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Abstract

We establish existence and uniqueness of the solution to the cav-
ity equation for the random assignment problem in pseudo-dimension
d > 1, as conjectured by Aldous and Bandyopadhyay (Annals of Ap-
plied Probability, 2005) and Wästlund (Annals of Mathematics, 2012).
This fills the last remaining gap in the proof of the original Mézard-
Parisi prediction for this problem (Journal de Physique Lettres, 1985).
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1 Introduction

The random assignment problem is a now classical problem in probabilistic
combinatorial optimization. Given an n × n array {Xi,j}1≤i,j≤n of iid non-
negative random variables, it asks about the statistics of

Mn := min
σ

n
∑

i=1

Xi,σ(i),

where the minimum runs over all permutations σ of {1, . . . , n}. This corre-
sponds to finding a minimum-length perfect matching on the complete bipar-
tite graph Kn,n with edge-lengths {Xi,j}1≤i,j≤n. Using the celebrated replica
symmetry ansatz from statistical physics, Mézard and Parisi [10, 11, 12]
made a remarkably precise prediction concerning the regime where n tends
to infinity while the distribution of Xi,j is kept fixed and satisfies

P (Xi,j ≤ x) ∼ xd as x → 0+,
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for some exponent 0 < d < ∞. Specifically, they conjectured that

Mn

n1−1/d

P
−−−→
n→∞

−d

∫

R

f(x) ln f(x)dx, (1)

where the function f : R → [0, 1] solves the so-called cavity equation:

f(x) = exp

(

−

∫ +∞

−x

d(x+ y)d−1f(y)dy

)

. (2)

Aldous [1, 3] proved this conjecture in the special case d = 1, where the term
(x+y)d−1 simplifies and makes the cavity equation exactly solvable, yielding

f(x) =
1

1 + ex
and −d

∫

R

f(x) ln f(x)dx =
π2

6
.

Since then, several alternative proofs have been found [9, 13, 15]. This stands
in sharp contrast with the case d 6= 1, where showing that the Mézard-
Parisi equation (2) admits a unique solution has until now remained an open
problem [4, Open Problem 63]. Wästlund [16] circumvented this issue by
considering instead the truncated equation

fλ(x) = exp

(

−

∫ λ

−x

d(x+ y)d−1fλ(y)dy

)

, 0 < λ < ∞. (3)

Using an ingenious game-theoretical interpretation of this equation, he showed
the existence of a unique, global attractive solution fλ : [−λ, λ] → [0, 1] for
every 0 < λ < ∞, provided d ≥ 1. He then used this fact to establish that

Mn

n1−1/d

P
−−−→
n→∞

lim
λ→+∞

↑ −d

∫ λ

−λ

fλ(x) ln fλ(x)dx. (4)

Wästlund [16] explicitly left open the problem of completing the proof of the
original Mézard-Parisi prediction by showing (i) that the untruncated cavity
equation admits a unique solution f and (ii) that fλ → f as λ → ∞. The
purpose of this short paper is to establish this conjecture.

Theorem 1. For d > 1, the Mézard-Parisi equation (2) admits a unique
solution f : R → [0, 1]. Moreover, fλ → f pointwise as λ → +∞, and

∫ λ

−λ

fλ(x) ln fλ(x)dx −−−−→
λ→+∞

∫

R

f(x) ln f(x)dx.

Consequently, the two limits in (1) and (4) coincide.

In addition, we provide a short alternative proof of the crucial result of
[16] that the truncated equation (3) admits a unique, attractive solution.
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Remark 1. Very recently, a proof of uniqueness for the truncated equation
(3) has been announced [8] for the case 0 < d < 1. It would be interesting
to see if the result of the present paper can be extended to this regime.

Remark 2. For a random variable Z with P (Z > x) = f(x), the cavity
equation (2) simply expresses the fact that Z solves the distributional identity

Z
d
= min

i≥1
{ξi − Zi} , (5)

where {ξi}i≥1 is a Poisson point process with intensity dxd−1∂x on [0,∞),
and {Zi}i≥1 are iid with the same distribution as Z, independent of {ξi}i≥1.
Such recursive distributional equations arise naturally in a variety of models
from statistical physics, and the question of existence and uniqueness of so-
lutions plays a crucial role for the rigorous understanding of those models.
We refer the interested reader to the comprehensive surveys [2, 4] for more
details. In particular, [4, Section 7.4] contains a detailed discussion on equa-
tion (5), and [4, Open Problem 63] raises explicitly the uniqueness issue. We
note that the refined question of endogeny remains a challenging open prob-
lem. Recursive distributional equations for other mean-field combinatorial
optimization problems have been analysed in e.g. [5, 14, 6].

The remainder of the paper is organized as follows. Section 2 deals with
the truncated equation (3) for fixed 0 < λ < ∞ and is devoted to the
alternative analytical proof that there is a unique, globally attractive solution
fλ. Section 3 prepares the λ → ∞ limit by providing uniform controls on
the family {fλ : 0 < λ < ∞} and by characterizing the possible limit points.
This reduces the proof of Theorem 1 to establishing uniqueness in the un-
truncated Mézard-Parisi equation (λ = ∞), which is done in Section 4.

2 The truncated cavity equation (λ < ∞)

Fix a parameter 0 < λ < ∞. On the set F of non-increasing functions
f : [−λ, λ] → [0, 1], define an operator T by

(Tf)(x) = exp

(

−d

∫ λ

−x

(x+ y)d−1f(y)dy

)

. (6)

The purpose of this section is to give a short and purely analytical proof of
the following result, which was the main technical ingredient in [16] and was
therein established using an ingenious game-theoretical framework.
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Proposition 1. T admits a unique fixed point fλ and it is attractive in the
sense that |T nf(x)−fλ(x)| −−−→

n→∞
0, uniformly in both x ∈ [−λ, λ] and f ∈ F.

Proof. Write f ≤ g to mean f(x) ≤ g(x) for all x ∈ [−λ, λ]. In particular,

0 ≤ f ≤ T0

for every f ∈ F, where 0 denotes the constant-zero function. Note also that
the operator T is non-increasing, in the sense that

f ≤ g =⇒ Tf ≥ Tg.

Those two observations imply that the sequences {T 2n0}n≥0 and {T 2n+10}n≥0

are respectively non-decreasing and non-increasing, and that their respective
pointwise limits f− and f+ satisfy

f− ≤ lim inf
n→∞

T nf ≤ lim sup
n→∞

T nf ≤ f+,

for any f ∈ F. Moreover, the dominated convergence Theorem ensures that
T is continuous with respect to pointwise convergence, allowing to pass to
the limit in the identity T n+10 = T (T n0) to deduce that

Tf− = f+ and Tf+ = f−. (7)

Therefore, the proof boils down to the identity f− = f+, which we now
establish. By definition, we have for any f ∈ F,

(Tf)(x) = exp

(

−d

∫ λ

−λ

(x+ y)d−11(x+y≥0)f(y)dy

)

.

Since d > 1, we may differentiate under the integral sign to obtain

(Tf)′(x) = −d(d− 1)(Tf)(x)

∫ λ

−λ

(x+ y)d−21(x+y≥0)f(y)dy.

Integrating over [−λ, λ] and noting that (Tf) (−λ) = 1, we conclude that

1− (Tf) (λ) = d(d− 1)

∫∫

[−λ,λ]2
(x+ y)d−21(x+y≥0)(Tf)(x)f(y)dxdy.

Let us now specialize to f = f±. In both cases, the right-hand side is

d(d− 1)

∫∫

[−λ,λ]2
(x+ y)d−21(x+y≥0)f

+(x)f−(y)dxdy,
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by (7). Therefore, we have (Tf+) (λ) = (Tf−)(λ), i.e.

∫ λ

−λ

d(λ+ y)d−1f+(y)dy =

∫ λ

−λ

d(λ+ y)d−1f−(y)dy.

Since we already know that f− ≤ f+, this forces f− = f+ almost-everwhere
on [−λ, λ], and hence everywhere by continuity. Finally, the convergence
T n0 → fλ = f± is automatically uniform on [−λ, λ], by Dini’s Theorem.

3 Relative compactness of solutions (λ → ∞)

In order to study properties of the family {fλ : 0 < λ < ∞}, we extend the
domain of fλ to R by setting fλ(x) = 1 for x ≤ −λ and fλ(x) = 0 for x > λ.

Proposition 2 (Uniform bounds). For all 0 < λ < ∞ and x ≥ 0,

fλ(x) ≤ exp

(

−
xd

e

)

1− fλ(−x) ≤ exp

(

−
xd

e

)

fλ(−x) ln
1

fλ(−x)
≤ exp

(

−
xd

e

)

fλ(x) ln
1

fλ(x)
≤

(

1 +
xd

e

)

exp

(

−
xd

e

)

.

Proof. Let 0 < λ < ∞. We may assume that x ∈ [0, λ], otherwise the above
bounds are trivial. By definition, we have

fλ(x) = exp

(

−

∫ λ

−x

d(x+ y)d−1fλ(y)dy

)

. (8)

Now, since x ≥ 0 and fλ is non-increasing, we have

∫ λ

−x

(x+ y)d−1fλ(y)dy =

∫ 0

−x

(x+ y)d−1fλ(y)dy +

∫ λ

0

(x+ y)d−1fλ(y)dy

≥ fλ(0)
xd

d
+

∫ λ

0

yd−1fλ(y)dy.

Applying u 7→ exp(−du) to both sides and using (8), we obtain

fλ(x) ≤ fλ(0) exp(−fλ(0)x
d). (9)
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In turn, this inequality implies that for all x ≥ 0,
∫ λ

x

d(y − x)d−1fλ(y)dy ≤ fλ(0)

∫ +∞

x

dyd−1e−fλ(0)y
d

dy = exp(−fλ(0)x
d).

Applying u 7→ exp(−u) to both sides, we conclude that

fλ(−x) ≥ exp
(

−e−fλ(0)x
d

)

. (10)

In particular, taking x = 0 yields fλ(0) ≥ e−1, and reinjecting this into (9)
and (10) easily yields the first three claims. For the last one, observe that
u 7→ u ln 1

u
increases on [0, e−1] and decreases on [e−1, 1], with the value at

u = e−1 being precisely e−1. Therefore, if exp(−xd/e) ≤ e−1, we may use the
bound fλ(x) ≤ exp(−xd/e) to deduce that

fλ(x) ln
1

fλ(x)
≤

xd

e
exp

(

−
xd

e

)

.

On the other hand, if exp(−xd/e) ≥ e−1, then

fλ(x) ln
1

fλ(x)
≤ e−1 ≤ exp

(

−
xd

e

)

.

In both cases, the last inequality holds, and the proof is complete.

Proposition 3. The family {fλ : 0 < λ < ∞} is relatively compact with re-
spect to the topology of uniform convergence on R, and any sub-sequential
limit as λ → ∞ must solve the cavity equation (2).

Proof. Let {λn}n≥0 be any sequence of positive numbers such that λn → ∞ as
n → ∞. By Helly’s compactness principle for uniformly bounded monotone
functions (see e.g. [7, Theorem 36.5]), there exists an increasing sequence
{nk}k≥0 in N and a non-increasing function f : R → [0, 1] such that

fλn
k
(x) −−−→

k→∞
f(x), (11)

for all x ∈ R. Thanks to the first inequality in Proposition 2, we may invoke
dominated convergence to deduce that for each x ∈ R,

∫ λn
k

−x

fλn
k
(y)(x+ y)d−1dy −−−→

k→∞

∫ +∞

−x

f(y)(x+ y)d−1dy.

Applying u 7→ exp(−du) and recalling (8), we see that

f(x) = exp

(

−d

∫ +∞

−x

f(y)(x+ y)d−1dy

)

,

which shows that f must solve the cavity equation (2). This identity easily
implies that f is continuous. Consequently, the convergence (11) is uniform
in x ∈ R, by Dini’s Theorem.
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4 The un-truncated cavity equation (λ = ∞)

To conclude the proof of Theorem 1, it now remains to show that the un-
truncated equation

f(x) = exp

(

−d

∫ +∞

−x

(x+ y)d−1f(y)dy

)

. (12)

admits at most one fixed point f : R → [0, 1]. Proposition 3 will then guar-
antee the convergence fλ −−−→

λ→∞
f , which will in turn imply

∫ λ

−λ

fλ(x) ln fλ(x)dx −−−−→
λ→+∞

∫

R

f(x) ln f(x)dx,

by dominated convergence, thanks to the last inequalities in Proposition 2.
A quick inspection of the proof of Proposition 2 reveals that it remains

valid when λ = ∞. In particular, any solution f to (12) must satisfy

max(f(x), 1− f(−x)) ≤ exp

(

−
xd

e

)

, (13)

for all x ≥ 0. It also clear from (12) that f must be (0, 1)−valued and
continuous. We will use those properties in the proofs below.

Lemma 1. If f, g solve (12), then there exists t ≥ 0 such that for all x ∈ R,

f(x+ t) ≤ g(x) ≤ f(x− t).

Proof. (13) ensures that for any t ∈ R, y 7→ (1 + |y|)(f(y − t) − g(y)) is
integrable on R, so that by dominated convergence,

1

xd−1

∫ +∞

−x

(y + x)d−1 (f(y − t)− g(y))dy −−−−→
x→+∞

∆(t), (14)

where

∆(t) :=

∫

R

(f(y − t)− g(y))dy. (15)

Observe that t 7→ ∆(t) increases continuously from −∞ to +∞, as can be
seen from the decomposition

∆(t) =

∫ +∞

0

(1− g(−y)− g(y))dy +

∫ +∞

−t

f(y)dy −

∫ +∞

t

(1− f(−y))dy.
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In particular, we can find t0 ≥ 0 such that ∆(−t0) < 0 < ∆(t0). In view of
(14), we deduce the existence of a ≥ 0 such that for all x ≥ a,

∫ +∞

−x

(y + x)d−1g(y)dy ≥

∫ +∞

−x

(y + x)d−1f(y + t0)dy (16)

∫ +∞

−x

(y + x)d−1g(y)dy ≤

∫ +∞

−x

(y + x)d−1f(y − t0)dy. (17)

Applying u 7→ exp(−du), we conclude that for all x ≥ a,

f(x+ t0) ≤ g(x) ≤ f(x− t0). (18)

In turn, this implies that (16)-(17) also hold when x ≤ −a, so that (18) actu-
ally holds for all x outside (−a, a). On the other hand, since g is (0, 1)−valued
and f has limits 0, 1 at ±∞, we can choose t1 ≥ 0 large enough so that

f(−a+ t1) ≤ g(a) ≤ g(−a) ≤ f(a− t1).

Since f, g are non-increasing, this inequality implies that for all x ∈ [−a, a],

f(x+ t1) ≤ g(x) ≤ f(x− t1). (19)

In view of (18)-(19), taking t := max(t0, t1) concludes the proof.

Proof of Proposition 3. Let f, g solve equation (12) and let t be the smallest
non-negative number satisfying for all x ∈ R,

f(x+ t) ≤ g(x) ≤ f(x− t). (20)

Note that t exists by Lemma 1 and the continuity of f . Now assume for
a contradiction that t > 0. Clearly, each of the two inequalities in (20)
must be strict at some point x ∈ R (and hence on some open interval by
continuity), otherwise we would have g ≥ f or g ≤ f and (12) would then
force g = f , contradicting the assumption that t > 0. Consequently, the
function ∆ defined in (15) must satisfy ∆(−t) < 0 < ∆(t). By continuity
of ∆, there must exists t0 < t such that ∆(−t0) < 0 < ∆(t0). As we have
already seen, this inequality implies

f(x+ t0) ≤ g(x) ≤ f(x− t0), (21)

for all x outside some compact [−a, a]. In particular, we now see that the
inequalities in (20) must be strict for all large enough x. Thus, for all x ∈ R,

∫ +∞

−x

(y + x)d−1g(y)dy >

∫ +∞

−x

(y + x)d−1f(y + t)dy

∫ +∞

−x

(y + x)d−1g(y)dy <

∫ +∞

−x

(y + x)d−1f(y − t)dy.
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Applying u 7→ exp(−du) now shows that the inequalities in (20) must actu-
ally be strict everywhere on R, hence in particular on the compact [−a, a].
By uniform continuity, there must exists t1 < t such that

f(x+ t1) ≤ g(x) ≤ f(x− t1), (22)

for all x ∈ [−a, a]. In view of (21)-(22), the number t′ := max(t0, t1) now
contradicts the minimality of t.
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