of the motor model and both observer schemes are shown in Figure 6.1. The control input of the motor is the square wave function seen in Figure 6.1a. To test the observers, a perturbation is introduced: the load torque T L is also a square wave, with a phase shift of one-fourth of a period compared to the input signal (as seen in Figures 6.1c and 6.1e). The effect on the motor speed is visible in the bumps seen on the curve of the actual speed in Figure 6.1a. For both observers, the speed estimation (Figures 6.1b and 6.1d) and torque estimation (Figures 6.1c and 6.1e) are drawn.

As shown in Figure 6.1b-c, with those parameters, the observer with sample and hold equation (6.57) does not converge. Note that we were able to make this observer converge by reducing the sample interval T e . With the parameters from Table 6.2, the observer with predictor (6.63) does converge (see Figures 6.1d,e. The added complexity and increased computation involved by the inclusion of the predictor in the observer scheme is counterbalanced by the larger sample intervals it allows. 

Conclusions

This chapter presents two observer designs for nonlinear systems with sampled measurements and their application to an induction motor. The first design is a direct adaptation of the continuous high gain observer proposed by [START_REF] Dib | High gain observer for sensorless induction motor[END_REF]. The output is sampled and its value is held, thus the correction term in the observer equation is constant between sampling instants. The second observer scheme includes a predictor based on the work by [START_REF] Karafyllis | From continuous-time design to sampled-data design of nonlinear observers[END_REF] to estimate the output between two sampling instants. At each sampling instant, the predictor is reset to the actual value of the output. The output estimation is fed to the correction term of the observer. The Matlab/Simulink was used to test the implementation of those observer on a simulation model of the induction machine. The model of the induction machine was adapted to the high gain framework through a change of variable. Simulations were done with different values of sampling period and observer gain and the introduction of the predictor allows for larger sampling intervals, as in the case shown on Figure 6.1.

Further work involves the implementation of the observer with predictor on a real induction machine. The real-time numerical implementation of the predictor scheme is not trivial, not only because of the predictor itself but also because of the change of variable used to adapt the motor model as it involves the computation of the inverse of the Jacobian of the transformation.

  .21) where V = x′ S x. Using the triangular structure and the Lipschitz property of the function φ,ifθ>1, Gauthier et al. (1992) proved that (φ( x, u) -φ(x, u)) ≤ √ qβ x .(6.22) 
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	.1 AC machine parameters
	Parameter	Definition
	L s	Stator self-inductance
	L r	Rotor self-inductance
	L m	Mutual inductance between stator and rotor windings
	R r	Rotor resistance
	R s	Stator resistance
	τ r	

Table 6
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	.2 Simulation parameters	
	Parameter	Value	Definition
	L s	140 mH	Stator self-inductance
	L r	25 mH	Rotor self-inductance
	L m	50 mH	Mutual inductance between stator and rotor windings
	R r	0.5	Rotor resistance
	R s	1.67	Stator resistance
	T s	2e-04 s	Simulation step time
	T θ	60 × T s = 0.012 s 42	Sample time Observer gain
	Hence, we have, for t ∈ [t k + δ, t k+1 + δ),