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Gaussian Noise Time-Varying Power Spectrum
Estimation with Minimal Statistics

Julien Huillery, Fabien Millioz and Nadine Martin, Member, IEEE

Abstract—Given the spectrogram of an unknown signal embed-
ded in a Gaussian noise, the Minimal Statistics Maximum Like-
lihood (MiniSMaL.) estimator of the noise time-varying power
spectrum is presented and a method to tune one of its parameter
is studied. The objective of the minimal statistics approach is to
separate the signal of interest from the noise in order to estimate
properly the probabilistic properties of the latter. Considering
an initial time-frequency estimation neighborhood, the strategy
relies on the selection of a minimal subset containing the time-
frequency coefficients with the smallest values. Estimators of the
noise are then sought from this minimal subset. In this work the
case of a spectrogram constructed from a finite-length discrete-
time noisy signal is presented. This study extends previous
works on minimal statistics on two aspects: first, the Maximum
Likelihood estimate of the noise is formulated according to a
clear analysis of the probability distribution of the time-frequency
coefficients. Second, the choice of an optimal minimal subset is
investigated. The signal versus noise discrimination property of
the spectral kurtosis is used to select a minimal subset which
ensures a fair trade-off between the bias and the variance of the
estimator. The resulting performances are discussed and com-
pared with those of other methods through numerical simulations
on synthetic signals. The use of the MiniSMaL estimator in a
time-frequency detection procedure is finally illustrated on a real-
world signal.

Index Terms—Noise estimation, Time-varying power spectrum,
Minimal statistics, Maximum likelihood, Spectral kurtosis, Spec-
trogram.

I. INTRODUCTION

Noise power estimation is one of the fundamental questions
in signal processing. As some noise is generally present in
every sensed signal, estimation is necessary in order to build
up rigorous signal detection or filtering techniques. Among
others, an interesting review with audio applications can be
found in [1]. We cite here three approaches which have re-
ceived a particular claim for the estimation of a non-stationary
noise power spectral density. All the following strategies are
based on the Short Time Fourier Transform (STFT) of the
noisy signal. The STFT belongs to the class of the linear
time-frequency representations [2] and the present work is also
rooted in this class of transforms.
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The first approach is based upon a recursive averaging of
the STFT coefficients [3], [4], [5]. The averaging is applied
along the time axis for each frequency bin. The central
question concerning this method is the adaptation of the filter
parameters to the time variations of the signal in one hand and
to those of the noise in the other hand. The estimation of the
Signal to Noise Ratio (SNR) and the probability of presence of
the signal are typically used to work out this adaptation. The
advantages of this method are twofold. Technically first, the
averaging reduces the variance of the estimator and benefits
from a strong methodological background. Second, the causal
FIR structure of the filter enables a real-time implementation
which can be required by some applications.

The second approach that has been proposed for non-
stationary noise estimation is to identify the noise-only coeffi-
cients within a time-frequency neighborhood centered on the
time-frequency bin of interest. In that case, a simple statistic
(generally the arithmetic mean) can be applied to estimate the
noise power [6], [7], [8]. The approach typically consists in
the iteration of a two-step procedure, namely a signal rejection
step based on a binary hypothesis test followed by a noise
estimation step over the set of non-rejected time-frequency
coefficients. As some signal remains present within the set
of non-rejected coefficients, this approach estimates the noise
from above. The iterations are stopped when a statistical
criterion indicates that the set of non-rejected time-frequency
coefficients contains only noise coefficients. Several criterion
have been proposed: a threshold on the convergence of the
likelihood [6]; a threshold on the skewness [7]; a threshold
on the kurtosis [8]. The drawback of this approach is to be
quite slow as the iterative procedure needs to be apply at every
time-frequency bin, and is strongly dependent on the quality
of the stopping criterion.

A third approach, initiated by R. Martin [9], [10], [11]
and described in the next section, can be named the minimal
statistics approach. As with the previous approach, the phi-
losophy remains to isolate a subset of noise-only coefficients
from which an appropriate estimator can be derived. However,
the minimal statistics approach keeps only the smallest time-
frequency coefficients which originate most probably from
the noise alone. The aim of this paper is to provide further
developments concerning the use of the minimal statistics
approach for the problem of non-white and non-stationary
Gaussian noise estimation. The results presented are twofold.
First, the Maximum Likelihood (ML) estimate of the noise is
presented and evaluated in the context of minimal statistics. A
simple procedure to compute this estimate is also given. To our
point of view, this estimator represents a suitable benchmark
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Figure 1. Probability density function of a spectrogram coefficient under the
‘noise only’ (plain) and ’signal+noise’ (dashed) hypotheses. As pointed out
within the dot-dashed square, the smallest values are much more likely to
represent the noise-only contribution than a signal+noise contribution. This
motivates the minimal statistics approach for noise estimation.

against which other kind of estimators could be compared.
As a second contribution, we investigate a procedure to fix
an important parameter involved in the minimal statistics
estimation approach, namely the threshold which isolates the
minimal subset. In this paper, the spectral kurtosis is studied
as a potential indicator for the determination of this threshold.

The paper is organized as follows. Section II outlines the
minimal statistics approach. Considering the STFT and the
spectrogram, the section III describes the probability distri-
butions of the time-frequency coefficients as well as their
truncated versions. Section IV presents the Minimal Statistics
Maximum Likelihood estimator of the noise time-varying
power spectrum. The bias and variance of this estimator is
studied in regard to the presence of signal within the estimation
sample. The determination of a fair minimal subset is the
focus of section V. A procedure based on the spectral kurtosis
of the STFT coefficients is proposed and discussed. Section
VI illustrates the validity of the method on synthetic signals
and provides a comparison with some of the above-mentioned
estimators. An application of the proposed estimator in a time-
frequency detection procedure is also proposed and discussed.
Finally, section VII summarizes the main results, draws some
conclusions and suggests future studies.

II. MINIMAL STATISTICS ESTIMATION

For the purpose of illustration, the probability density
functions (pdf) of two kinds of spectrogram coefficients are
plotted in figure 1. The plain curve is the pdf of a central
chi-square variable which describes the distribution of a noise-
only spectrogram coefficient. The dashed curve is the pdf of
a non-central chi-square variable describing the distribution
of a signal+noise spectrogram coefficient. This figure em-
phasizes the fact that if one keeps only the smallest values
within a given neighborhood of time-frequency coefficients,
the selected subset will contain noise-only coefficients in a
much higher proportion than signal+noise coefficients. The
minimal statistics approach relies on the possibility to infer the
characteristics of the noise from this kind of minimal values
subset.

In the initial works of Martin based on a smoothed pe-
riodogram [9], the smallest coefficient within a sliding time

window of predefined length was sought at every frequency
bin. According to the probability distribution of this minimum,
a multiplicative gain was applied to recover the noise power.
However, in spite of the recursive smoothing, the variance
of the minimum and hence of the estimator is high. So as
to reduce the variance, it has been proposed to replace the
minimum by the ¢** quantile observed within the same time
window [12], or within a time-frequency neighborhood [13].
The choice of the quantile remains however ad hoc and the
application of a multiplicative gain is unspecified. In [14], the
Best Linear Unbiased estimator of the noise power is derived
for a minimal subset containing the Z smallest values within
a time-frequency neighborhood. But again, the choice of the
size Z of the minimal subset is arbitrary.

In the context of a non-white and non-stationary noise, the
minimal statistics approach requires three key elements to be
considered:

i) How to determine the initial time-frequency estimation
neighborhood? To estimate the noise statistics, the initial set
of time-frequency coefficients must contain noise-only coef-
ficients. If trivial, this requirement imposes to the estimation
neighborhood to be large enough to ensure the presence of
noise-only coefficients, even in the case of long-duration and
wide-band signals. On the other hand, as required by any
statistical inference process, the noise must be identically
distributed within this initial neighborhood. In the presence
of possibly non-white and non-stationary noise, this second
constraint requires to minimize the size of the initial time-
frequency neighborhood. As fundamental as can be this ques-
tion, no procedure has yet been proposed to adapt this initial
neighborhood to any given signal. This question is out of the
scope of this paper and we consider the initial neighborhood
is given. Finally, the probabilistic independence of the time-
frequency coefficients within the estimation neighborhood is
of great interest as it simplifies the mathematical derivation
of the estimator. In time-frequency signal analysis, this inde-
pendence can be controlled via the parameters involved in the
construction of the time-frequency representation and will also
be assumed satisfied'. The case of correlated samples has been
considered in [11].

ii) How to determine the threshold which selects a minimal
subset with noise-only coefficients? This threshold (or quan-
tile) should isolate the low valued noise-only coefficients from
the higher valued signal+noise coefficients. This threshold
controls the trade-off between the bias and the variance of
the estimator. With a low threshold, the minimal subset will
be small and will only contain noise-only coefficients, assuring
unbiasedness but a high variance. On the other hand, a minimal
subset obtained with a high threshold will contain a large
number of coefficients but will also probably include some
signal+noise coefficients. This will result in a low variance
but possibly biased estimation of the noise. To this regard, the
threshold assuring an unbiased estimation with the smallest
variance corresponds to the smallest signal+noise coefficient.
Except for the original choice of the minimum value [9], no

!For the STFT and the spectrogram, a factor of zero-padding less than 2 and
a shift of the analysis window greater than its half-length result in reasonably
independent coefficients in time and frequency.
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procedure has been proposed concerning the determination of
this threshold. One of the two contributions of the present
work, initiated in [15], is to investigate the possibility to rely
on the spectral kurtosis of the time-frequency coefficients to
determine a suitable threshold.

iii) Given a minimal subset, how to estimate the noise?
Given a subset of minimal values, the mathematical expression
of the estimator must be formulated. This formulation must
take into account the truncation induced by the thresholding
and should be robust to a possibly small number of selected
coefficients. Many formulations are possible according to the
kind of estimation criterion. In this paper, the performances
of the Maximum Likelihood (ML) estimator are investigated.

III. PROBABILITY DISTRIBUTIONS IN THE
TIME-FREQUENCY DOMAIN

Based on time domain assumptions, the random behavior
of the signal in the time-frequency domain is described when
considering the STFT and the spectrogram.

A. Time-domain signal

We consider a discrete-time real-valued observation x[n]
composed of the sum of a signal of interest d[n] and a noise
wln], that is

z[n] = d[n] + wn]. (1)

The signal and the noise are assumed to be independent. The
random perturbation w[n] is assumed to be Gaussian, centered,
with the non-stationary autocovariance function T'y,[n,l] =
E{w[n]w[n+1]}, where E{.} stands for the expectation. Note
that for a white and stationary Gaussian noise with variance
o2, one has T',[n,l] = 024[l], with 6[.] the discrete Dirac
function.

B. Short-Time Fourier Transform and the truncated case

Given an analysis window h[n] centered about n = 0, the
STFT of the signal x, denoted F,[n, k], can be written as

Pkl = hllleln + ] exp (-mk}(), %)

= Fyln, k] + Fyln, k],

with L the length of the analysis window and K the number
of frequency bins. Except for the frequency indexes k close to
0, K/2 and K (i.e. for the normalized frequencies k/K close
to 0, 0.5 and 1), and under the condition that the analysis
window smoothly reaches the value O at its boundaries, the
noise-only STFT coefficients Fy,[n, k] are distributed as a
circular complex Gaussian variable [16], [17], [18], [19]. The
circularity means that the real and imaginary parts are inde-
pendent and have the same variance. The probability density
function (pdf) of the noise-only STFT complex coefficients
Fyn, k] = R(Fyn, k]) + iS(Fy[n, k]), with ® and $ the
real and imaginary parts, is

pr(R(Fu(n, k), S(Fun, k])) =

n 24 w [Ty 2
oy exp (AU ) 3)

Yuw[n,k

where the scale coefficient 7,,[n, k| is the time-varying power
spectrum of the noise defined as the second order moment of
its STFT, i.e.

Yw[n, k] = E{Fyn, k|Fgn, K]} . )

The estimation of ~,[n,k] is the focus of the present
work. Note that for a white and stationary Gaussian noise
with variance o2, one has 7,[n,k] = o2 if the analysis
window is taken such that > w?[n] = 1. Substituting
the polar variables (p[n,k],0[n,k]) for Cartesian variables
(R(Fyn, k]), S(Fw[n, k])) in the equation (3) and integrating
over O[n, k| as suggested by the circularity of F’, the pdf of
the modulus of a noise-only STFT coefficient can be written
as [15]

&)

n n 2
pr (ol k) = 220K o ( pln. K )

Yeo[125 K] Ve [125 K]

The minimal statistics approach relies on the selection of
the smallest time-frequency coefficients by the application
of a threshold \/u on their modulus p[n,k] or u on their
squared modulus as it will be the case with the spectrogram.
As a consequence, the selected time-frequency coefficients are
distributed as a truncated circular complex Gaussian variable,
denoted T, whose pdf is, for 0 < p[n, k] < \/u,

pr, (pln, k) =
2 pln,k] _ p[n.k)?
s G—— N (~55) - ©

The kurtosis (fourth-order cumulant) of this distribution will
be used in the section V for the determination of a suitable
threshold .

C. Spectrogram and the truncated case

The spectrogram is the squared modulus of the STFT,
Sen, k] = Fy[n, k) F[n, k]. 7

When the STFT is a circular complex Gaussian variable,
the spectrogram is distributed as a chi-square variable with
2 degrees of freedom [20], [19]. Consequently, the noise-
only coefficients have a central chi-square distribution with
2 degrees of freedom (this also corresponds to an exponential
distribution), with the scale parameter ~y,,[n, k] defined in (4).
The corresponding pdf is given by

1 s
= i P (‘mn,kﬁ ' ®)

Taking into account the truncation threshold u used in the
minimal statistics approach, the pdf of the right-truncated
exponential distribution is, for 0 < s < u,

p(s) = grrast) ©

1 1 o ( s )
) xp | ——— |,
u w|n, k w s, k
1 —exp (—%[n’k]) Ywl[n, k] Y[, k]

where C(.) stands for the cumulative distribution function of
an exponential variable with scale parameter v,, [21]. Based
on this pdf, the Minimal Statistics ML estimate of the scale
parameter 7,, is presented in section IV.

ps(s)
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IV. MINIMAL STATISTICS MAXIMUM LIKELIHOOD
ESTIMATION OF THE NOISE

This section presents and evaluates the Minimal Statistics
Maximum Likelihood (MiniSMalL.) estimate of the noise time-
varying power spectrum 7, [n, k] defined in (4). We emphasize
that this quantity provides a mean time-frequency energetic
description of a random signal w. However, other quantities
pursuing the same objective can easily be defined consider-
ing other quadratic or bilinear time-frequency distributions.
The Wigner-Ville spectrum defined in [22] states the case
of the Wigner-Ville distribution. The meaningful quantity to
be estimated is induced by the initial choice of a time-
frequency representation. Because of its intuitive meaning and
its practical usefulness, the definition given in (4) has been
coined with the terminology physical spectrum in [23].

A. Formulation

Consider a sample {S(;}._, , of Z independent and
identically distributed (i.i.d) spectrogram coefficients whose
pdf is given in (10). According to the truncation threshold u
and the scale parameter -,,, the log-likelihood function is

L ({S(i)}izl:z > Uy 'Vw) =
-7 {hq’yw +1In (1 — exp <—%)) + %} ;

where m,, denotes the empirical mean of the minimal subset
{8 }ic1z

(10)

1 Z
mUZEZS@. (11)
=1
Through derivative with respect to ,,, the ML estimator 9,,,,
of the noise is given as the solution of the equation

u

u

exp (52) — 1
This equation is solved numerically with the Newton-Raphson
method. The equations relative to this method are given in
the Appendix A. We emphasize that one problematic situation
appears as the sample mean m, becomes greater than the
half-threshold u/2. For these cases, the ML equation (12)
does not admit any solution. This situation may happen when
the number Z of coefficients is very small (order of 10) and
their empirical distribution looses the monotonic decreasing
nature of the exponential distribution (which is satisfied when
my, < u/2). An inspection of the mean m,, is thus required
before solving the ML equation. If the condition is not met,
one may increase the threshold w. If the threshold is already
high, one may also set the estimated value +,, to zero. This last
possibility preserves the variance of the estimator and ensures
a probability of existence equal to 1 [21].

'AYwML — My — = O (12)

B. Estimator performances

The ML estimator (12) has the nice asymptotic (as Z and u
approach infinity) properties of gaussianity, unbiasness, con-
sistency and achieves the Cramer-Rao Lower Bound (CRLB)

[24], [25]. Its asymptotic variance is given by [25]

Yoo | v exp(u/yw)

Z " % (e (u/va) = 1
This indicates that the performance of the estimator rapidly

degrades as the sample size Z gets smaller, but most important,
as the normalized threshold u,,, defined as

(13)

007 o0 {Fun } =

Up = —,
PY’LU

gets also smaller. Indeed, the second term in the right hand
side of the equation (13) (including the exponent —1) increases
from 1 to +o0 as the normalized threshold (14) decreases from
+00 to 0. This term is of order 1, 10 and 102 as u,, takes the
value 10, 1 and 0.1. However, these large sample optimal prop-
erties may not be true in the case of finite and possibly small
values of Z and u,,. Typically, we are looking for an estimation
which could handle a sample size Z as small as 100 and a
normalized threshold u,, between 0.5 and 1. The "MiniSMaL.
estimator” y.sva. efers to the ML estimator defined in (12)
applied in this kind of practical context. Figure 2-a) displays
two distribution curves of the estimates obtained with samples
of size Z ~ 40 (circled green) and Z ~ 250 (crossed red). The
estimation samples (i.e. the minimal subsets) are constructed
by applying a normalized threshold u,, with value 0.5 and 1 on
an exponentially distributed random sample of size N = 100
and N = 400 respectively?. In our context of estimating the
power of a non-white and non-stationary noise in the time-
frequency plane, these two curves are designed to account
for a pessimistic situation (N = 100, u,, = 0.5) as opposed
to an optimistic one (N = 400, u, = 1). The associated
probability distribution are clearly non-Gaussian, especially in
the pessimistic case, indicating that the asymptotic properties
are far from being verified. For both cases the normalized bias,
defined for any given noise estimate 7,, as

Bn:E{’)/w_’Yw}7
'Yw

is found to be of the order of 1072 which we consider
satisfactory in our context. For a closer inspection, we consider
the normalized variance of the MiniSMaL estimator computed
as var {’A}/wMiniSMaL} /77%1 where var {’%UMiniSMaL} is the empirical
variance of the MiniSMaL estimator observed over a set of
experiments with finite Z and w. The result is displayed in
figure 2-b) as a function of the sample size Z considering
uy, = 0.5 (dashed green lines) and u,, = 1 (plain blue lines).
For comparison, the normalized asymptotic variance defined
in (13) is also plotted. Considering the case u, = 1, the
normalized variance is found superior to 1 and is 8 times
greater than the asymptotic prediction when Z = 50. Safer
performances are obtained with Z > 150 and the asymptotic
CRLB is nearly reached when Z = 250 (the normalized
variance of the MiniSMaL estimator takes the value 0.086
as compared to 0.05). The situation is worst for a smaller
threshold u,, = 0.5 as the normalized variance is found to

(14)

(15)

2The parameter N indicates the size of the initial estimation time-frequency
neighborhood from which the minimal subset of the Z smallest coefficient is
constructed.
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Figure 2. Performances of the MiniSMaL estimator. (a) Two distribution curves, one pessimistic (circled green) and one optimistic (crossed red), of the
estimates Yuwyyisma. Obtained with a normalized threshold w,, (14) applied on an initial set of N samples. Z represents the approximate number of samples
kept for the estimation. Histograms were constructed from 10° experiments. (b) Empirical normalized variance var {Awsinismar, + Of the MiniSMaL estimator
as a function of Z for u, = 0.5 (circled dashed green) and u, = 1 (crossed blue), and comparison with the asymptotic expression (13). Empirical variances

are evaluated from 10* experiments.

be always greater than one and far from the asymptotic in the
range of Z considered in figure 2-b). For Z = 250, we observe
a normalized variance of 1.4 (the asymptotic prediction gives
0.2). Not reported in the figure, the performances of the
MiniSMaL estimator with w,, = 0.5 are comparable with the
asymptotic predictions for a sample size Z of the order of 10,

The second point that strongly degrades the performance of
the noise estimator is the presence of signal coefficients among
the minimal subset. This situation appears when the truncation
threshold is too high. So as to examine the impact of this
situation, two models are considered for the signal d[n] (see
equation (1)): a deterministic one and a stochastic one. In both
cases, the performances of the MiniSMaL. estimator in terms
of the normalized bias defined in (15) and the normalized
standard deviation defined as

N 2
Yw — Yw
Std,, = ,| E _— ,
( E {fw} )

(16)

are evaluated as a function of two parameters : the signal to
noise ratio and the proportion P of signal within the initial
estimation neighborhood. Considering an estimation neighbor-
hood containing N time-frequency coefficients among which
S coefficients belong to the time-frequency region of support
of the signal d, the proportion of signal is defined as P = S/N.

Case 1 : deterministic signal d[n]. When the signal of
interest d[n] in (1) is a deterministic signal, noted d;[n], we
model the STFT coefficients Fy, [n, k] as

Fy [n, k] = A[n, k]e®, (17

with A[n, k] a given (deterministic) amplitude and ¢ a ran-
dom phase uniformly distributed in the interval [—, 7]. The
corresponding spectrogram coefficients are given by

Sa, [n, k] = A%[n, k). (18)

This model aims to describe the general class of amplitude
and frequency modulated signals. As those signals are narrow-
band over a short period of time, it can be assumed that they
correspond to rather small values of P. In this case, the signal
to noise ratio is defined as
2
SNthuk}::fiﬁkjj.
Ywln, k]
Case 2 : stochastic signal d[n]. In the case where d[n] in (1)
is a stochastic signal, noted da[n], assumed to be Gaussian
and centered, its spectrogram coefficients are distributed as a
central chi-square variable with 2 degrees of freedom,

Sdz [’ﬂ, k] ~ X2(2a "Yd[n, k]v O)

19)

(20)

The scale parameter 7, of this variable is the physical spectrum
(as defined in (4)) of the signal dz[n]. As compared with the
first model, this stochastic model is more adapted to represent
the class of broad-band signals with a wide time-frequency
region of support and consequently large P. The appropriate
signal to noise ratio is defined for this case as
SNRQth]:ZJE&EEi.
Ve [12, K]
Note that the SNRs defined in (19) and (21) correspond to
local time-frequency SNRs and are meaningful only over the
time-frequency region of support of the signal d.

Figures 3 and 4 show the values of the normalized bias
and the normalised standard deviation as a function of the
normalized threshold u,, in case 1 (figure 3) and in case 2
(figure 4). The estimations have been carried over 2000 noise
runs. For both cases, the sequence P = 0,10, 20, 50 and 80%
have been chosen for the signal proportion P (left columns)
while the variations over the SNR lie between —3 and 9 dB
(right columns). Similar general results are observed in regard
to the deterministic or stochastic nature of the signal. In both
cases and for every values of SNR and signal proportion

2L
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Figure 3. Performances of the MiniSMaL noise estimator in presence of a deterministic signal. Left column: (a) absolute value of the normalized bias and
(c) normalized standard deviation for SN R = 4dB and for different signal proportion P. Right column: (b) absolute value of the normalized bias and (d)
normalized standard deviation for a signal proportion P = 20% and for different SNR. The results are obtained over 2000 noise runs. For each plot, the
markers identify the operating points obtained with a spectral kurtosis x equal to —0.6 (Blue diamonds), —0.4 (red stars) and —0.1 (green triangles). These

latter points are described in section V.

P (figures 3 and 4, plots -a) and -c)), the bias decreases
as the threshold increases, admits a minimum, goes up and
finally stabilizes as all the coefficients become smaller than the
threshold, and hence are selected within the minimal subset.
We emphasize that this minimum observed in the curve of the
bias appears when the threshold is placed around the value
of the smallest signal+noise coefficient. In this situation, the
largest possible number of noise-only coefficient is selected
within the minimal subset. For higher thresholds, some signal
coefficients are selected and the estimator becomes more
biased. We note that the value of the minimum bias can be
far from zero, indicating a rather biased estimation as soon
as the initial signal proportion P becomes too high. As an
example, the normalized bias is more than 10% for a signal
proportion P higher than 50%. On the other side, a higher
SNR leads to a smaller bias, as the distinction between signal
and noise is more effective. Interestingly, the minimum bias is
always observed for a threshold w close to the noise power 7,

(i.e. u, ~ 1). Concerning the variance of the ML estimator,
we observe a logical reduction with increasing threshold (and
hence increasing sample size Z), see figures 3 and 4, plots -b)
and -d). Note that the variations over the SNR have a limited
impact on the estimator variance.

From these observations, we conclude that the minimal
statistics ML estimator is highly sensitive to the presence
of signal within the minimal subset. In those unfavorable
contexts, a strong bias is observed. In between, it appears
that a minimum bias is reached for some specific value of
the truncation threshold u. We suggest that the interest of
the minimal statistics approach is linked with the ability to
pick out this specific threshold. The choice of this threshold
hence appears as a crucial key element if one wants to
use the minimal statistics approach. In the next section, the
spectral kurtosis is studied as a potential tool to work out this
specific thresholding task. We also refer to [15] for an initial
presentation of this work.
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Figure 4. Performances of the MiniSMaL noise estimator in presence of a stochastic signal. Left column: (a) absolute value of the normalized bias and
(c) normalized standard deviation for SN R = 4dB and for different signal proportion P. Right column: (b) absolute value of the normalized bias and (d)
normalized standard deviation for a signal proportion P = 20% and for different SNR. The results are obtained over 2000 noise runs. For each plot, the
markers identify the operating points obtained with a spectral kurtosis x equal to —0.6 (Blue diamonds), —0.4 (red stars) and —0.1 (green triangles). These

latter points are described in section V.

V. MINIMAL SUBSET DETERMINATION WITH SPECTRAL
KURTOSIS

In this section, the spectral kurtosis of the STFT coefficients
is considered as a potential tool to determine the minimal
statistics threshold u. As noted in section III-B, the truncated
STFT of a Gaussian noise has a truncated circular complex
Gaussian distribution. The spectral kurtosis of this kind of
random variable is first presented. Second, in the context of
the minimal statistics estimation, the influence of signal on this
spectral kurtosis is investigated. Finally, the use of the spectral
kurtosis in the minimal statistics approach is discussed.

A. Spectral kurtosis: definition

The spectral kurtosis is the definition of kurtosis applied
to complex random variables [26]. The spectral kurtosis of a
\/ﬂ—truncated3 circular complex Gaussian variable T;,, whose

3A threshold u applied on the spectrogram corresponds to a threshold /u
applied on the modulus of the STFT.

Spectral kurtosis SK

-0.8 L L I

-2 -1 0 1 2

10 10 10 10 10

Normalized threshold u

Figure 5. Evolution of the spectral kurtosis x of a /u-truncated circular
complex Gaussian variable with covariance matrix v, /2 X I2, with respect
to the normalized threshold u, = u/vuw.

pdf is given in (6), is given by [15]
E {T2T:2
E{T,T:}
2 2
oo () Y (e ) 2
5 .
o (32) 1]

SKA{Ty} (un) =
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Un, SK SK Un
0.1 — -0.655 06 — 057
1 — -0.546 04 - 212
10 —  -0.0036 -0.1 — 5.19
Table T

TABLE OF CORRESPONDENCE BETWEEN SOME SPECIFIC VALUES OF THE
SPECTRAL KURTOSIS OF A TRUNCATED CIRCULAR GAUSSIAN RANDOM
VARIABLE AND THE ASSOCIATED NORMALIZED THRESHOLDS Up,.

We highlight that the spectral kurtosis is not directly dependent
on 7, but rather on the normalized threshold wu, defined
in (14). The monotonic increasing evolution of the spectral
kurtosis as a function of wu,, is depicted in figure 5. When the
threshold increases, the truncated complex Gaussian variable
tends to be a full complex Gaussian variable and its spectral
kurtosis becomes 0. In complement to the figure 5, table I gives
some specific correspondences between the spectral kurtosis
and the normalized threshold.

The monotonic behavior of the spectral kurtosis as a func-
tion of the normalized threshold u, is of great interest in
regard to the choice of a (non-normalized) minimal statistics
threshold w. Indeed, for any threshold \/u applied on an initial
set of noise-only STFT coefficients, the spectral kurtosis of
the remaining subset provides, with a one to one relation,
the ratio between the threshold w and the noise power ~,,.
The determination of the minimal statistics threshold can
thus be conducted with the following procedure: for any a
priori choice of the normalized threshold, a unique spectral
kurtosis exists and one can change the threshold applied to the
time-frequency coefficients until the desired spectral kurtosis
is observed. It has been observed in section IV-B that the
bias of the MiniSMaL noise estimator is minimum when the
normalized threshold wu,, is close to 1. If no signal is present
within the minimal subset, this threshold corresponds to a
spectral kurtosis equal to —0.546 (see table I). In an ideal
context, this value of kurtosis could thus be used for the
determination of a suitable threshold. However, the presence
of signal within the minimal subset modifies its kurtosis and
has to be taken into account as it will be observed in the next
paragraph.

Note: as proposed in [15], one could think about estimating
the noise directly with the kurtosis as it provides the ratio
between the known applied threshold u and the noise 7.
However, the variance of the resulting estimator has been
found to be higher than the variance of the ML estimator
presented in section IV.

B. Influence of signal on the spectral kurtosis

The influence of the signal on the spectral kurtosis of
the minimal subset is depicted by the figures 6, 7 and 8.
Figure 6 shows the evolution, with respect to the normalized
threshold w,,, of the spectral kurtosis of the truncated STFT
for a Gaussian noise alone (plain thin line), a deterministic
signal embedded in that noise (dashed line) and a random
signal embedded in that noise (dot-dashed line). The signals
are those defined in section IV-B. The SNR is fixed at 3dB
and the proportion P of signal is equal to 10%. As expected,
the presence of signal makes the spectral kurtosis diverge from

0.6
noise onl PR
0.4f o LRI 1
— — —deterministic signal P
02F | == random signal Sl T

spectral kurtosis SK

-1 0 1

10 10 10
normalized threshold w,,

Figure 6. Spectral kurtosis SK of the truncated STFT for a Gaussian noise
alone (plain blue line), a deterministic signal (dashed green line) and a random
signal (dot-dashed red line) with respect to the normalized threshold w,,. The
SNR is equal to 3 dB and the proportion of signal contained in the initial set
of time-frequency coefficients is P = 10%.

0.2} - Increasing signal f)roportion P
from 10 to 100 %

spectral kurtosis SK

normalized threshold w,,

Figure 7. Spectral kurtosis SK of the truncated STFT for a random noisy
signal with respect to the normalized threshold u,,. The SNR is equal to 4
dB and the proportion of signal contained in the initial set of time-frequency
coefficients varies from P = 10% (upper line) to P = 100% with a step of
10%.

the noise-only case as the threshold gets higher. However, as
the normalized threshold w,, remains less than 4, the spectral
kurtosis of the three signals are very close. Note that the
spectral kurtosis evaluation becomes unstable for very low
thresholds, as only a small number of coefficients are selected.

Figure 7 shows the evolution, with respect to the normalized
threshold u,,, of the spectral kurtosis of the truncated STFT of
the noisy random signal as the proportion P of signal varies
from 0 to 100%. The SNR is fixed at 4dB. When the proportion
of signal increases, the spectral kurtosis of a signal+noise
subset tends to diminish and becomes smaller than for a noise-
only estimation subset. This divergence will affect the selected
threshold.

To further study the influence of signal on the resulting
threshold, we consider the random signal and the deterministic
signal of section IV-B. For both signals, the influence of the
SNR is investigated for a proportion of signal P = 50%, and
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Figure 8. Influence of the signal parameters on the normalized threshold w,,
calculated at the spectral kurtosis kK = —0.546. (a) uy, as a function of the
proportion of signal P for SNR = 4dB and (b) uy, as a function of the SNR
for P = 50%. The curves display the mean result over 2000 noise runs.

the influence of the proportion of signal is investigated for
SN R = 4dB. For each parameter, the threshold corresponding
to SK = —0.546, that is the spectral kurtosis corresponding
to a normalized threshold u,, = 1 in the noise-only case, is
computed and averaged over 2000 realizations of noise. Figure
8 displays the results. The higher the proportion of signal,
the higher the threshold. In other words, when the signal is
sparse in the time-frequency domain, it has a small influence
on the threshold. Moreover, the threshold keeps close to one
for proportion of signal up to P = 50%. On the other hand,
the SNR does not have a monotonic influence on the threshold.
The highest divergence appears around SN R = 4dB. Given
a quite high proportion of signal P = 50%, the obtained
threshold in the worst SNR case does not exceed u,, = 1.5.

C. Discussion

In summary, the spectral kurtosis (23) is a monotonically
increasing function of the truncation threshold u. As a con-
sequence one can easily determine a suitable threshold to

use in the MiniSMaL estimator of section IV by imposing
a value ~ to the spectral kurtosis of the minimal subset. The
determination of the truncation threshold only depends on the
spectral kurtosis of the minimal subset, independently from
the noise variance or the signal. The choice of a small « leads
to a low threshold, while a high ~ leads to a high threshold,
but in both cases bias and standard deviation keep reasonably
low. The usual trade-off between bias and variance is made
by choosing x between -0.6 and -0.1.

On figures 3 and 4 are plotted the thresholds corresponding
to a spectral kurtosis of —0.6 (blue diamonds), —0.4 (red
stars) and —0.1 (green triangles). One can observe that a
threshold corresponding to spectral kurtosis between —0.6 and
—0.4 leads to good values of bias and variance. Note that
the presence of signal tends to slightly increase the desired
threshold, especially if the signal is not sparse.

VI. APPLICATION AND COMPARISON

This section illustrates the results of the MiniSMaL noise
estimator with a minimal subset determined by the method
proposed in the previous section. First a synthetic signal
embedded in a white and stationary noise is analysed. All the
parameters being under control, the estimation performance is
calculated and compared with the Median Absolute Deviation
(MAD) method [27]. Second, estimation of the noise in a non-
white and non-stationary context is examined. Considering
a synthetic signal and noise, the MiniSMaL estimator is
compared to three other methods which belong respectively
to the iterative, recursive and minimal statistics classes of
estimators mentioned in the introduction. Third, considering a
real-world acoustic dolphin signal, the noise estimate obtained
with the MiniSMaL estimator is injected into a time-frequency
detection procedure as possibly required for time-frequency
filtering or classification.

A. Synthetic signals : white and stationary noise

We consider a 8000-sample synthetic signal made of three
non-stationary signals: a linear chirp with an amplitude of 0.5,
a sinusoidal frequency modulation with an amplitude of 1, and
a Gaussian signal with a variance o2 equal to 32, limited in
both time and frequency. Figure 9-a) shows the spectrogram
of this signal embedded in an additive white and stationary
Gaussian noise of variance 0> = 0.5. The spectrogram is
constructed with a 127-sample Hanning window,an overlap
of 62 samples and 512 frequency bins.

We performed noise estimations based on 1000 realizations
of the additive noise with variance ranging from 0.125 to 256.
The minimal subset truncation threshold was determined with
a spectral kurtosis fixed to £ = —0.4. For comparison, we also
considered the Median Absolute Deviation (MAD) estimator

of the noise variance defined over a set { X;} of points as [27]:
MaD = median, (| X; — median;(X;)]). (23)

The MAD is a consistent estimator of the standard deviation of
the random variable X when multiplied by a constant which
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Figure 9. (a) Spectrogram of the synthetic signal given an additive white and stationary noise of variance o2 = 0.5. (b) Normalized bias of the MiniSMaL
(plain blue line) and MAD (dashed red line) estimators as a function of the noise variance 2. Vertical bars indicate the normalized standard deviations.

Performances are calculated over 1000 realizations of the noise.

depends on the distribution of X. For a Gaussian distribution,
the estimate of the standard deviation is obtained as

6 =~ 1.4826 MaD. 24)

Following the properties of the median, this noise estimator is
known to be robust to outliers. This property is of interest in
the case of a signal embedded in noise, as the signal may be
considered as outliers of the noise. As the STFT coefficients
are complex-valued, the MAD noise power spectrum estimate
Auwmap 18 computed as

Yo = Frmap + FimaDs (25)

where o,vap and Jd;yap are the MAD estimates of the
standard deviations of the real and imaginary parts of the noise
STFT.

Figure 9-b) displays the normalized bias B, (15) of the
MiniSMaL. and MAD estimators. The error bars correspond to
the normalized standard deviations Std,, defined in (16). For
this signal, the MiniSMaL estimator is much more efficient
than the MAD estimator. For instance considering the high
SNRs (small noise variance), the MAD estimator is highly
biased while the bias of the MiniSMaL remains stable. As
the noise variance increases, the signal becomes negligible
compared to the noise and both estimators tend to be iden-
tically unbiased. Note however that the MiniSMaL. estimator
has a higher standard deviation, as the minimal subset strategy
decreases the size of the estimation sample. For the range
of variances considered, the MiniSMaL estimator leads to a
normalized bias always below 11%.

B. Synthetic signals : non-white and non-stationary noise

We consider now the case of a non-white and non-stationary
additive noise whose spectrogram is displayed in figure 10-a).
Note that for the convenience of the 3-D visualization, the
time and frequency axes are in an unusual reversed direction.
This noise is a 25000-sample signal obtained by applying

a time-varying multiplicative gain to the output of a linear
time-invariant IIR filter excited by a white and stationary
Gaussian noise with variance equal to 1. The signal of interest
embedded in this noise is made of frequency modulated signals
arranged so as to form the "chi?" logo in the time-frequency
plane, see figure 10-b). Spectrograms are constructed with a
Hanning window of length 256, an overlap of 128 samples and
512 frequency bins which yield to a 194x256 time-frequency
image. The sampling frequency is 5000 Hz.

The MiniSMaL estimator requires an initial estimation
neighborhood within which the minimal subset will be se-
lected. As mentioned in section II, this time-frequency neigh-
borhood should be as large as possible while containing identi-
cally distributed noise coefficients. In the previous section the
noise was white and stationary: the whole spectrogram was
considered as the time-frequency neighborhood. For a non-
white and non-stationary noise, the initial estimation neighbor-
hood should be of limited size in both time and frequency. The
estimation neighborhood used in the present application spans
over 15 frequency bins and 15 time bins, which represents a
total of N = 225 time-frequency coefficients. The minimal
subset was selected according to a spectral kurtosis fixed at
k = —0.4. According to those parameters, the minimal subset
has an average size of Z ~ 130 coefficients.

Figures 11 and 12 display the results obtained with the
MiniSMaL estimator with comparison to three other estimators

o The RecAv estimator was proposed in [5]. It belongs to
the class of algorithms which use a recursive averaging
of the STFT coefficients.

e The IterDesc estimator was proposed in [6]. It belongs
to the second class of iterative estimation/rejection algo-
rithms mentioned in the introduction.

o The third estimator used for comparison is the initial
Minimal Statistics estimator proposed in [9]. We coin the
name MiniStatRecAv as it uses the statistic of the smallest
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Figure 10. (a) Spectrogram of the synthetic non-white and non-stationary additive noise considered in section VI-B. Note that for a convenience of visualization,

the time and frequency axes are reversed. (b) Spectrogram of the noisy signal.

coefficient observed in a recursively averaged STFT. For
comparison with the proposed estimator, we use the same
15-bin time window for the minimum searching.

Figure 11 displays the estimation results in the entire time-
frequency plane. The time and frequency axes direction are
the same as in figure 10-a). Taking benefit of its estimation
neighborhood which spreads in both time and frequency, the
MiniSMaL estimate is not impacted by the presence of signal.
Furthermore, it is observed that the MiniSMaL estimator pro-
vides a fair trade-off between the time-frequency smoothness
of the estimate and the possibility to track the abrupt changes
of the noise power spectrum. For a closer inspection, figure
12-a) displays the noise estimates as a function of time at
1750 Hz (see the horizontal black line in figure 10-b)). The
effect of the spread in time of the estimation neighborhood is
clearly visible around the abrupt changes of the noise where
the MiniSMaLL and the MiniStatRecAv estimators have the
same performance as they use the same time window for the
minimum searching. Note however that the proposed estimator
is less sensitive to the presence of signal. Figure 12-b) displays
the noise estimates along the frequency axis at time 1.6 sec
(see the dashed vertical black line in figure 10-b)). All the four
estimators provide qualitatively satisfactory estimates of the
exponentially decreasing noise power spectrum. The IterDesc
estimator has the smallest variance but is very sensitive to
the presence of signal. On the contrary, the MiniStatRecAv
estimator is the more robust to the presence of signal but has
a higher variance. The MiniSMalL strategy lies in between.

We emphasize that the above comparison has been made
as fair as possible. Hours of experiment have been spent to
adjust the parameters of the four estimators so as to obtain
their best results. Table II summarizes those parameters. This
points out that the MiniSMaL estimator is clearly the easiest
to use. It relies on only two parameters: the initial estimation
neighborhood and the spectral kurtosis «. We suggest the
choice x = —0.4 which provides good results for a wide class
of signals.

70
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Figure 14. Power spectrum -, of the noisy signal (dashed green) and estimate
of the power spectrum 4., of the noise alone (plain blue). The noise is
estimated with the MiniSMaL algorithm. The initial time-frequency estimation
neighborhood is 9 frequency bin-wide and contains all time bins (the noise
is stationary). The minimal subset is selected according to a spectral kurtosis
K= —0.4.

C. Time-frequency detection of real-world signals

The estimation of the noise time-varying power spectrum
allows one to pursue a detection task in the time-frequency
domain [28]. As an example, a Neyman-Pearson detection
strategy [29] can be used to determine a time and frequency-
dependent detection threshold S*"[n, k] satisfying

P{Sun, k] > S"[n,k]} = Py, (26)
where Sy [n, k] is a noise-only spectrogram coefficient and
Pr, a chosen Probability of False Alarm (PFA). Assuming
the signal of interest is embedded in a Gaussian noise, the
probability distribution of Sy,[n, k] is that of a x? variable
with two degrees of freedom (see section III-C) and the
time-frequency detection threshold S**[n, k] which satisfies
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Figure 11. Non-white and non-stationary noise estimates obtained with the four estimators considered in the section VI-B. Results should be compared with
the figure 10-a). For convenience of visualization, the time and frequency axes are also reversed.

equation (26) is

S™n, k] = yuwln, k] In(P.1), 27)

with In(.) the natural logarithm. In the case the noise is
unknown, we use the MiniSMaL strategy so as to estimate
its time-varying power spectrum ~y,,[n, k|.

Figure 13 illustrates the result of such a detection procedure
applied to an underwater acoustic signal made of dolphin
whistles. Figure 13-a) displays the spectrogram of the 225000-
sample signal computed with a 1023-sample Hanning window,
an overlap of 511 samples and 2048 frequency bins. The
spectrogram has 1024 (positive) frequency bins and 438 time
bins. The MiniSMaL estimator is used to estimate the power
spectrum of the non-white but stationary noise. The initial
estimation neighborhood spans over 9 frequency bins and all
the time bins, which represents a total of N = 3942 time-

frequency coefficients. The minimal subset threshold u was
computed according to a spectral kurtosis fixed at kK = —0.4.
In this configuration, the minimal subset has an average size
of Z ~ 2200 coefficients. Figure 14 shows the estimated
noise power spectrum 4, [k] superimposed on the noisy signal
power spectrum -y, [k] estimated with the Welch method [30].
Incorporating this estimate into the detection threshold defined
in (27) with a probability of false alarm Py, = 1077 yields to
the detection result shown in figure 13-b). The frequency mod-
ulations forming the dolphin whistles are correctly detected.

Looking at equation (27), the detection threshold S** is
a linear function of the noise power +,,. When the estimated
version 7, is used to calculate the detection threshold, an error
in the estimation directly impacts the result of the detection
procedure. In the following we analyze the relation between
an estimation error and the PFA of the detection test. Lets
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Figure 12. Noise estimates obtained with the four methods along (a) the time line and (b) the frequency line indicated in figure 10-b). The legend displayed

in the subfigure (b) also holds for the subfigure (a).

estimator RecAv [5] IterDesc (6] MiniStatRecAv [9] MiniSMalL
parameters | n = 0.7; neighborhood = 15 * 15; D =15; neighborhood = 15 * 15;
~ = 0.95; pfa =10"3; M = 0.668; k= —0.4;
B =0.5; Nbmin = 4; H = 1.55;
ap = 0.5; Amaz = 0.9;
Qg = 037 QAmin = 0.1;
6 =1.5;

Table 1T
PARAMETERS OF THE FOUR NOISE ESTIMATORS WITH THEIR VALUES USED IN SECTION VI-B.
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Figure 13. (a) Spectrogram of a dolphin whistle in underwater noise. (b) Time-frequency detection result for Py, = 1073,

consider the detection threshold S*" obtained according to
equation (27) with a nominal PFA Py, and a noise estimate
Aw- The same threshold is obtained with the true noise power
7w and an other ’equivalent’ PFA denoted Ppgqeq. According
to equation (27) we can write

S = 3 (Ppyg 1) = 7o In(Pyoey ).

It follows that the relation between the estimation error and
the equivalent PFA is
()
p, N1/

fa0

(28)

Pfaeq = (29)

Denoting Av,, = 4, —7. the difference between the estimated
and the true value of the noise, equation (29) can be rewritten

as
A
1+%”>
Proy 7, (30)

Pfacq =

which highlights the impact of an uncertainty on the noise
power. We illustrate this relation on the following example:
we consider the MiniSMaL estimation of the noise given a
15 * 15 initial time-frequency neighborhood (N = 225) and a
spectral kurtosis criterion x = —0.4. For the ideal case of a
noise-only neighborhood, those parameters lead to a minimal
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subset normalized threshold u,, = 2.12 (see table I) and the
size of the minimal subset is Z = N (1 — exp(—uy,)) = 198.
With those values we calculated the normalized variance of the
MiniSMaL estimator* which we found equal to 0.017. The
associated normalized standard deviation stdn{%,} = 0.13
determines the range of errors typically encountered at the out-
put of the estimation process. Taking this value for Ay, /v
in equation (30), the equivalent PFA of a detection test with a
nominal PFA of 1072 ranges between 10733 and 10=2:61, In
regard to the detection of the dolphin signal presented above,
the normalized standard deviation of the MiniSMaL estimator
is equal to 0.0396 and the equivalent PFA ranges between
10752 and 10~*# (the nominal PFA was Pj,o = 1075).

VII. CONCLUSION

The minimal statistics approach represents an interesting
alternative for the estimation problem of a non-stationary
noise power spectral density. However, two elements have
restricted the practical use of the method. First, it relies on
a selection of the smallest coefficients which have generally
a high variance. As a result, the noise estimators built upon
these coefficients have a high variance. Second, it has appeared
difficult to formulate some automatic procedures in regard to
the determination of its constitutive elements, i.e. the choice
of the initial set of time-frequency coefficients (the estimation
neighborhood) and the determination of the threshold to select
the minimal values subset.

In this paper, the Minimal Statistics Maximum Likelihood
(MiniSMaL) estimator of the noise has been presented and
evaluated. According to the signal to noise ratio and to the
presence of signal within the minimal subset, this estimator
may be strongly biased or may possess a high variance. We
observed that the proportion of signal contained in the initial
neighborhood impacts more deeply the estimator performance
than the overall SNR. However, it has also been observed that
the bias of the MiniSMaL estimator always admits a minimum
for some specific value of the minimal subset threshold. This
specific threshold is generally close to the value of the noise
power itself.

So as to pick out this threshold, the use of the spectral
kurtosis is proposed. It is shown that the spectral kurtosis
of a minimal subset only depends on the ratio between the
threshold and the noise power. This property implies that in
an ideal context where the minimal subset contains noise-only
coefficients, the spectral kurtosis can be used to determine a
threshold leading to a noise estimate close to the minimum
bias. If the presence of signal within the minimal subset can
not be avoided (at low SNRs or for wide time-frequency sup-
ports of the signal), it is shown that the variations induced on
the spectral kurtosis have a small impact on the performance
of the estimator. As a consequence, the spectral kurtosis may
figure as a potential robust tool so as to determine the minimal
subset required by the minimal statistics approach.

Two elements will be considered for further research stud-
ies: first, the MiniSMaL estimator is rooted in a maximum

4As for the results reported in figure 2, the variance was calculated over
10% noise realizations.
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Figure 15. Example of function f(v) (see equation (31)) whose zero is
sought for using the Newton-Raphson method. In this example, the solution
is v* = 1. The initialisation point (red star) located at the left of the desired
root (green circle) ensures the fast convergence of the method. The subfigure
emphasises this convergence through the progress of the first three iterations
(purple points).

likelihood strategy which is not optimal for the small es-
timation sample sizes considered here. Other kind of esti-
mators, like the Best Linear Unbiased, may achieve better
performances in this context. This estimator requires some
additional knowledge (the total number of noise coefficient
within the estimation neighborhood, i.e. N(1— P)) that needs
to be fulfilled with further investigations. Second, the choice
of the initial set of time-frequency coefficients is still an open
issue. This choice must depend on the time and frequency
variability of the noise power spectral density on one hand,
and on the time-frequency region of support of the signal on
the other hand.

APPENDIX A
MAXIMUM LIKELIHOOD SOLUTION WITH THE
NEWTON-RAPHSON METHOD

Given a threshold u, a set of Z coefficients S(i) and their
arithmetic mean m, = %25:1 S(i), the Newton-Raphson
method is used to find the solution * to the ML equation

u

fy)=v—my, — ———— =0, for v > 0.
exp(%)fl

€1y

As plotted in figure 15, the function f(7) is monotonic
increasing and admits a single root (except for the pathological
case discussed in section IV-A). Consequently, the Newton-
Raphson method can be used to find the unique solution. The
initialisation of the Newton-Raphson method is a crucial step
which may lead to non-convergence or aberrant results. In
the present case, the initial value of ~, noted 'y(o), is set to
the arithmetic mean m,, of the Z time-frequency coefficients
S(i)- As my, is necessarily smaller than the solution v* (the
coefficients S(;) are right-truncated exponentially distributed),
this initial value ensures the convergence of the method (see
figure 15) with less than 10 iterations. The iterative procedure
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is summarised as follows:

[1]

[2

—

[3

=

[4

[l

[5

=

[6

=

[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

i 7(0) = My;
for:=1:10
_ (i_l) _ _ u .
f Y My eXp(u/,y(i—l))_lﬁ
p=1 op(ur V) (32)
T GO ew(wrt ) )
| end
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